Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Current Status of Antisense Gene Therapies for Bacteria-caused Diseases Challenges and Opportunities

Author(s): Jiawei Li, Xuejun Liang, Fangxin Wang, Juping Wang and Feng Ding*

Volume 29, Issue 4, 2023

Published on: 25 January, 2023

Page: [272 - 282] Pages: 11

DOI: 10.2174/1381612829666230118152428

Price: $65

Abstract

Bacteria-caused diseases continue to pose a serious threat to human health. The current situation of overused antibiotics against those diseases further spurs and exacerbates the ever-increasing drug resistance problems, which really leaves us very few options to combat those nasty bugs. Gene therapies based on the antisense oligonucleotide, though developed more than 40 years ago, did not reform the current treatments as originally expected. Along with the advances of new delivery technologies, this old field thrives again. In addition, newly evolving gene-editing tools based on the CRISPR-Cas system shed new light on this old field, bringing a breeze of hope to gene therapies for bacteria-caused diseases. As a fast-growing field, we strive to summarize in this review the recent progress in using gene therapies in those areas, analyze the potential challenges or problems from using antisense or gene-editing tools for targeting bacterial diseases and seek to explore any potential solutions to the current dilemmas. As a short review, we will focus our discussion mainly on antisense oligonucleotide-based gene therapies while briefly touching on the CRISPR-Cas based ones as the latter is just beginning to get more attention for application in the prokaryotic kingdom.

[1]
Doron S, Gorbach SL. Bacterial Infections: Overview. International Encyclopedia of Public Health 2008; pp. 273-82.
[2]
Vouga M, Greub G. Emerging bacterial pathogens: The past and beyond. Clinical microbiology and infection. The official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2016; 22: 12-21.
[http://dx.doi.org/10.1016/j.cmi.2015.10.010]
[3]
Larsson DGJ, Flach CF. Antibiotic resistance in the environment. Nat Rev Microbiol 2022; 20(5): 257-69.
[http://dx.doi.org/10.1038/s41579-021-00649-x] [PMID: 34737424]
[4]
Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N. A review on antibiotic resistance: Alarm bells are ringing. Cureus 2017; 9(6): e1403-3.
[http://dx.doi.org/10.7759/cureus.1403] [PMID: 28852600]
[5]
Peterson E, Kaur P. Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front Microbiol 2018; 9: 2928.
[http://dx.doi.org/10.3389/fmicb.2018.02928] [PMID: 30555448]
[6]
Dever LA, Dermody TS. Mechanisms of bacterial resistance to antibiotics. Arch Intern Med 1991; 151(5): 886-95.
[http://dx.doi.org/10.1001/archinte.1991.00400050040010] [PMID: 2025137]
[7]
C Reygaert W. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 2018; 4(3): 482-501.
[http://dx.doi.org/10.3934/microbiol.2018.3.482] [PMID: 31294229]
[8]
Laws M, Shaaban A, Rahman KM. Antibiotic resistance breakers: Current approaches and future directions. FEMS Microbiol Rev 2019; 43(5): 490-516.
[http://dx.doi.org/10.1093/femsre/fuz014] [PMID: 31150547]
[9]
Crooke ST. Molecular mechanisms of antisense oligonucleotides. Nucleic Acid Ther 2017; 27(2): 70-7.
[http://dx.doi.org/10.1089/nat.2016.0656] [PMID: 28080221]
[10]
Dias N, Stein CA. Antisense oligonucleotides: Basic concepts and mechanisms. Mol Cancer Ther 2002; 1(5): 347-55.
[PMID: 12489851]
[11]
Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 1978; 75(1): 280-4.
[http://dx.doi.org/10.1073/pnas.75.1.280] [PMID: 75545]
[12]
Hegarty JP, Stewart DB Sr. Advances in therapeutic bacterial antisense biotechnology. Appl Microbiol Biotechnol 2018; 102(3): 1055-65.
[http://dx.doi.org/10.1007/s00253-017-8671-0] [PMID: 29209794]
[13]
Sully EK, Geller BL. Antisense antimicrobial therapeutics. Curr Opin Microbiol 2016; 33: 47-55.
[http://dx.doi.org/10.1016/j.mib.2016.05.017] [PMID: 27375107]
[14]
Lundin KE, Gissberg O, Smith CIE. Oligonucleotide therapies: The past and the present. Hum Gene Ther 2015; 26(8): 475-85.
