Generic placeholder image

Recent Advances in Anti-Infective Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-4344
ISSN (Online): 2772-4352

Review Article

SARS-CoV-2 Pandemic-Therapeutics in Warp Speed

Author(s): Sourav Sen* and Nitin Kumar

Volume 18, Issue 2, 2023

Published on: 07 February, 2023

Page: [110 - 119] Pages: 10

DOI: 10.2174/2772434418666230119101350

Price: $65

Abstract

Ever since the coronavirus disease 2019 (COVID-19) pandemic struck, the challenges posed to the scientific community by its causative agent, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been countless, and still continue to emerge. Even though a host of repurposed and new therapeutic agents as well as vaccines have been, and are being assessed at a breakneck speed, this contagion continues to create havoc, returning back in waves, with appearance of newer viral variants which are associated with numerous challenges, which include greater transmissibility, increased virulence, immune escape, etc. In this study, we discuss the current status of various therapeutic agents which are being used, or in the various stages of preclinical/clinical trials for managing COVID-19.

Next »
Graphical Abstract

[1]
WHO Coronavirus (COVID-19) Dashboard. Available from: https://covid19.who.int/ (Accessed on: April 1, 2022)
[2]
Lyu M, Fan G, Xiao G, et al. Traditional Chinese medicine in COVID-19. Acta Pharm. Sin. B 2021; 11(11): 3337-63.
[http://dx.doi.org/10.1016/j.apsb.2021.09.008] [PMID: 34567957]
[3]
Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr. 2020; 87(4): 281-6.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[4]
Gottlieb RL, Vaca CE, Paredes R, et al. Early remdesivir to prevent progression to severe COVID-19 in outpatients. N. Engl. J. Med. 2022; 386(4): 305-15.
[http://dx.doi.org/10.1056/NEJMoa2116846] [PMID: 34937145]
[5]
Jayk Bernal A, Gomes da Silva MM, Musungaie DB, et al. Molnupiravir for oral treatment of COVID-19 in nonhospitalized patients. N. Engl. J. Med. 2022; 386(6): 509-20.
[http://dx.doi.org/10.1056/NEJMoa2116044] [PMID: 34914868]
[6]
Taylor R, Bowen R, Demarest JF, et al. Activity of galidesivir in a hamster model of SARS-CoV-2. Viruses 2021; 14(1): 8.
[http://dx.doi.org/10.3390/v14010008] [PMID: 35062212]
[7]
Shiraki K, Sato N, Sakai K, Matsumoto S, Kaszynski RH, Takemoto M. Antiviral therapy for COVID-19: Derivation of optimal strate-gy based on past antiviral and favipiravir experiences. Pharmacol. Ther. 2022; 235108121
[http://dx.doi.org/10.1016/j.pharmthera.2022.108121] [PMID: 35121001]
[8]
Owen DR, Allerton CMN, Anderson AS, et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021; 374(6575): 1586-93.
[http://dx.doi.org/10.1126/science.abl4784] [PMID: 34726479]
[9]
Hammond J, Leister-Tebbe H, Gardner A, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with COVID-19. N. Engl. J. Med. 2022; 386(15): 1397-408.
[http://dx.doi.org/10.1056/NEJMoa2118542] [PMID: 35172054]
[10]
Li P, Wang Y, Lavrijsen M, et al. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Res. 2022; 32(3): 322-4.
[http://dx.doi.org/10.1038/s41422-022-00618-w] [PMID: 35058606]
[11]
Arbidol|C22H25BrN2O3S-PubChem. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Arbidol (Accessed on: March 7, 2022)
[12]
Ramachandran R, Bhosale V, Reddy H, et al. Phase III, randomized, double-blind, placebo controlled trial of efficacy, safety and tolera-bility of antiviral drug umifenovir vs. standard care of therapy in non-severe COVID-19 patients. Int. J. Infect. Dis. 2022; 115: 62-9.
[http://dx.doi.org/10.1016/j.ijid.2021.11.025] [PMID: 34801738]
[13]
Cholo MC, Steel HC, Fourie PB, Germishuizen WA, Anderson R. Clofazimine: Current status and future prospects. J. Antimicrob. Chemother. 2012; 67(2): 290-8.
[http://dx.doi.org/10.1093/jac/dkr444] [PMID: 22020137]
[14]
Yuan S, Yin X, Meng X, et al. Clofazimine broadly inhibits coronaviruses including SARS-CoV-2. Nature 2021; 593(7859): 418-23.
[http://dx.doi.org/10.1038/s41586-021-03431-4] [PMID: 33727703]
[15]
Gunst JD, Staerke NB, Pahus MH, et al. Efficacy of the TMPRSS2 inhibitor camostat mesilate in patients hospitalized with COVID-19-a double-blind randomized controlled trial. EClinicalMedicine 2021; 35100849
[http://dx.doi.org/10.1016/j.eclinm.2021.100849] [PMID: 33903855]
[16]
Chupp G, Spichler-Moffarah A, Søgaard OS, et al. A Phase 2 randomized, double-blind, placebo-controlled trial of oral camostat mesy-late for early treatment of COVID-19 outpatients showed shorter illness course and attenuation of loss of smell and taste. medRxiv 2022.01.28.22270035
[http://dx.doi.org/10.1101/2022.01.28.22270035]
[17]
Brian Buntz. RedHill Biopharma makes progress in RHB-107 COVID-19 study. Drug Discovery & Development. 2021. Available from: https://www.drugdiscoverytrends.com/redhill-biopharma-makes-progress-in-rhb-107-COVID-19-study/ (Accessed on: March 7, 2022).
[18]
Sukhatme VP, Reiersen AM, Vayttaden SJ, Sukhatme VV. Fluvoxamine: A review of its mechanism of action and its role in COVID-19. Front. Pharmacol. 2021; 12652688
[http://dx.doi.org/10.3389/fphar.2021.652688] [PMID: 33959018]
[19]
Reis G, dos Santos Moreira-Silva EA, Silva DCM, et al. Effect of early treatment with fluvoxamine on risk of emergency care and hos-pitalisation among patients with COVID-19: The TOGETHER randomised, platform clinical trial. Lancet Glob. Health 2022; 10(1): e42-51.
[http://dx.doi.org/10.1016/S2214-109X(21)00448-4] [PMID: 34717820]
[20]
Martinez MA. Plitidepsin: A repurposed drug for the treatment of COVID-19. Antimicrob. Agents Chemother. 2021; 65(4): e00200-21.
[http://dx.doi.org/10.1128/AAC.00200-21] [PMID: 33558296]
[21]
Varona JF, Landete P, Lopez-Martin JA, et al. Preclinical and randomized phase I studies of plitidepsin in adults hospitalized with CO-VID-19. Life Sci. Alliance 2022; 5(4)e202101200
[http://dx.doi.org/10.26508/lsa.202101200] [PMID: 35012962]
[22]
Schreiber A, Viemann D, Schöning J, et al. The MEK1/2-inhibitor ATR-002 efficiently blocks SARS-CoV-2 propagation and alleviates pro-inflammatory cytokine/chemokine responses. Cell. Mol. Life Sci. 2022; 79(1): 65.
[http://dx.doi.org/10.1007/s00018-021-04085-1] [PMID: 35013790]
[23]
Menéndez JC. Approaches to the potential therapy of COVID-19: A general overview from the medicinal chemistry perspective. Molecules 2022; 27(3): 658.
[http://dx.doi.org/10.3390/molecules27030658] [PMID: 35163923]
[24]
Barone P, DeSimone RA. Convalescent plasma to treat coronavirus disease 2019 (COVID-19): Considerations for clinical trial design. Transfusion 2020; 60(6): 1123-7.
[http://dx.doi.org/10.1111/trf.15843] [PMID: 32374891]
[25]
Arabi YM, Hajeer AH, Luke T, et al. Feasibility of using convalescent plasma immunotherapy for MERS-CoV infection, Saudi Arabia. Emerg. Infect. Dis. 2016; 22(9): 1554-61.
[http://dx.doi.org/10.3201/eid2209.151164] [PMID: 27532807]
[26]
Mair-Jenkins J, Saavedra-Campos M, Baillie JK, et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: A systematic review and exploratory meta-analysis. J. Infect. Dis. 2015; 211(1): 80-90.
[http://dx.doi.org/10.1093/infdis/jiu396] [PMID: 25030060]
[27]
Rojas M, Rodríguez Y, Monsalve DM, et al. Convalescent plasma in COVID-19: Possible mechanisms of action. Autoimmun. Rev. 2020; 19(7)102554
[http://dx.doi.org/10.1016/j.autrev.2020.102554] [PMID: 32380316]
[28]
Shen C, Wang Z, Zhao F, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020; 323(16): 1582-9.
[http://dx.doi.org/10.1001/jama.2020.4783] [PMID: 32219428]
[29]
Abolghasemi H, Eshghi P, Cheraghali AM, et al. Clinical efficacy of convalescent plasma for treatment of COVID-19 infections: Re-sults of a multicenter clinical study. Transfus. Apheresis Sci. 2020; 59(5)102875
[http://dx.doi.org/10.1016/j.transci.2020.102875] [PMID: 32694043]
[30]
Hegerova L, Gooley TA, Sweerus KA, et al. Use of convalescent plasma in hospitalized patients with COVID-19: Case series. Blood 2020; 136(6): 759-62.
[http://dx.doi.org/10.1182/blood.2020006964] [PMID: 32559767]
[31]
Li L, Zhang W, Hu Y, et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19. JAMA 2020; 324(5): 460-70.
[http://dx.doi.org/10.1001/jama.2020.10044] [PMID: 32492084]
[32]
FDA. Recommendations for Investigational COVID-19 Convalescent Plasma. 2022. Available from: https://www.fda.gov/vaccines-blood-biologics/investi-gational-new-drug-applications-inds-cber-regulated-products/recommendations-investigational-COVID-19-convalescent-plasma (Accessed on: March 7, 2022).
[33]
FDA. FDA Issues Emergency Use Authorization for Convalescent Plasma as Potential Promising COVID–19 Treatment, Another Achievement in Administration’s Fight Against Pandemic. 2020. Available from: https://www.fda.gov/news-events/press-announcements/fda-issues-emergency-use-authorization-convalescentplasma-potential-promising-COVID-19-treatment (Accessed on: March 7, 2022).
[34]
Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022; 23(1): 3-20.
[http://dx.doi.org/10.1038/s41580-021-00418-x] [PMID: 34611326]
[35]
Huang Y, Yang C, Xu X, Xu W, Liu S. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 2020; 41(9): 1141-9.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[36]
Baum A, Fulton BO, Wloga E, et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with indi-vidual antibodies. Science 2020; 369(6506): 1014-8.
[http://dx.doi.org/10.1126/science.abd0831] [PMID: 32540904]
[37]
Weinreich DM, Sivapalasingam S, Norton T, et al. REGN-COV-2, a neutralizing antibody cocktail, in outpatients with COVID-19. N. Engl. J. Med. 2021; 384(3): 238-51.
[http://dx.doi.org/10.1056/NEJMoa2035002] [PMID: 33332778]
[38]
Zimmer C, Wu KJ, Corum J. Coronavirus Drug and Treatment Tracker. The New York Times 2021. Available from: https://www.nytimes.com/interactive/2020/science/coronavirus-drugs-treatments.html (Accessed on: March 7, 2022)
[39]
Gottlieb RL, Nirula A, Chen P, et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: A randomized clinical trial. JAMA 2021; 325(7): 632-44.
[http://dx.doi.org/10.1001/jama.2021.0202] [PMID: 33475701]
[40]
Cathcart AL, Havenar-Daughton C, Lempp FA, et al. The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2. bioRxiv 2021.03.09.434607
[http://dx.doi.org/10.1101/2021.03.09.434607]
[41]
Piepenbrink MS, Park J-G, Desphande A, et al. Potent universal-coronavirus therapeutic activity mediated by direct respiratory adminis-tration of a Spike S2 domain-specific human neutralizing monoclonal antibody. bioRxiv 2022; 3(5)483133
[42]
Schäcke H, Döcke WD, Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther. 2002; 96(1): 23-43.
[http://dx.doi.org/10.1016/S0163-7258(02)00297-8] [PMID: 12441176]
[43]
Poetker DM, Reh DD. A comprehensive review of the adverse effects of systemic corticosteroids. Otolaryngol. Clin. North Am. 2010; 43(4): 753-68.
[http://dx.doi.org/10.1016/j.otc.2010.04.003] [PMID: 20599080]
[44]
Ledford H. Coronavirus breakthrough: Dexamethasone is first drug shown to save lives. Nature 2020; 582(7813): 469.
[http://dx.doi.org/10.1038/d41586-020-01824-5] [PMID: 32546811]
[45]
Villar J, Ferrando C, Martínez D, et al. Dexamethasone treatment for the acute respiratory distress syndrome: A multicentre, randomised controlled trial. Lancet Respir. Med. 2020; 8(3): 267-76.
[http://dx.doi.org/10.1016/S2213-2600(19)30417-5] [PMID: 32043986]
[46]
Tomazini BM, Maia IS, Cavalcanti AB, et al. Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19. JAMA 2020; 324(13): 1307-16.
[http://dx.doi.org/10.1001/jama.2020.17021] [PMID: 32876695]
[47]
Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 2020; 180(7): 934-43.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[48]
Herold T, Jurinovic V, Arnreich C, et al. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J. Allergy Clin. Immunol. 2020; 146(1): 128-136.e4.
[http://dx.doi.org/10.1016/j.jaci.2020.05.008] [PMID: 32425269]
[49]
Saha A, Sharma AR, Bhattacharya M, Sharma G, Lee SS, Chakraborty C. Tocilizumab: A therapeutic option for the treatment of cytoki-ne storm syndrome in COVID-19. Arch. Med. Res. 2020; 51(6): 595-7.
[http://dx.doi.org/10.1016/j.arcmed.2020.05.009] [PMID: 32482373]
[50]
Kavanaugh A, Kavanaugh A. Interleukin-6 inhibitors in the treatment of rheumatoid arthritis. Ther. Clin. Risk Manag. 2008; 4(4): 767-75.
[http://dx.doi.org/10.2147/TCRM.S3470] [PMID: 19209259]
[51]
Brunner HI, Ruperto N, Zuber Z, et al. Efficacy and safety of tocilizumab in patients with polyarticular-course juvenile idiopathic arthri-tis: Results from a phase 3, randomised, double-blind withdrawal trial. Ann. Rheum. Dis. 2015; 74(6): 1110-7.
[http://dx.doi.org/10.1136/annrheumdis-2014-205351] [PMID: 24834925]
[52]
Stone JH, Tuckwell K, Dimonaco S, et al. Trial of tocilizumab in giant-cell arteritis. N. Engl. J. Med. 2017; 377(4): 317-28.
[http://dx.doi.org/10.1056/NEJMoa1613849] [PMID: 28745999]
[53]
Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: A single center experience. J. Med. Virol. 2020; 92(7): 814-8.
[http://dx.doi.org/10.1002/jmv.25801] [PMID: 32253759]
[54]
Babon JJ, Lucet IS, Murphy JM, Nicola NA, Varghese LN. The molecular regulation of Janus kinase (JAK) activation. Biochem. J. 2014; 462(1): 1-13.
[http://dx.doi.org/10.1042/BJ20140712] [PMID: 25057888]
[55]
Renauld JC. Class II cytokine receptors and their ligands: Key antiviral and inflammatory modulators. Nat. Rev. Immunol. 2003; 3(8): 667-76.
[http://dx.doi.org/10.1038/nri1153] [PMID: 12974481]
[56]
Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020; 395(10223): e30-1.
[http://dx.doi.org/10.1016/S0140-6736(20)30304-4] [PMID: 32032529]
[57]
Kalil AC, Patterson TF, Mehta AK, et al. Baricitinib plus remdesivir for hospitalized adults with COVID-19. N. Engl. J. Med. 2021; 384(9): 795-807.
[http://dx.doi.org/10.1056/NEJMoa2031994] [PMID: 33306283]
[58]
Fact sheet for healthcare providers emergency use authorization (EUA) of baricitinib. Available from: www.lillytrade.com (Accessed on: March 7, 2022)
[59]
Kucharz EJ, Stajszczyk M, Kotulska-Kucharz A, et al. Tofacitinib in the treatment of patients with rheumatoid arthritis: Position state-ment of experts of the Polish Society for Rheumatology. Reumatologia 2018; 56(4): 203-11.
[http://dx.doi.org/10.5114/reum.2018.77971] [PMID: 30237624]
[60]
Maslennikov R, Ivashkin V, Vasilieva E, et al. Tofacitinib reduces mortality in coronavirus disease 2019 Tofacitinib in COVID-19. Pulm. Pharmacol. Ther. 2021; 69102039
[http://dx.doi.org/10.1016/j.pupt.2021.102039] [PMID: 34023513]
[61]
Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N. Engl. J. Med. 2012; 366(9): 799-807.
[http://dx.doi.org/10.1056/NEJMoa1110557] [PMID: 22375971]
[62]
Singh R, Goel S, Bourgeade P, Aleya L, Tewari D. Ayurveda Rasayana as antivirals and immunomodulators: Potential applications in COVID-19. Environ. Sci. Pollut. Res. Int. 2021; 28(40): 55925-51.
[http://dx.doi.org/10.1007/s11356-021-16280-5] [PMID: 34491498]
[63]
Rastogi S, Pandey DN, Singh RH. COVID-19 pandemic: A pragmatic plan for ayurveda intervention. J. Ayurveda Integr. Med. 2022; 13(1)100312
[http://dx.doi.org/10.1016/j.jaim.2020.04.002] [PMID: 32382220]
[64]
Prakash P, Meena R, Stanley Abraham L, et al. Evidence-based traditional Siddha formulations for prophylaxis and management of respiratory symptoms in COVID-19 pandemic-a review. Biocatal. Agric. Biotechnol. 2021; 35102056
[http://dx.doi.org/10.1016/j.bcab.2021.102056] [PMID: 34122672]
[65]
Panda AK, Kar S, Rai AK, Rao BCS, Srikanth N. AYUSH- 64: A potential therapeutic agent in COVID-19. J. Ayurveda Integr. Med. 2022; 13(2)100538
[http://dx.doi.org/10.1016/j.jaim.2021.100538] [PMID: 35002178]
[66]
Kang X, Jin D, Jiang L, et al. Efficacy and mechanisms of traditional Chinese medicine for COVID-19: A systematic review. Chin. Med. 2022; 17(1): 30.
[http://dx.doi.org/10.1186/s13020-022-00587-7] [PMID: 35227280]
[67]
Discover part 7 of the Quality Data Series: Creating an Ecosystem of Quality. DRUGBANK Online. Available from: https://go.drugbank.com/drugs
[68]
Annane D. Corticosteroids for COVID-19. J. Int Med. 2021; 1(1): 14-25.
[http://dx.doi.org/10.1016/j.jointm.2021.01.002] [PMID: 33706794]
[69]
Bousoik E, Montazeri Aliabadi H. “Do we know jack” about JAK? A closer look at JAK/STAT signaling pathway. Front. Oncol. 2018; 8: 287.
[http://dx.doi.org/10.3389/fonc.2018.00287] [PMID: 30109213]
[70]
Alam S, Sarker MMR, Afrin S, et al. Traditional herbal medicines, bioactive metabolites, and plant products against COVID-19: Update on clinical trials and mechanism of actions. Front. Pharmacol. 2021; 12671498
[http://dx.doi.org/10.3389/fphar.2021.671498] [PMID: 34122096]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy