Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Development and Application of Chitosan Nanogel as a Sorbent for Methotrexate Extraction

Author(s): Sanaz Mehdi-Alamdarlou, Amir Azadi, Mojgan Karbasian and Hajar Ashrafi*

Volume 19, Issue 3, 2023

Published on: 16 February, 2023

Page: [258 - 265] Pages: 8

DOI: 10.2174/1573412919666230120103947

Price: $65

Abstract

Background: Successful drug extraction from biological fluids is challenging due to interfering factors and the trace levels of the target analytes.

Objective: We aimed to provide a suitable and sensitive method to increase the efficiency of methotrexate extraction from biological fluids.

Methods: Chitosan-based nanogel synthesized by the ionic gelation method was used for solidphase microextraction of methotrexate from aqueous and plasma media. The nanogel was characterized in vitro in terms of morphological characteristics (transmission electron microscopy), particle size, polydispersity index (PDI), and zeta potential. High-performance liquid chromatography was used to determine the methotrexate concentrations and extraction yield.

Results: A nanogel with an average size of 135.6 nm and PDI of 0.14 was used for the nanoextraction of methotrexate in this study. The methotrexate concentration, nanogel amount, and extraction time affected the extraction yield. Maximum recovery percentages of 75% and 69% were achieved when extracting methotrexate from aqueous and plasma media, respectively.

Conclusion: The high extraction yields in both studied media indicate that using chitosan-based nanogel as a sorbent during the solid-phase microextraction of methotrexate is a promising prospect, with potential uses for other drugs in different media. It seems that using nanogels can be an excellent way to improve the extraction of drugs from biological environments.

« Previous
Graphical Abstract

[1]
Stark, J.W.; Josephs, L.; Dulak, D.; Clague, M.; Sadiq, S.A. Safety of long-term intrathecal methotrexate in progressive forms of MS. Ther. Adv. Neurol. Disord., 2019, 12, 1756286419892360.
[http://dx.doi.org/10.1177/1756286419892360]
[2]
Panonnummal, R.; Jayakumar, R.; Anjaneyan, G.; Sabitha, M. In vivo anti-psoriatic activity, biodistribution, sub-acute and sub-chronic toxicity studies of orally administered methotrexate loaded chitin nanogel in comparison with methotrexate tablet. Int. J. Biol. Macromol., 2018, 110(110), 259-268.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.036] [PMID: 29355632]
[3]
Wang, Y.; Li, Y.; Liu, Y.; Zhang, Y.; Ke, Z. Zhang, Y Patients with IBD receiving methotrexate are at higher risk of liver injury compared with patients with non-IBD diseases: A meta-analysis and systematic review. Front. Med., 2021, 2021, 8.
[http://dx.doi.org/10.3389/fmed.2021.774824]
[4]
Friedman, B.; Cronstein, B. Methotrexate mechanism in treatment of rheumatoid arthritis. Joint Bone Spine, 2019, 86(3), 301-307.
[http://dx.doi.org/10.1016/j.jbspin.2018.07.004] [PMID: 30081197]
[5]
Ahmadzadeh, A.; Zamani, N.; Hassanian-Moghaddam, H.; Hadeiy, S.K.; Parhizgar, P. Acute versus chronic methotrexate poisoning; a cross-sectional study. BMC Pharmacol. Toxicol., 2019, 20(1), 39.
[6]
Kroll, M.; Kaupat-Bleckmann, K.; Mörickel, A.; Altenl, J.; Schewel, D.M.; Stanullal, M.; Zimmermann, M.; Schrappe, M.; Cario, G. Methotrexate-associated toxicity in children with Down syndrome and acute lymphoblastic leukemia during consolidation therapy with high dose methotrexate according to ALL-BFM treatment regimen. Haematologica, 2020, 105(4), 1013-1020.
[http://dx.doi.org/10.3324/haematol.2019.224774] [PMID: 31371414]
[7]
Morsy, M.A.; El-Sheikh, A.A.K.; Abdel-Hafez, S.M.N.; Kandeel, M.; Abdel-Gaber, S.A. Paeonol Protects Against Methotrexate-Induced Nephrotoxicity via Upregulation of P-gp Expression and Inhibition of TLR4/NF-κB Pathway. Front. Pharmacol., 2022, 13, 774387.
[http://dx.doi.org/10.3389/fphar.2022.774387] [PMID: 35185559]
[8]
Jang, J.H.; Jeong, S.H.; Lee, Y.B. Preparation and in vitro/in vivo characterization of polymeric nanoparticles containing methotrexate to improve lymphatic delivery. Int. J. Mol. Sci., 2019, 20(13), 3312.
[http://dx.doi.org/10.3390/ijms20133312] [PMID: 31284483]
[9]
Pourtalebi Jahromi, L.; Mohammadi-Samani, S.; Ashrafi, H.; Azadi, A. A Reversed-phase high performance liquid chromatography (HPLC) method for bio-analysis of methotrexate. Trends Pharmacol. Sci., 2016, 1002, 107-112.
[10]
Jouyban, A.; Shaghaghi, M.L.; Manzoori, J.; Soleymani, J.; Jalilvaez-Gharamaleki, J. Determination of methotrexate in biological fluids and a parenteral injection using terbium-sensitized method. Iran. J. Pharm. Res., 2011, 10(4), 695-704.
[PMID: 24250404]
[11]
Shi, X.; Gao, H.; Li, Z.; Li, J.; Liu, Y.; Li, L. Modified enzyme multiplied immunoassay technique of methotrexate assay to improve sensitivity and reduce cost. BMC Pharmacol. Toxicol., 2019, 20(1), 3.
[http://dx.doi.org/10.1186/s40360-018-0283-5]
[12]
Hamidi, S.; Azami, A.; Mehdizadeh Aghdam, E. A novel mixed hemimicelles dispersive micro-solid phase extraction using ionic liquid functionalized magnetic graphene oxide/polypyrrole for extraction and pre-concentration of methotrexate from urine samples followed by the spectrophotometric method. Clin. Chim. Acta, 2019, 488, 179-188.
[http://dx.doi.org/10.1016/j.cca.2018.11.006] [PMID: 30419220]
[13]
Ghalkhani, M.; Sohouli, E. Synthesis of the decorated carbon nano onions with aminated MCM-41/Fe3O4 NPs: Morphology and electrochemical sensing performance for methotrexate analysis. Microporous Mesoporous Mater., 2022, 331, 111658.
[http://dx.doi.org/10.1016/j.micromeso.2021.111658]
[14]
Risticevic, S.; Niri, V.H.; Vuckovic, D.; Pawliszyn, J. Recent developments in solid-phase microextraction. Anal. Bioanal. Chem., 2009, 393(3), 781-795.
[http://dx.doi.org/10.1007/s00216-008-2375-3] [PMID: 18836706]
[15]
Zacharis, C.K.; Tzanavaras, P.D. Solid-phase microextraction. Molecules, 2020, 25(2), 379.
[http://dx.doi.org/10.3390/molecules25020379]
[16]
Roszkowska, A.; Miękus, N.; Bączek, T. Application of solid-phase microextraction in current biomedical research. J. Sep. Sci., 2019, 42(1), 285-302.
[http://dx.doi.org/10.1002/jssc.201800785] [PMID: 30289623]
[17]
Büyüktiryaki, S.; Keçili, R.; Hussain, C.M. Functionalized nanomaterials in dispersive solid phase extraction: Advances & prospects. Trends Analyt. Chem., 2020, 127, 115893.
[http://dx.doi.org/10.1016/j.trac.2020.115893]
[18]
Ndilimeke Akawa, M.; Mogolodi Dimpe, K.; Nosizo Nomngongo, P. An adsorbent composed of alginate, polyvinylpyrrolidone and activated carbon (AC@PVP@alginate) for ultrasound-assisted dispersive micro-solid phase extraction of nevirapine and zidovudine in environmental water samples. Environ. Nanotechnol. Monit. Manag., 2021, 16, 100559.
[http://dx.doi.org/10.1016/j.enmm.2021.100559]
[19]
Lu, Y.C.; Guo, M.H.; Mao, J.H.; Xiong, X.H.; Liu, Y.J.; Li, Y. Preparation of core-shell magnetic molecularly imprinted polymer nanoparticle for the rapid and selective enrichment of trace diuron from complicated matrices. Ecotoxicol. Environ. Saf., 2019, 177(177), 66-76.
[http://dx.doi.org/10.1016/j.ecoenv.2019.03.117] [PMID: 30974245]
[20]
Asensio-Ramos, M.; D’Orazio, G.; Hernandez-Borges, J.; Rocco, A.; Fanali, S. Multi-walled carbon nanotubes–dispersive solid-phase extraction combined with nano-liquid chromatography for the analysis of pesticides in water samples. Anal. Bioanal. Chem., 2011, 400(4), 1113-1123.
[http://dx.doi.org/10.1007/s00216-011-4885-7] [PMID: 21461621]
[21]
Háková, M.; Havlíková, L.C.; Chvojka, J.; Erben, J.; Solich, P.; Švec, F.; Šatínský, D. A comparison study of nanofiber, microfiber, and new composite nano/microfiber polymers used as sorbents for on-line solid phase extraction in chromatography system. Anal. Chim. Acta, 2018, 1023(1023), 44-52.
[http://dx.doi.org/10.1016/j.aca.2018.04.023] [PMID: 29754606]
[22]
Li, H.; Cao, Z.; Cao, X.; Jiang, Z.; Abd El-Aty, A.M.; Qi, Y.; Shao, H.; Jin, F.; Zheng, L.; Wang, J. Magnetic solid-phase extraction using a mixture of two types of nanoparticles followed by gas chromatography-mass spectrometry for the determination of six phthalic acid esters in various water samples. RSC Advances, 2018, 8(69), 39641-39649.
[http://dx.doi.org/10.1039/C8RA08643E] [PMID: 35558051]
[23]
Kepekci-Tekkeli, S.E.; Durmus, Z. Magnetic solid phase extraction applications combined with analytical methods for determination of drugs in different matrices review. J. Chil. Chem. Soc., 2019, 64(2), 4448-4458.
[http://dx.doi.org/10.4067/S0717-97072019000204448]
[24]
Wen, Y. 4 - Recent advances in solid-phase extraction techniques with nanomaterials. In: Handbook of Nanomaterials in Analytical Chemistry; Mustansar Hussain, C., Ed.; Elsevier: Amsterdam, 2020; pp. 57-73.
[http://dx.doi.org/10.1016/B978-0-12-816699-4.00004-9]
[25]
Zare, M.; Ramezani, Z.; Rahbar, N. Development of zirconia nanoparticles-decorated calcium alginate hydrogel fibers for extraction of organophosphorous pesticides from water and juice samples: Facile synthesis and application with elimination of matrix effects. J. Chromatogr. A, 2016, 1473(1473), 28-37.
[http://dx.doi.org/10.1016/j.chroma.2016.10.071] [PMID: 27810103]
[26]
Jafari, Z.; Hadjmohammadi, M.R. Development of magnetic solid phase extraction based on magnetic chitosan–graphene oxide nanoparticles and deep eutectic solvents for the determination of flavonoids by high performance liquid chromatography. Anal. Methods, 2021, 13(48), 5821-5829.
[http://dx.doi.org/10.1039/D1AY01530C] [PMID: 34825678]
[27]
de Souza, K.C.; Andrade, G.F.; Vasconcelos, I.; de Oliveira Viana, I.M.; Fernandes, C.; de Sousa, E.M.B. Magnetic solid-phase extraction based on mesoporous silica-coated magnetic nanoparticles for analysis of oral antidiabetic drugs in human plasma. Mater. Sci. Eng. C, 2014, 40(40), 275-280.
[http://dx.doi.org/10.1016/j.msec.2014.04.004] [PMID: 24857494]
[28]
Mehdinia, A.; Khojasteh, E.; Baradaran Kayyal, T.; Jabbari, A. Magnetic solid phase extraction using gold immobilized magnetic mesoporous silica nanoparticles coupled with dispersive liquid–liquid microextraction for determination of polycyclic aromatic hydrocarbons. J. Chromatogr. A, 2014, 1364(1364), 20-27.
[http://dx.doi.org/10.1016/j.chroma.2014.08.063] [PMID: 25194625]
[29]
Ravelo-Pérez, L.M.; Herrera-Herrera, A.V.; Hernández-Borges, J. Rodríguez-Delgado, MÁ Carbon nanotubes: Solid-phase extraction. J. Chromatogr. A, 2010, 1217(16), 2618-2641.
[30]
Zhao, N.; Bian, Y.; Dong, X.; Gao, X.; Zhao, L. Magnetic solid-phase extraction based on multi-walled carbon nanotubes combined ferroferric oxide nanoparticles for the determination of five heavy metal ions in water samples by inductively coupled plasma mass spectrometry. Water Sci. Technol., 2021, 84(6), 1417-1427.
[http://dx.doi.org/10.2166/wst.2021.321] [PMID: 34559076]
[31]
Herrero-Latorre, C.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M.; Otárola-Jiménez, J. Magnetic solid-phase extraction using carbon nanotubes as sorbents: A review. Anal. Chim. Acta, 2015, 892, 10-26.
[http://dx.doi.org/10.1016/j.aca.2015.07.046] [PMID: 26388472]
[32]
Zhang, M.; Yang, J.; Geng, X.; Li, Y.; Zha, Z.; Cui, S.; Yang, J. Magnetic adsorbent based on mesoporous silica nanoparticles for magnetic solid phase extraction of pyrethroid pesticides in water samples. J. Chromatogr. A, 2019, 1598, 20-29.
[http://dx.doi.org/10.1016/j.chroma.2019.03.048] [PMID: 30948040]
[33]
Farjadian, F; Azadi, S; Mohammadi-Samani, S; Ashrafi, H; Azadi, A. A novel approach to the application of hexagonal mesoporous silica in solid-phase extraction of drugs. Heliyon, 2018, 4(11), e00930-e.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00930]
[34]
Xing, W.; Tang, Y. On mechanical properties of nanocomposite hydrogels: Searching for superior properties. Nano Mater. Sci., 2022, 4(2), 83-96.
[http://dx.doi.org/10.1016/j.nanoms.2021.07.004]
[35]
Ansari, R.; Sadati, S.M.; Mozafari, N.; Ashrafi, H. Azadi, A Carbohydrate polymer-based nanoparticle application in drug delivery for CNS-related disorders. Eur. Polym. J., 2020, 128, 109607.
[36]
Shahbazi, M.A.; Ghalkhani, M.; Maleki, H. Directional freeze‐casting: a bioinspired method to assemble multifunctional aligned porous structures for advanced applications. Adv. Eng. Mater., 2020, 22(7), 2000033.
[http://dx.doi.org/10.1002/adem.202000033]
[37]
Pourtalebi, J.L.; Mohammadi-Samani, S.; Heidari, R.; Azadi, A. In vitro- and in vivo evaluation of methotrexate-loaded hydrogel nanoparticles intended to treat primary CNS lymphoma via intranasal administration. J. Pharm. Pharm. Sci., 2018, 21(1), 305-317.
[38]
Azadi, A.; Hamidi, M.; Rouini, M.R. Methotrexate-loaded chitosan nanogels as ‘trojan horses’ for drug delivery to brain: Preparation and in vitro/in vivo characterization. Int. J. Biol. Macromol., 2013, 62, 523-530.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.10.004] [PMID: 24120961]
[39]
Djerahov, L.; Vasileva, P.; Karadjova, I.; Kurakalva, R.M.; Aradhi, K.K. Chitosan film loaded with silver nanoparticles—sorbent for solid phase extraction of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II). Carbohydr. Polym., 2016, 147(147), 45-52.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.080] [PMID: 27178907]
[40]
Razavi, N.; Sarafraz Yazdi, A. New application of chitosan-grafted polyaniline in dispersive solid-phase extraction for the separation and determination of phthalate esters in milk using high-performance liquid chromatography. J. Sep. Sci., 2017, 40(8), 1739-1746.
[http://dx.doi.org/10.1002/jssc.201601059] [PMID: 28225187]

© 2025 Bentham Science Publishers | Privacy Policy