[http://dx.doi.org/10.1089/hum.2015.070] [PMID: 26160334]
[15]
Jani S, Ramirez MS, Tolmasky ME. Silencing antibiotic resistance with antisense oligonucleotides. Biomedicines 2021; 9(4): 416.
[http://dx.doi.org/10.3390/biomedicines9040416] [PMID: 33921367]
[16]
Li X, Feng K, Li L, et al. Lipid-oligonucleotide conjugates for bioapplications. Natl Sci Rev 2020; 7(12): 1933-53.
[http://dx.doi.org/10.1093/nsr/nwaa161] [PMID: 34691533]
[17]
Hammond SM, Aartsma-Rus A, Alves S, et al. Delivery of oligonucleotide-based therapeutics: Challenges and opportunities. EMBO Mol Med 2021; 13(4): e13243.
[http://dx.doi.org/10.15252/emmm.202013243] [PMID: 33821570]
[18]
Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov 2020; 19(10): 673-94.
[http://dx.doi.org/10.1038/s41573-020-0075-7] [PMID: 32782413]
[19]
Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res 2016; 44(14): 6518-48.
[http://dx.doi.org/10.1093/nar/gkw236] [PMID: 27084936]
[20]
Stein CA. Two problems in antisense biotechnology: In vitro delivery and the design of antisense experiments. Biochim Biophys Acta Gene Struct Expr 1999; 1489(1): 45-52.
[http://dx.doi.org/10.1016/S0167-4781(99)00143-8] [PMID: 10806996]
[21]
Crooke ST. Progress in antisense technology. Annu Rev Med 2004; 55(1): 61-95.
[http://dx.doi.org/10.1146/annurev.med.55.091902.104408] [PMID: 14746510]
[22]
Stein CA, Castanotto D. FDA-approved oligonucleotide therapies in 2017. Mol Ther 2017; 25(5): 1069-75.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.023] [PMID: 28366767]
[23]
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391(6669): 806-11.
[http://dx.doi.org/10.1038/35888] [PMID: 9486653]
[24]
Wang J, Barr MM. RNA interference in Caenorhabditis elegans. Methods Enzymol 2005; 392: 36-55.
[http://dx.doi.org/10.1016/S0076-6879(04)92003-4] [PMID: 15644174]
[25]
Sohail M, Southern EM. Selecting optimal antisense reagents. Adv Drug Deliv Rev 2000; 44(1): 23-34.
[http://dx.doi.org/10.1016/S0169-409X(00)00081-8] [PMID: 11035195]
[26]
Sczakiel G. Theoretical and experimental approaches to design effective antisense oligonucleotides. Front Biosci 2000; 5(1): d194.
[http://dx.doi.org/10.2741/Sczakiel] [PMID: 10702382]
[27]
Aartsma-Rus A, van Vliet L, Hirschi M, et al. Guidelines for antisense oligonucleotide design and insight into splice-modulating mechanisms. Mol Ther 2009; 17(3): 548-53.
[http://dx.doi.org/10.1038/mt.2008.205] [PMID: 18813282]
[28]
Chan JHP, Lim S, Wong WSF. Antisense oligonucleotides: From design to therapeutic application. Clin Exp Pharmacol Physiol 2006; 33(5-6): 533-40.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04403.x] [PMID: 16700890]
[29]
Karaki S, Paris C, Rocchi P. Antisense oligonucleotides, A novel developing targeting therapy. 2019.
[30]
Stull RA, Taylor LA, Szoka FC Jr. Predicting antisense oligonucleotide inhibitory efficacy: A computational approach using histograms and thermodynamic indices. Nucleic Acids Res 1992; 20(13): 3501-8.
[http://dx.doi.org/10.1093/nar/20.13.3501] [PMID: 1352874]
[31]
Matveeva OV, Mathews DH, Tsodikov AD, et al. Thermodynamic criteria for high hit rate antisense oligonucleotide design. Nucleic Acids Res 2003; 31(17): 4989-94.
[http://dx.doi.org/10.1093/nar/gkg710] [PMID: 12930948]
[32]
Pan WH, Clawson GA. Identifying accessible sites in RNA: The first step in designing antisense reagents. Curr Med Chem 2006; 13(25): 3083-103.
[http://dx.doi.org/10.2174/092986706778521788] [PMID: 17073649]
[33]
Ho SP, Bao Y, Lesher T, et al. Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries. Nat Biotechnol 1998; 16(1): 59-63.
[http://dx.doi.org/10.1038/nbt0198-59] [PMID: 9447595]
[34]
Zhang HY, Mao J, Zhou D, et al. mRNA accessible site tagging (MAST): A novel high throughput method for selecting effective antisense oligonucleotides. Nucleic Acids Res 2003; 31(14): 72e-.
[http://dx.doi.org/10.1093/nar/gng072] [PMID: 12853649]
[35]
Matveeva O, Felden B, Audlin S, Gesteland RF, Atkins JF. A rapid in vitro method for obtaining RNA accessibility patterns for complementary DNA probes: correlation with an intracellular pattern and known RNA structures. Nucleic Acids Res 1997; 25(24): 5010-6.
[http://dx.doi.org/10.1093/nar/25.24.5010] [PMID: 9396809]
[36]
Scherr M, LeBon J, Castanotto D, et al. Detection of antisense and ribozyme accessible sites on native mRNAs: Application to NCOA3 mRNA. Mol Ther 2001; 4(5): 454-60.
[http://dx.doi.org/10.1006/mthe.2001.0481] [PMID: 11708882]
[37]
Mathews DH, Burkard M, Freier SM, Wyatt JR, Turner DH. Predicting oligonucleotide affinity to nucleic acid targets. RNA 1999; 5(11): 1458-69.
[http://dx.doi.org/10.1017/S1355838299991148] [PMID: 10580474]
[38]
Mathews DH, Sabina J, Zuker M, Turner DH. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 1999; 288(5): 911-40.
[http://dx.doi.org/10.1006/jmbi.1999.2700] [PMID: 10329189]
[39]
Ding Y, Chan CY, Lawrence CE. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 2004; 32(Web Server): W135-41.
[http://dx.doi.org/10.1093/nar/gkh449] [PMID: 15215366]
[40]
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003; 31(13): 3406-15.
[http://dx.doi.org/10.1093/nar/gkg595] [PMID: 12824337]
[41]
Singh J, Hanson J, Paliwal K, Zhou Y. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat Commun 2019; 10(1): 5407.
[http://dx.doi.org/10.1038/s41467-019-13395-9] [PMID: 31776342]
[42]
Danaee P, Rouches M, Wiley M, Deng D, Huang L, Hendrix D. bpRNA: Large-scale automated annotation and analysis of RNA secondary structure. Nucleic Acids Res 2018; 46(11): 5381-94.
[http://dx.doi.org/10.1093/nar/gky285] [PMID: 29746666]
[43]
Lorenz R, Bernhart SH, Höner zu Siederdissen C, et al. ViennaRNA Package 2.0. Algorithms Mol Biol 2011; 6(1): 26.
[http://dx.doi.org/10.1186/1748-7188-6-26] [PMID: 22115189]
[44]
Sweeney BA, Hoksza D, Nawrocki EP, et al. R2DT is a framework for predicting and visualising RNA secondary structure using templates. Nat Commun 2021; 12(1): 3494.
[http://dx.doi.org/10.1038/s41467-021-23555-5] [PMID: 34108470]
[45]
Rennie W, Kanoria S, Liu C, Carmack CS, Lu J, Ding Y. Sfold tools for MicroRNA target prediction. Methods Mol Biol 2019; 1970: 31-42.
[http://dx.doi.org/10.1007/978-1-4939-9207-2_3] [PMID: 30963486]
[46]
Sciabola S, Xi H, Cruz D, et al. PFRED: A computational platform for siRNA and antisense oligonucleotides design. PLoS One 2021; 16(1): e0238753.
[http://dx.doi.org/10.1371/journal.pone.0238753] [PMID: 33481821]
[47]
Chalk AM, Sonnhammer ELL. Computational antisense oligo prediction with a neural network model. Bioinformatics 2002; 18(12): 1567-75.
[http://dx.doi.org/10.1093/bioinformatics/18.12.1567] [PMID: 12490440]
[48]
Bo X, Lou S, Sun D, Yang J, Wang S. AOBase: a database for antisense oligonucleotides selection and design. Nucleic Acids Res 2006; 34(90001): D664-7.
[http://dx.doi.org/10.1093/nar/gkj065] [PMID: 16381954]
[49]
Giddings MC, Matveeva OV, Atkins JF, Gesteland RF. ODNBase-a web database for antisense oligonucleotide effectiveness studies. Bioinformatics 2000; 16(9): 843-4.
[http://dx.doi.org/10.1093/bioinformatics/16.9.843] [PMID: 11108708]
[50]
Bode M, Khor S, Ye H, Li MH, Ying JY. TmPrime: Fast, flexible oligonucleotide design software for gene synthesis. Nucleic Acids Res 2009; 37(Web Server issue) (Suppl. 2): W214-21.
[http://dx.doi.org/10.1093/nar/gkp461] [PMID: 19515937]
[51]
Wu Y, Qu R, Huang Y, et al. RNAex: an RNA secondary structure prediction server enhanced by high-throughput structure-probing data. Nucleic Acids Res 2016; 44(W1): W294-301.
[http://dx.doi.org/10.1093/nar/gkw362] [PMID: 27137891]
[52]
Bo X, Wang S. TargetFinder: A software for antisense oligonucleotide target site selection based on MAST and secondary structures of target mRNA. Bioinformatics 2005; 21(8): 1401-2.
[http://dx.doi.org/10.1093/bioinformatics/bti211] [PMID: 15598838]
[53]
Matveeva OV, Tsodikov AD, Giddings M, et al. Identification of sequence motifs in oligonucleotides whose presence is correlated with antisense activity. Nucleic Acids Res 2000; 28(15): 2862-5.
[http://dx.doi.org/10.1093/nar/28.15.2862] [PMID: 10908347]
[54]
Franch T, Petersen M, Wagner EGH, Jacobsen JP, Gerdes K. Antisense RNA regulation in prokaryotes: Rapid RNA/RNA interaction facilitated by a general U-turn loop structure. J Mol Biol 1999; 294(5): 1115-25.
[http://dx.doi.org/10.1006/jmbi.1999.3306] [PMID: 10600370]
[55]
Anusha AR, Chandra V. Prediction of antisense oligonucleotides using structural and thermodynamic motifs. Bioinformation 2012; 8(23): 1162-6.
[http://dx.doi.org/10.6026/97320630081162] [PMID: 23275713]
[56]
Harth G, Zamecnik PC, Tang JY, Tabatadze D, Horwitz MA. Treatment of Mycobacterium tuberculosis with antisense oligonucleotides to glutamine synthetase mRNA inhibits glutamine synthetase activity, formation of the poly- L-glutamate/glutamine cell wall structure, and bacterial replication. Proc Natl Acad Sci USA 2000; 97(1): 418-23.
[http://dx.doi.org/10.1073/pnas.97.1.418] [PMID: 10618433]
[57]
Harth G, Zamecnik PC, Tabatadze D, Pierson K, Horwitz MA. Hairpin extensions enhance the efficacy of mycolyl transferase-specific antisense oligonucleotides targeting Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2007; 104(17): 7199-204.
[http://dx.doi.org/10.1073/pnas.0701725104] [PMID: 17438292]
[58]
Meng J, Wang H, Hou Z, et al. Novel anion liposome-encapsulated antisense oligonucleotide restores susceptibility of methicillin-resistant Staphylococcus aureus and rescues mice from lethal sepsis by targeting mecA. Antimicrob Agents Chemother 2009; 53(7): 2871-8.
[http://dx.doi.org/10.1128/AAC.01542-08] [PMID: 19433567]
[59]
Wang H, Meng J, Jia M, et al. oprM as a new target for reversion of multidrug resistance in Pseudomonas aeruginosa by antisense phosphorothioate oligodeoxynucleotides. FEMS Immunol Med Microbiol 2010; 60(3): 275-82.
[http://dx.doi.org/10.1111/j.1574-695X.2010.00742.x] [PMID: 20955466]
[60]
Povilas K, Tomas K, Arvydas A, Ryo J, Dan E. Streptococcus mutans biofilm inhibition using antisense oligonucleotide to glucosyltransferases B and C. Acta Med Litu 2015; 22.
[http://dx.doi.org/10.6001/actamedica.v22i2.3123]
[61]
McKay R, Cummins LL, Graham MJ, et al. Enhanced activity of an antisense oligonucleotide targeting murine protein kinase C-alpha by the incorporation of 2′-O-propyl modifications. Nucleic Acids Res 1996; 24(3): 411-7.
[http://dx.doi.org/10.1093/nar/24.3.411] [PMID: 8602351]
[62]
Yoo BH, Bochkareva E, Bochkarev A, Mou T-C, Gray DM. 2′-O-methyl-modified phosphorothioate antisense oligonucleotides have reduced non-specific effects in vitro. Nucleic Acids Res 2004; 32(6): 2008-16.
[http://dx.doi.org/10.1093/nar/gkh516] [PMID: 15064360]
[63]
Good L, Nielsen PE. Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat Biotechnol 1998; 16(4): 355-8.
[http://dx.doi.org/10.1038/nbt0498-355] [PMID: 9555726]
[64]
Good L, Nielsen PE. Inhibition of translation and bacterial growth by peptide nucleic acid targeted to ribosomal RNA. Proc Natl Acad Sci USA 1998; 95(5): 2073-6.
[http://dx.doi.org/10.1073/pnas.95.5.2073] [PMID: 9482840]
[65]
Good L, Sandberg R, Larsson O, Nielsen PE, Wahlestedt C. Antisense PNA effects in Escherichia coli are limited by the outer-membrane LPS layer. Microbiology (Reading) 2000; 146(10): 2665-70.
[http://dx.doi.org/10.1099/00221287-146-10-2665] [PMID: 11021941]
[66]
Nekhotiaeva N, Awasthi SK, Nielsen PE, Good L. Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids. Mol Ther 2004; 10(4): 652-9.
[http://dx.doi.org/10.1016/j.ymthe.2004.07.006] [PMID: 15451449]
[67]
Goh S, Loeffler A, Lloyd DH, Nair SP, Good L. Oxacillin sensitization of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus pseudintermedius by antisense peptide nucleic acids in vitro. BMC Microbiol 2015; 15(1): 262.
[http://dx.doi.org/10.1186/s12866-015-0599-x] [PMID: 26560174]
[68]
Kulyté A, Nekhotiaeva N, Awasthi SK, Good L. Inhibition of Mycobacterium smegmatis gene expression and growth using antisense peptide nucleic acids. J Mol Microbiol Biotechnol 2005; 9(2): 101-9.
[PMID: 16319499]
[69]
Ghosal A, Nielsen PE. Potent antibacterial antisense peptide-peptide nucleic acid conjugates against Pseudomonas aeruginosa. Nucleic Acid Ther 2012; 22(5): 323-34.
[http://dx.doi.org/10.1089/nat.2012.0370] [PMID: 23030590]
[70]
Good L, Awasthi SK, Dryselius R, Larsson O, Nielsen PE. Bactericidal antisense effects of peptide-PNA conjugates. Nat Biotechnol 2001; 19(4): 360-4.
[http://dx.doi.org/10.1038/86753] [PMID: 11283595]
[71]
Hansen AM, Bonke G, Larsen CJ, Yavari N, Nielsen PE, Franzyk H. Antibacterial peptide nucleic acid-antimicrobial peptide (PNA-AMP) conjugates: Antisense targeting of fatty acid biosynthesis. Bioconjug Chem 2016; 27(4): 863-7.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00013] [PMID: 26938833]
[72]
Równicki M, Wojciechowska M, Wierzba AJ, et al. Vitamin B12 as a carrier of peptide nucleic acid (PNA) into bacterial cells. Sci Rep 2017; 7(1): 7644.
[http://dx.doi.org/10.1038/s41598-017-08032-8] [PMID: 28794451]
[73]
Geller BL, Deere JD, Stein DA, Kroeker AD, Moulton HM, Iversen PL. Inhibition of gene expression in Escherichia coli by antisense phosphorodiamidate morpholino oligomers. Antimicrob Agents Chemother 2003; 47(10): 3233-9.
[http://dx.doi.org/10.1128/AAC.47.10.3233-3239.2003] [PMID: 14506035]
[74]
Tilley LD, Hine OS, Kellogg JA, et al. Gene-specific effects of antisense phosphorodiamidate morpholino oligomer-peptide conjugates on Escherichia coli and Salmonella enterica serovar typhimurium in pure culture and in tissue culture. Antimicrob Agents Chemother 2006; 50(8): 2789-96.
[http://dx.doi.org/10.1128/AAC.01286-05] [PMID: 16870773]
[75]
Mellbye BL, Puckett SE, Tilley LD, Iversen PL, Geller BL. Variations in amino acid composition of antisense peptide-phosphorodiamidate morpholino oligomer affect potency against Escherichia coliin vitro and in vivo. Antimicrob Agents Chemother 2009; 53(2): 525-30.
[http://dx.doi.org/10.1128/AAC.00917-08] [PMID: 19015356]
[76]
Sawyer AJ, Wesolowski D, Gandotra N, et al. A peptide-morpholino oligomer conjugate targeting Staphylococcus aureus gyrA mRNA improves healing in an infected mouse cutaneous wound model. Int J Pharm 2013; 453(2): 651-5.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.041] [PMID: 23727592]
[77]
Geller BL, Marshall-Batty K, Schnell FJ, McKnight MM, Iversen PL, Greenberg DE. Gene-silencing antisense oligomers inhibit acinetobacter growth in vitro and in vivo. J Infect Dis 2013; 208(10): 1553-60.
[http://dx.doi.org/10.1093/infdis/jit460] [PMID: 24130069]
[78]
Shen N, Ko J, Xiao G, et al. Inactivation of expression of several genes in a variety of bacterial species by EGS technology. Proc Natl Acad Sci USA 2009; 106(20): 8163-8.
[http://dx.doi.org/10.1073/pnas.0903491106] [PMID: 19416872]
[79]
Davies-Sala C, Soler-Bistué A, Bonomo RA, Zorreguieta A, Tolmasky ME. External guide sequence technology: A path to development of novel antimicrobial therapeutics. Ann N Y Acad Sci 2015; 1354(1): 98-110.
[http://dx.doi.org/10.1111/nyas.12755] [PMID: 25866265]
[80]
Meng J, Da F, Ma X, et al. Antisense growth inhibition of methicillin-resistant Staphylococcus aureus by locked nucleic acid conjugated with cell-penetrating peptide as a novel FtsZ inhibitor. Antimicrob Agents Chemother 2015; 59(2): 914-22.
[http://dx.doi.org/10.1128/AAC.03781-14] [PMID: 25421468]
[81]
Da F, Yao L, Su Z, et al. Antisense locked nucleic acids targeting agrA inhibit quorum sensing and pathogenesis of community-associated methicillin-resistant Staphylococcus aureus. J Appl Microbiol 2017; 122(1): 257-67.
[http://dx.doi.org/10.1111/jam.13321] [PMID: 27718524]
[82]
Hegarty J, Krzeminski J, Sharma A, Guzman-Villanueva D, Weissig V, Stewart D Sr. Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile. Int J Nanomedicine 2016; 11: 3607-19.
[http://dx.doi.org/10.2147/IJN.S109600] [PMID: 27536102]
[83]
Zhang Y, Xie X, Ma W, et al. Multi-targeted antisense oligonucleotide delivery by a framework nucleic acid for inhibiting biofilm formation and virulence. Nano-Micro Lett 2020; 12(1): 74.
[http://dx.doi.org/10.1007/s40820-020-0409-3] [PMID: 34138282]
[84]
Miroshnichenko SK, Patutina OA, Burakova EA, et al. Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates with improved biochemical and biological properties. Proc Natl Acad Sci USA 2019; 116(4): 1229-34.
[http://dx.doi.org/10.1073/pnas.1813376116] [PMID: 30622178]
[85]
Anderson BA, Freestone GC, Low A, et al. Towards next generation antisense oligonucleotides: Mesylphosphoramidate modification improves therapeutic index and duration of effect of gapmer antisense oligonucleotides. Nucleic Acids Res 2021; 49(16): 9026-41.
[http://dx.doi.org/10.1093/nar/gkab718] [PMID: 34417625]
[86]
Skvortsova YV, Salina EG, Burakova EA, Bychenko OS, Stetsenko DA, Azhikina TL. A new antisense phosphoryl guanidine oligo-2′-o-methylribonucleotide penetrates into intracellular mycobacteria and suppresses target gene expression. Front Pharmacol 2019; 10: 1049.
[http://dx.doi.org/10.3389/fphar.2019.01049] [PMID: 31632266]
[87]
Reuter JS, Mathews DH. RNAstructure: Software for RNA secondary structure prediction and analysis. BMC Bioinformatics 2010; 11(1): 129.
[http://dx.doi.org/10.1186/1471-2105-11-129] [PMID: 20230624]
[88]
Hamada M, Ono Y, Kiryu H, et al. Rtools : A web server for various secondary structural analyses on single RNA sequences. Nucleic Acids Res 2016; 44(W1): W302-7.
[http://dx.doi.org/10.1093/nar/gkw337] [PMID: 27131356]
[89]
Shi J, Li X, Dong M, Graham M, Yadav N, Liang C. JNSViewer- A JavaScript-based nucleotide sequence viewer for DNA/RNA secondary structures. PLoS One 2017; 12(6): e0179040.
[http://dx.doi.org/10.1371/journal.pone.0179040] [PMID: 28582416]
[90]
Monia BP, Lesnik EA, Gonzalez C, et al. Evaluation of 2'-modified oligonucleotides containing 2'-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem 1993; 268(19): 14514-22.
[http://dx.doi.org/10.1016/S0021-9258(19)85268-7] [PMID: 8390996]
[91]
Patel RR, Sundin GW, Yang CH, et al. Exploration of using antisense peptide Nucleic Acid (PNA)-cell Penetrating Peptide (CPP) as a novel bactericide against fire blight pathogen Erwinia amylovora. Front Microbiol 2017; 8: 687.
[http://dx.doi.org/10.3389/fmicb.2017.00687] [PMID: 28469617]
[92]
Abushahba MFN, Mohammad H, Thangamani S, Hussein AAA, Seleem MN. Impact of different cell penetrating peptides on the efficacy of antisense therapeutics for targeting intracellular pathogens. Sci Rep 2016; 6(1): 20832.
[http://dx.doi.org/10.1038/srep20832] [PMID: 26860980]
[93]
Yavari N, Goltermann L, Nielsen PE. Uptake, stability, and activity of antisense anti-acpP PNA-peptide conjugates in Escherichia coli and the role of SbmA. ACS Chem Biol 2021; 16(3): 471-9.
[http://dx.doi.org/10.1021/acschembio.0c00822] [PMID: 33684286]
[94]
Barkowsky G, Lemster AL, Pappesch R, et al. Influence of different cell-penetrating peptides on the antimicrobial efficiency of PNAs in streptococcus pyogenes. Mol Ther Nucleic Acids 2019; 18: 444-54.
[http://dx.doi.org/10.1016/j.omtn.2019.09.010] [PMID: 31655262]
[95]
Wolfrum C, Shi S, Jayaprakash KN, et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol 2007; 25(10): 1149-57.
[http://dx.doi.org/10.1038/nbt1339] [PMID: 17873866]
[96]
Lorenz C, Hadwiger P, John M, Vornlocher HP, Unverzagt C. Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorg Med Chem Lett 2004; 14(19): 4975-7.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.018] [PMID: 15341962]
[97]
McNamara JO II, Andrechek ER, Wang Y, et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 2006; 24(8): 1005-15.
[http://dx.doi.org/10.1038/nbt1223] [PMID: 16823371]
[98]
Song E, Zhu P, Lee SK, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005; 23(6): 709-17.
[http://dx.doi.org/10.1038/nbt1101] [PMID: 15908939]
[99]
Nair JK, Willoughby JLS, Chan A, et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc 2014; 136(49): 16958-61.
[http://dx.doi.org/10.1021/ja505986a] [PMID: 25434769]
[100]
Matsuda S, Keiser K, Nair JK, et al. siRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes. ACS Chem Biol 2015; 10(5): 1181-7.
[http://dx.doi.org/10.1021/cb501028c] [PMID: 25730476]
[101]
Ahmed M. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers. Biomater Sci 2017; 5(11): 2188-211.
[http://dx.doi.org/10.1039/C7BM00584A] [PMID: 28880322]
[102]
Falzarano MS, Passarelli C, Ferlini A. Nanoparticle delivery of antisense oligonucleotides and their application in the exon skipping strategy for Duchenne muscular dystrophy. Nucleic Acid Ther 2014; 24(1): 87-100.
[http://dx.doi.org/10.1089/nat.2013.0450] [PMID: 24506782]
[103]
Mendonça MCP, Kont A, Aburto MR, Cryan JF, O’Driscoll CM. Advances in the design of (nano)formulations for delivery of antisense oligonucleotides and small interfering RNA: Focus on the central nervous system. Mol Pharm 2021; 18(4): 1491-506.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c01238] [PMID: 33734715]
[104]
Yang L, Ma F, Liu F, Chen J, Zhao X, Xu Q. Efficient delivery of antisense oligonucleotides using bioreducible lipid nanoparticles in vitro and in vivo. Mol Ther Nucleic Acids 2020; 19: 1357-67.
[http://dx.doi.org/10.1016/j.omtn.2020.01.018] [PMID: 32160706]
[105]
Tanaka H, Takata N, Sakurai Y, et al. Delivery of oligonucleotides using a self-degradable lipid-like material. Pharmaceutics 2021; 13(4): 544.
[http://dx.doi.org/10.3390/pharmaceutics13040544] [PMID: 33924589]
[106]
Han X, Zhang H, Butowska K, et al. An ionizable lipid toolbox for RNA delivery. Nat Commun 2021; 12(1): 7233.
[http://dx.doi.org/10.1038/s41467-021-27493-0] [PMID: 34903741]
[107]
Raouane M, Desmaële D, Urbinati G, Massaad-Massade L, Couvreur P. Lipid conjugated oligonucleotides: A useful strategy for delivery. Bioconjug Chem 2012; 23(6): 1091-104.
[http://dx.doi.org/10.1021/bc200422w] [PMID: 22372953]
[108]
Chen Z, Hu Y, Meng J, et al. Efficient transfection of phosphorothioate oligodeoxyribonucleotides by lipofectamine2000 into different bacteria. Curr Drug Deliv 2016; 13(5): 784-93.
[http://dx.doi.org/10.2174/1567201812666150817123528] [PMID: 26279118]
[109]
Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 2005; 60(2): 174-82.
[http://dx.doi.org/10.1007/s00239-004-0046-3] [PMID: 15791728]
[110]
Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 2005; 151(3): 653-63.
[http://dx.doi.org/10.1099/mic.0.27437-0] [PMID: 15758212]
[111]
Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315(5819): 1709-12.
[http://dx.doi.org/10.1126/science.1138140] [PMID: 17379808]
[112]
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-23.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[113]
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013; 8(11): 2281-308.
[http://dx.doi.org/10.1038/nprot.2013.143] [PMID: 24157548]
[114]
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533(7603): 420-4.
[http://dx.doi.org/10.1038/nature17946] [PMID: 27096365]
[115]
Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017; 551(7681): 464-71.
[http://dx.doi.org/10.1038/nature24644] [PMID: 29160308]
[116]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[117]
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346(6213): 1258096.
[http://dx.doi.org/10.1126/science.1258096] [PMID: 25430774]
[118]
de la Fuente-Nunez C, Torres MDT, Mojica FJM, Lu TK. Next- generation precision antimicrobials: Towards personalized treatment of infectious diseases. Curr Opin Microbiol 2017; 37: 95-102.
[http://dx.doi.org/10.1016/j.mib.2017.05.014] [PMID: 28623720]
[119]
Duan C, Cao H, Zhang LH, Xu Z. Harnessing the CRISPR-Cas systems to combat antimicrobial resistance. Front Microbiol 2021; 12: 716064.
[http://dx.doi.org/10.3389/fmicb.2021.716064] [PMID: 34489905]
[120]
Shukla A, Jani N, Polra M, Kamath A, Patel D. CRISPR: The multidrug resistance endgame? Mol Biotechnol 2021; 63(8): 676-85.
[http://dx.doi.org/10.1007/s12033-021-00340-9] [PMID: 34021472]
[121]
Palacios Araya D, Palmer KL, Duerkop BA. CRISPR-based antimicrobials to obstruct antibiotic-resistant and pathogenic bacteria. PLoS Pathog 2021; 17(7): e1009672.
[http://dx.doi.org/10.1371/journal.ppat.1009672] [PMID: 34237097]
[122]
Serajian S, Ahmadpour E, Oliveira SMR, Pereira ML, Heidarzadeh S. CRISPR-Cas technology: Emerging applications in clinical microbiology and infectious diseases. Pharmaceuticals 2021; 14(11): 1171.
[http://dx.doi.org/10.3390/ph14111171] [PMID: 34832953]
[123]
Gholizadeh P, Köse Ş, Dao S, et al. How CRISPR-Cas system could be used to combat antimicrobial resistance. Infect Drug Resist 2020; 13: 1111-21.
[http://dx.doi.org/10.2147/IDR.S247271] [PMID: 32368102]
[124]
Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: A rundown of a global crisis. Infect Drug Resist 2018; 11: 1645-58.
[http://dx.doi.org/10.2147/IDR.S173867] [PMID: 30349322]
[125]
Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022; 399(10325): 629-55.
[http://dx.doi.org/10.1016/S0140-6736(21)02724-0] [PMID: 35065702]
[126]
Citorik RJ, Mimee M, Lu TK. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 2014; 32(11): 1141-5.
[http://dx.doi.org/10.1038/nbt.3011] [PMID: 25240928]
[127]
Bikard D, Euler CW, Jiang W, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 2014; 32(11): 1146-50.
[http://dx.doi.org/10.1038/nbt.3043] [PMID: 25282355]
[128]
Yosef I, Manor M, Kiro R, Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci USA 2015; 112(23): 7267-72.
[http://dx.doi.org/10.1073/pnas.1500107112] [PMID: 26060300]
[129]
Kim JS, Cho DH, Park M, et al. CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum beta-lactamases. J Microbiol Biotechnol 2016; 26(2): 394-401.
[http://dx.doi.org/10.4014/jmb.1508.08080] [PMID: 26502735]
[130]
Aslam B, Rasool M, Idris A, et al. CRISPR-Cas system: A potential alternative tool to cope antibiotic resistance. Antimicrob Resist Infect Control 2020; 9(1): 131.
[http://dx.doi.org/10.1186/s13756-020-00795-6] [PMID: 32778162]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy