Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

A Complete Roadmap of Analytical Quality by Design in Various Analytical Techniques

Author(s): Mohana Krishnan Santhanam, Nalini Calamur Nagarajan*, Poorna Basuri Ponraj and Mohamed Sameer Mohamed Hilurudeen

Volume 19, Issue 3, 2023

Published on: 14 February, 2023

Page: [184 - 215] Pages: 32

DOI: 10.2174/1573412919666230118105908

Price: $65

Abstract

Background: For the development of robust analytical methods, Analytical-Qualityby- Design (AQbD)-based testing methods have been found to be more suited than other one factorial approaches. By creating a Method Operable Design Space, this strategy selects the optimal method conditions using the appropriate Design of Experiments.

Objective: To impart knowledge to the researchers producing methods using this technique, this review seeks to provide an overview of the Analytical Quality-by-Design technique, experimental designs used, and a survey on methods developed using this technique in various analytical instruments.

Methods: The following parts must typically be accomplished for the method to be developed utilizing the Analytical Quality by Design technique: analytical target profile, scouting and risk assessment, experimental runs, selection of Method Operable Design Region, robustness testing, and validation. To optimize the risk parameters, suitable designs for the experiment were chosen based on the number of variables that needed to be optimized.

Conclusion: By establishing a relationship between the high-risk factors and target profiles utilizing multidimensional design space, robustness and other critical quality attributes in techniques were attained with a minimum of experimental runs, analytical time, and energy. So, it stands to reason that the Analytical Quality by Design technique will soon be widely used and highly advantageous in several industries.

Graphical Abstract

[1]
Juran, J.M. Juran on quality by design: The new steps for planning quality into goods and services. In: Simon and Schuster; Free Press: New York, 1992.
[2]
Snyder, L.R. Efficient HPLC method development and personal reflections. LC GC Eur., 2012, 25(8), 437-444.
[3]
Schmidt, A.H.; Molnár, I. Using an innovative Quality-by-Design approach for development of a stability indicating UHPLC method for ebastine in the API and pharmaceutical formulations. J. Pharm. Biomed. Anal., 2013, 78-79, 65-74.
[http://dx.doi.org/10.1016/j.jpba.2013.01.032] [PMID: 23454599]
[4]
Kormany, R.; Rieger, H.J.; Molnar, I. Application of quality by design principles to a pharmaceutical sample using uhplc method development with modeling technologies. Chromatogr. Online, 2013, 31(4), 20-27.
[5]
García-Álvarez-Coque, M.C.; Torres-Lapasió, J.R.; Baeza-Baeza, J.J. Models and objective functions for the optimisation of selectivity in reversed-phase liquid chromatography. Anal. Chim. Acta, 2006, 579(2), 125-145.
[http://dx.doi.org/10.1016/j.aca.2006.07.028] [PMID: 17723737]
[6]
Peraman, R.; Bhadraya, K.; Padmanabha Reddy, Y. Analytical quality by design: A tool for regulatory flexibility and robust analytics. Int. J. Anal. Chem., 2015, 2015, 868727.
[http://dx.doi.org/10.1155/2015/868727] [PMID: 25722723]
[7]
Parr, M.K.; Schmidt, A.H. Life cycle management of analytical methods. J. Pharm. Biomed. Anal., 2018, 147, 506-517.
[http://dx.doi.org/10.1016/j.jpba.2017.06.020] [PMID: 28666555]
[8]
Rozet, E.; Lebrun, P.; Hubert, P.; Debrus, B.; Boulanger, B. Design spaces for analytical methods. Trends Analyt. Chem., 2013, 42, 157-167.
[http://dx.doi.org/10.1016/j.trac.2012.09.007]
[9]
Hubert, C.; Lebrun, P.; Houari, S.; Ziemons, E.; Rozet, E.; Hubert, P. Improvement of a stability-indicating method by quality-by-design versus quality-by-testing: A case of a learning process. J. Pharm. Biomed. Anal., 2014, 88, 401-409.
[http://dx.doi.org/10.1016/j.jpba.2013.09.026] [PMID: 24176744]
[10]
Orlandini, S.; Pinzauti, S.; Furlanetto, S. Application of quality by design to the development of analytical separation methods. Anal. Bioanal. Chem., 2013, 405(2-3), 443-450.
[http://dx.doi.org/10.1007/s00216-012-6302-2] [PMID: 22941176]
[11]
Dispas, A.; Avohou, H.T.; Lebrun, P.; Hubert, P.; Hubert, C. ‘Quality by Design’ approach for the analysis of impurities in pharmaceutical drug products and drug substances. Trends Analyt. Chem., 2018, 101, 24-33.
[http://dx.doi.org/10.1016/j.trac.2017.10.028]
[12]
Peterson, J.J. A bayesian approach to the ich q8 definition of design space. J. Biopharm. Stat., 2008, 18(5), 959-975.
[http://dx.doi.org/10.1080/10543400802278197] [PMID: 18781528]
[13]
Deidda, R.; Orlandini, S.; Hubert, P.; Hubert, C. Risk-based approach for method development in pharmaceutical quality control context: A critical review. J. Pharm. Biomed. Anal., 2018, 161, 110-121.
[http://dx.doi.org/10.1016/j.jpba.2018.07.050] [PMID: 30145448]
[14]
Bhoop, B.S.; Beg, S.; Raza, K. Developing “optimized” drug products employing “designed” experiments. Chem. Industry Digest., 2013, 23, 70-76.
[15]
Lionberger, R.A.; Lee, S.L.; Lee, L.; Raw, A.; Yu, L.X. Quality by design: Concepts for ANDAs. AAPS J., 2008, 10(2), 268-276.
[http://dx.doi.org/10.1208/s12248-008-9026-7] [PMID: 18465252]
[16]
Ali, J.; Pramod, K.; Tahir, M.A.; Charoo, N.A.; Ansari, S.H. Pharmaceutical product development: A quality by design approach. Int. J. Pharm. Investig., 2016, 6(3), 129-138.
[http://dx.doi.org/10.4103/2230-973X.187350] [PMID: 27606256]
[17]
Houson, I. Process understanding: For scale-up and manufacture of active ingredients; John Wiley & Sons: Weinham, 2011.
[18]
FDA. Pharmaceutical CGMPs for the 21st century-a risk-based approach; US Food & Drug Administration, 2004. Available from: https://www.fda.gov/media/77391/download [cited: 1 February 2022].
[19]
EMA. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use, ich q10: Pharmaceutical quality system. 2008. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human_en.pdf [cited: 1 February 2022].
[20]
EMA. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use, ich q9: Quality risk management. 2005. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-3.pdf [cited: 1 February 2022].
[21]
EMA. International conference on harmonization of technical requirements for registration of pharmaceuticals for human use, ich q8 (r2): Pharmaceut. Develop. 2009. Available from: https://database.ich.org/sites/default/files/Q8_R2_Guideline.pdf [cited: 1 February 2022].
[22]
Pharm Tech. 2007. Available from: http://www.pharmtech.com/pharmtech/article/articleDetail.jsp?id=469915 [cited: 1 February 2022].
[23]
Sangshetti, J.N.; Deshpande, M.; Zaheer, Z.; Shinde, D.B.; Arote, R. Quality by design approach: Regulatory need. Arab. J. Chem., 2017, 10, S3412-S3425.
[http://dx.doi.org/10.1016/j.arabjc.2014.01.025]
[24]
Kalra, M. Analytical quality by design (AQBD): New paradigm foranalytical method development. Int. J. Dev. Res., 2018, 5(2), 3589-3599.
[25]
ICH. International conference on harmonization of technical requirements for registration of pharmaceuticals for human use, ich harmonized tripartite guideline: Pharmaceutical development Q8(R1). 2008. Available from: https://www.ich.org/ [cited: 1 February 2022].
[26]
Yu, L.X. Pharmaceutical quality by design: Product and process development, understanding, and control. Pharm. Res., 2008, 25(4), 781-791.
[http://dx.doi.org/10.1007/s11095-007-9511-1] [PMID: 18185986]
[27]
Lee, S.L.; Raw, A.S.; Yu, L. Significance of drug substance physicochemical properties in regulatory quality by design. Drugs Pharmaceut. Sci., 2008, 178, 571.
[28]
Mhatre, R.; Rathore, A.S. Quality by design: An overview of the basic concepts. Nat. Biotechnol., 2009, 27(1), 26-34.
[http://dx.doi.org/10.1002/9780470466315.ch1]
[29]
Vogt, F.G.; Kord, A.S. Development of quality-by-design analytical methods. J. Pharm. Sci., 2011, 100(3), 797-812.
[http://dx.doi.org/10.1002/jps.22325] [PMID: 21280050]
[30]
Bouwman-Boer, Y.; Møller, A.L. Pharmaceutical quality systems. In: Practical Pharmaceutics; , 2015; pp. 769-796.
[31]
Kovács, B.; Péterfi, O.; Kovács-Deák, B.; Székely-Szentmiklósi, I.; Fülöp, I.; Bába, L-I.; Boda, F. Quality-by-design in pharmaceutical development: From current perspectives to practical applications. Acta Pharm., 2021, 71(4), 497-526.
[http://dx.doi.org/10.2478/acph-2021-0039]
[32]
McDowall, R.D. Life cycle and quality by design for chromatographic methods. LC GC Eur., 2014, 27(2), 91-97.
[33]
Ermer, J. Quality by design: A lifecycle concept for pharmaceutical analysis. Eur. Pharmaceut. Rev., 2011, 16, 32-39.
[34]
Hanna Brown, M.; Barnette, K.; Harrington, B. Using quality by design to develop robust chromatographic methods. Pharm. Technol., 2014, 38(8), 48-64.
[35]
Woodcock, J. The concept of pharmaceutical quality. Am. Pharm. Rev., 2004, 7, 10-15.
[36]
Cooper, D.E. Adequate controls for new drugs: Good manufacturing practice and the 1938 federal Food, Drug, and Cosmetic Act. Pharm. Hist., 2002, 44(1), 12-23.
[PMID: 12068915]
[37]
EMA. USFDA. Final report from the FDA-EMA pilot program for the parallel assessment of quality-by-design elements of marketing applications. 2017. Available from: https://www.ema.europa.eu/documents/other/report-ema-fda-qbd-pilot-program_en.pdf [cited: 1 February 2022].
[38]
Shah, B.; Khunt, D.; Bhatt, H.; Misra, M.; Padh, H. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters. Eur. J. Pharm. Sci., 2015, 78, 54-66.
[http://dx.doi.org/10.1016/j.ejps.2015.07.002] [PMID: 26143262]
[39]
EMA. ICH Harmonised tripartite guideline specifications: Test procedures and acceptance criteria for new drug substances and new drug products: Chemical substances. 2000. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-6-test-procedures-acceptance-criteria-new-drug-substances-new-drug-products-chemical_en.pdf
[40]
Yu, L.X.; Amidon, G.; Khan, M.A.; Hoag, S.W.; Polli, J.; Raju, G.K.; Woodcock, J. Understanding pharmaceutical quality by design. AAPS J., 2014, 16(4), 771-783.
[http://dx.doi.org/10.1208/s12248-014-9598-3] [PMID: 24854893]
[41]
Rozet, E.; Marini, R.D.; Ziemons, E.; Boulanger, B.; Hubert, P. Advances in validation, risk and uncertainty assessment of bioanalytical methods. J. Pharm. Biomed. Anal., 2011, 55(4), 848-858.
[http://dx.doi.org/10.1016/j.jpba.2010.12.018] [PMID: 21237607]
[42]
Harry, Y.; Lanju, Z. Evaluation of statistical methods for estimating shelf life of drug products: A unified and risk-based approach. J. Valid Technol., 2012, 2012, 67-74.
[43]
Kushner, J.I.V.; Langdon, B.A.; Hiller, J.I.; Carlson, G.T. Examining the impact of excipient material property variation on drug product quality attributes: A quality-by-design study for a roller compacted, immediate release tablet. J. Pharm. Sci., 2011, 100(6), 2222-2239.
[http://dx.doi.org/10.1002/jps.22455] [PMID: 21319161]
[44]
Rosas, J.G.; Blanco, M.; González, J.M.; Alcalá, M. Quality by design approach of a pharmaceutical gel manufacturing process, part 1: Determination of the design space. J. Pharm. Sci., 2011, 100(10), 4432-4441.
[http://dx.doi.org/10.1002/jps.22611] [PMID: 21567406]
[45]
Rosas, J.G.; Blanco, M.; González, J.M.; Alcalá, M. Quality by design approach of a pharmaceutical gel manufacturing process, part 2: Near infrared monitoring of composition and physical parameters. J. Pharm. Sci., 2011, 100(10), 4442-4451.
[http://dx.doi.org/10.1002/jps.22607] [PMID: 21557224]
[46]
Savic, I.M.; Marinkovic, V.D.; Tasic, L.; Krajnovic, D.; Savic, I.M. From experimental design to quality by design in pharmaceutical legislation. Accredit. Qual. Assur., 2012, 17(6), 627-633.
[http://dx.doi.org/10.1007/s00769-012-0926-y]
[47]
Lawrence, X.Y.; Lionberger, R.; Olson, M.C.; Johnston, G.; Buehler, G.; Winkle, H. Quality by design for generic drugs. Pharm. Technol., 2009, 33(10), 122-127.
[48]
International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use, ich q2 (r1): validation of analytical procedures: Text and methodology. 2005. Available from: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf [cited: 1 February 2022].
[49]
ICH. ISO 5725-1, Accuracy (trueness and precision) of measurement methods and results - Part 1: General Principles and Definitions. 2005. Available from: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf [cited: 1 February 2022].
[50]
ICH. ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories. 2005. Available from: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf [cited: 1 February 2022].
[51]
Mark, S.; Matthias, P.; Melissa, H.; Phil, N.; Phil, B.; Gordon, H.; Kevin, S.; Jaqueline, L. Implications and Opportunities of Applying QbD Principles to Analytical Measurement. Pharma Technol., 2010, 22(2), 52.
[52]
Phil, B.; Phil, N.; Marion, C.; Duncan, T.; Keith, T. The application of quality by design to analytical methods. Pharm. Technol., 2007, 31(10), 22325.
[http://dx.doi.org/10.1002/jps.22325] [PMID: 1280050]
[53]
Chatterjee, S. QbD considerations for analytical methods—FDA perspective. US IFPAC Annual Meeting, Baltimore, January 25 2013.
[54]
Tang, Y. Quality by design approach to analytical methods- FDA perspective. Res. J. Pharm. Technol., 2017, 10(9), 3188-3194.
[55]
Vera Candioti, L.; De Zan, M.M.; Cámara, M.S.; Goicoechea, H.C. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta, 2014, 124, 123-138.
[http://dx.doi.org/10.1016/j.talanta.2014.01.034] [PMID: 24767454]
[56]
Karmarkar, S.; Garber, R.; Genchanok, Y.; George, S.; Yang, X.; Hammond, R. Quality by design (QbD) based development of a stability indicating HPLC method for drug and impurities. J. Chromatogr. Sci., 2011, 49(6), 439-446.
[http://dx.doi.org/10.1093/chrsci/49.6.439] [PMID: 21682993]
[57]
Debrus, B.; Guillarme, D.; Rudaz, S. Improved quality-by-design compliant methodology for method development in reversed-phase liquid chromatography. J. Pharm. Biomed. Anal., 2013, 84, 215-223.
[http://dx.doi.org/10.1016/j.jpba.2013.06.013] [PMID: 23850937]
[58]
Debrus, B.; Lebrun, P.; Ceccato, A.; Caliaro, G.; Rozet, E.; Nistor, I.; Oprean, R.; Rupérez, F.J.; Barbas, C.; Boulanger, B.; Hubert, P. Application of new methodologies based on design of experiments, independent component analysis and design space for robust optimization in liquid chromatography. Anal. Chim. Acta, 2011, 691(1-2), 33-42.
[http://dx.doi.org/10.1016/j.aca.2011.02.035] [PMID: 21458628]
[59]
Bhusnure, O.G.; Gandge, N.V.; Gholve, S.B.; Sugave, B.K.; Giram, P.S. A review on application of quality by design concept to analytical method development. IJPPR, 2017, 10(1), 63-75.
[60]
Gavin, P.F.; Olsen, B.A. A quality by design approach to impurity method development for atomoxetine hydrochloride (LY139603). J. Pharm. Biomed. Anal., 2008, 46(3), 431-441.
[http://dx.doi.org/10.1016/j.jpba.2007.10.037] [PMID: 18082352]
[61]
Yan, L.; Gerald, J.T.; Alireza, S.K. American Pharmaceutical Review., 2012.
[62]
Burgess, C.; Curry, P.; LeBlond, D.J.; Gratzl, G.S.; Kovacs, E.; Martin, G.P.; McGregor, P.L.; Netthercote, P.; Pappa, H.; Weitzel, J. Fitness for use: Decision rules and target measurement uncertainty. Pharmacop. Forum, 2016, 42(2)
[63]
Jane, W.M.L. Establishment of measurement requirements- analytical target profile and decision rules In: Method validation in pharmaceutical analysis: A guide to best practice.,; Ermer, J.; Nethercote, P., Eds.; JJohn Wiley & Sons: Weinham, 2014; pp. 41-58.
[http://dx.doi.org/10.1002/9783527672202.ch3]
[64]
Van Loco, J.; Jànosi, A.; Impens, S.; Fraselle, S.; Cornet, V.; Degroodt, J.M. Calculation of the decision limit (CCα) and the detection capability (CCβ) for banned substances: The imperfect marriage between the quantitative and the qualitative criteria. Anal. Chim. Acta, 2007, 586(1-2), 8-12.
[http://dx.doi.org/10.1016/j.aca.2006.11.058] [PMID: 17386690]
[65]
Barnet, K.; McGregor, P.; Martin, G.P.; LeBlond, D.J.; Weitzel, M.L.; Ermer, J.; Walfish, S.; Nethercote, P.; Gratzl, G.S. Kovacs, E Analytical target profile: Structure and application throughout the analytical lifecycle. Pharmacop. Forum, 2017, 42(5)
[66]
Bureau international des poids et mesures, commission électrotechnique internationale, organisation internationale de normalisation, guide to the expression of uncertainty in measurement, international organization for standardization. 1995. Available from: https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6 [cited: 1 February 2022].
[67]
Ellison, S.L.; Williams, A. EURACHEM/CITAC Guide: Use of uncertainty information in compliance assessment. In: Cooperation on the International Traceability in Analytical Chemistry; Switzerland 2007. Available from: https://www.eurachem.org/images/stories/Guides/pdf/Interpretation_with_expanded_uncertainty_2007_v1.pdf [cited: 1 February 2022].
[68]
ASME. American society of mechanical engineers, guidelines for decision rules: Considering measurement uncertainty in determining conformance to specifications. 2002. Available from: https://www.asme.org/codes-standards/find-codes-standards/b89-7-3-1-guideline-decision-rules-considering-measurement-uncertainty-determining-confirm-specifications [cited: 1 February 2022].
[69]
Peterson, J.J.; Snee, R.D.; McAllister, P.R.; Schofield, T.L.; Carella, A.J. Statistics in pharmaceutical development and manufacturing. J. Qual. Technol., 2009, 41(2), 111-134.
[http://dx.doi.org/10.1080/00224065.2009.11917764]
[70]
Lebrun, P. Bayesian design space applied to pharmaceutical development, Doctoral dissertation; Uliege- Université de Liège: Belgique, 2012.
[71]
Peterson, J.J.; Lief, K. The ICH Q8 definition of design space: A comparison of the overlapping means and the Bayesian predictive approaches. Stat. Biopharm. Res., 2010, 2(2), 249-259.
[http://dx.doi.org/10.1198/sbr.2009.08065]
[72]
Rozet, E.; Lebrun, P.; Michiels, J.F.; Sondag, P.; Scherder, T.; Boulanger, B. Analytical procedure validation and the quality by design paradigm. J. Biopharm. Stat., 2015, 25(2), 260-268.
[http://dx.doi.org/10.1080/10543406.2014.971176] [PMID: 25357001]
[73]
Jackson, P.; Borman, P.; Campa, C.; Chatfield, M.; Godfrey, M.; Hamilton, P.; Hoyer, W.; Norelli, F.; Orr, R.; Schofield, T. Using the analytical target profile to drive the analytical method lifecycle. Anal. Chem., 2019, 91(4), 2577-2585.
[http://dx.doi.org/10.1021/acs.analchem.8b04596] [PMID: 30624912]
[74]
Devesh, A.B.; Smita, I.R. QbD approach to analytical RP-HPLC method development. Int. J. Pharm. Pharm. Sci., 2011, 3(1), 179-187.
[75]
Deepa, M.; Reddy, K.R.; Satyanarayana, S.V. A review on quality by design approach for analytical method development. J. Pharm. Res., 2017, 44(2), 272-277.
[76]
Ahmed, R.M.; Ibrahim, A.; El-Gendy, A.E.; Hadad, G.M. Implementing a quality by design approach in chromatographic determination of some antidiabetic drugs. J. Pharm. Anal. Chem., 2018, 1(1), 1001.
[77]
Tome, T.; Žigart, N.; Časar, Z.; Obreza, A. Development and optimization of liquid chromatography analytical methods by using AQbD principles: Overview and recent advances. Org. Process Res. Dev., 2019, 23(9), 1784-1802.
[http://dx.doi.org/10.1021/acs.oprd.9b00238]
[78]
Saha, C.; Gupta, N.V.; Chandan, R.S. Development and validation of a UPLC-MS method for determination of atazanavir sulfate by the “analytical quality by design” approach. Acta Pharm., 2020, 70(1), 17-33.
[http://dx.doi.org/10.2478/acph-2020-0008] [PMID: 31677371]
[79]
Ermer, J.; Miller, J.H.M. Method validation in pharmaceutical analysis: A guide to best practice; John Wiley & Sons: Weinham, 2006.
[80]
Barnett, K.; Doyle, K.; Wang, K.; Morgado, J.; Harwood, J. Applying quality by design principles to analytical methods to gain enhanced method understanding. Am. Pharm. Rev., 2015.
[81]
European Compliance Academy - Quality by Design in Pharmaceutical Analysis. ECA Conference, Barcelona, Spain2012.
[82]
Molnar, I. Quality by design principles for the development of analytical HPLC methods; Molnár-Institute: Berlin, Germany, 2011.
[83]
Ishikawa, K.; Lu, D.J. What is total quality control? The Japanese way; Prentice-Hall: Englewood Cliffs, NJ, 1985.
[84]
Pasquini, B.; Orlandini, S.; Villar-Navarro, M.; Caprini, C.; Del Bubba, M.; Douša, M.; Giuffrida, A.; Gotti, R.; Furlanetto, S. Chiral capillary zone electrophoresis in enantioseparation and analysis of cinacalcet impurities: Use of Quality by Design principles in method development. J. Chromatogr. A, 2018, 1568, 205-213.
[http://dx.doi.org/10.1016/j.chroma.2018.07.021] [PMID: 30005942]
[85]
Ilie, G.; Ciocoiu, C.N. Application of fishbone diagram to determine the risk of an event with multiple causes. RePEc, 2010, 2(1), 1-20.
[86]
van Leeuwen, J.F.; Nauta, M.J.; de Kaste, D.; Odekerken-Rombouts, Y.M.C.F.; Oldenhof, M.T.; Vredenbregt, M.J.; Barends, D.M. Risk analysis by FMEA as an element of analytical validation. J. Pharm. Biomed. Anal., 2009, 50(5), 1085-1087.
[http://dx.doi.org/10.1016/j.jpba.2009.06.049] [PMID: 19640668]
[87]
Oldenhof, M.T.; van Leeuwen, J.F.; Nauta, M.J.; de Kaste, D.; Odekerken-Rombouts, Y.M.C.F.; Vredenbregt, M.J.; Weda, M.; Barends, D.M. Consistency of FMEA used in the validation of analytical procedures. J. Pharm. Biomed. Anal., 2011, 54(3), 592-595.
[http://dx.doi.org/10.1016/j.jpba.2010.09.024] [PMID: 20970277]
[88]
Monks, K.E.; Rieger, H.J.; Molnár, I. Expanding the term “Design Space” in high performance liquid chromatography (I). J. Pharm. Biomed. Anal., 2011, 56(5), 874-879.
[http://dx.doi.org/10.1016/j.jpba.2011.04.015] [PMID: 21893394]
[89]
Dejaegher, B.; Vander Heyden, Y. Experimental designs and their recent advances in set-up, data interpretation, and analytical applications. J. Pharm. Biomed. Anal., 2011, 56(2), 141-158.
[http://dx.doi.org/10.1016/j.jpba.2011.04.023] [PMID: 21632194]
[90]
Lewis, G.A.; Mathieu, D.; Phan Tan Luu, R. Pharmaceutical experimental design; Dekker: New York, 1999.
[91]
Hibbert, D.B. Experimental design in chromatography: A tutorial review. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 910, 2-13.
[http://dx.doi.org/10.1016/j.jchromb.2012.01.020] [PMID: 22333438]
[92]
Sahu, P.K.; Ramisetti, N.R.; Cecchi, T.; Swain, S.; Patro, C.S.; Panda, J. An overview of experimental designs in HPLC method development and validation. J. Pharm. Biomed. Anal., 2018, 147, 590-611.
[http://dx.doi.org/10.1016/j.jpba.2017.05.006] [PMID: 28579052]
[93]
Goos, P.; Jones, B. Optimal design of experiments: A case study approach; John Wiley & Sons: United Kingdom, 2011.
[http://dx.doi.org/10.1002/9781119974017]
[94]
Del, C.E. Process Optimization: A statistical approach; Springer: New York, 2007.
[http://dx.doi.org/10.1007/978-0-387-71435-6]
[95]
Myers, R.H.; Montgomery, D.C.; Anderson, C. C.M. Response surface methodology: Process and product optimization using designed experiments; John Wiley & Sons Inc: New Jersey, 2016.
[96]
Eriksson, L.; Johansson, E. Kettaneh- Wold, N.; Wikström, C.; Wold, S. Umetrics AB, Umeå Learnways AB, Design of Experiments, Principles and Applications; Wiley: Stockholm, 2000.
[97]
Orlandini, S.; Gotti, R.; Furlanetto, S. Multivariate optimization of capillary electrophoresis methods: A critical review. J. Pharm. Biomed. Anal., 2014, 87, 290-307.
[http://dx.doi.org/10.1016/j.jpba.2013.04.014] [PMID: 23669025]
[98]
Ganorkar, A.; Gupta, K. Analytical quality by design: A mini review. Biomed. J. Sci. Tech. Res., 2017, 1(6), 1555-1558.
[99]
Krull, I.; Swartz, M.; Turpin, J.; Lukulay, P.H.; Verseput, R. A quality-by-design methodology for rapid lc method development, part I. LC GC N. Am., 2008, 26(12), 1190-1197.
[100]
Krull, I.; Swartz, M.; Turpin, J.; Lukulay, P.H.; Verseput, R. A quality by design methodology for rapid lc method development, Part II. LC GC N. Am., 2009, 27(1), 48-61.
[101]
Lebrun, P.; Boulanger, B.; Debrus, B.; Lambert, P.; Hubert, P. A bayesian design space for analytical methods based on multivariate models and predictions. J. Biopharm. Stat., 2013, 23(6), 1330-1351.
[http://dx.doi.org/10.1080/10543406.2013.834922] [PMID: 24138435]
[102]
Kovacs, E.; Ermer, J.; McGregor, P.L.; Nethercote, P.; LoBrutto, R.; Martin, G.P.; Pappa, H. Stimuli to the revision process: Analytical control strategy. Pharmacop. Forum, 2016, 42(5), 1-29.
[103]
Lebrun, P.; Govaerts, B.; Debrus, B.; Ceccato, A.; Caliaro, G.; Hubert, P.; Boulanger, B. Development of a new predictive modelling technique to find with confidence equivalence zone and design space of chromatographic analytical methods. Chemom. Intell. Lab. Syst., 2008, 91(1), 4-16.
[http://dx.doi.org/10.1016/j.chemolab.2007.05.010]
[104]
Hald, A. A history of mathematical statistics from 1750 to 1930; Wiley Series in Probability and Statistics: New York, 1998.
[105]
Fisher, R.A. Statistical methods for research workers; Oliver and Boyd: London, 1925, pp. 66-70.
[106]
Fisher, R.A. The arrangement of field experiments. In: Breakthroughs in statistics; Springer: New York, 1992; pp. 82-91.
[http://dx.doi.org/10.1007/978-1-4612-4380-9_8]
[107]
Fisher, R.A. The Design of Experiments; Hafner Press: New York, 1935.
[108]
Politis, N. S.; Colombo, P.; Colombo, G.; M Rekkas, D. Design of experiments (DoE) in pharmaceutical development. Drug Dev. Ind. Pharm., 2017, 43(6), 889-901.
[http://dx.doi.org/10.1080/03639045.2017.1291672] [PMID: 28166428]
[109]
Abhishek, D.S.; Gasper, F.J.; Anup, N.; Mahalaxmi, R.; Lalit, K. Design of experiments in pharmaceutical development. Pharm. Chem. J., 2019, 53(8), 730-735.
[110]
Montgomery, D.C. Introduction to statistical quality control; John Wiley & Sons: New York, 2007.
[111]
Montgomery, D.C. Design and analysis of experiments; John Wiley Sons: New York, 2013.
[112]
Beg, S.; Swain, S.; Rahman, M.; Hasnain, M.S.; Imam, S.S. Application of design of experiments (DoE) in pharmaceutical product and process optimization. In: Pharmaceutical quality by design- Principles and applications; Hasnain, S., Ed.; Academic Press: Cambridge, 2019; pp. 43-64.
[http://dx.doi.org/10.1016/B978-0-12-815799-2.00003-4]
[113]
Fukuda, I.M.; Pinto, C.F.F.; Moreira, C.S.; Saviano, A.M.; Lourenço, F.R. Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD). Braz. J. Pharm. Sci., 2018, 54(spe), 54.
[http://dx.doi.org/10.1590/s2175-97902018000001006]
[114]
Mirani, A.G.; Patravale, A.B. Design of experiments: Basic concepts and its application in pharmaceutical product development. In: Pharmaceutical Product Development; Patravale, V.; Disouza, J.; Rustomjee, M., Eds.; CRC Press Taylor & Francis Group: New York, 2016.
[115]
Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 2008, 76(5), 965-977.
[http://dx.doi.org/10.1016/j.talanta.2008.05.019] [PMID: 18761143]
[116]
Chowdary, K.P.R.; Ravi Shankar, K. Optimization of pharmaceutical product formulation by factorial designs: Case studies. J. Pharm. Res., 2016, 15(4), 105-109.
[http://dx.doi.org/10.18579/jpcrkc/2016/15/4/108815]
[117]
Gujral, G.; Kapoor, D.; Jaimini, M. An updated review on design of experiment (DOE) in pharmaceuticals. J. Drug Deliv. Ther., 2018, 8(3), 147-152.
[http://dx.doi.org/10.22270/jddt.v8i3.1713]
[118]
Plackett, R.L.; Burman, J.P. The design of optimal multifactorial experiments. Biometrika, 1946, 33(4), 305-325.
[http://dx.doi.org/10.1093/biomet/33.4.305]
[119]
Bose, R.C.; Kishen, K. On the problem of confounding in the general symmetrical factorial design. Sankhya, 1940, 1940, 21-36.
[120]
Baş, D.; Boyacı, İ.H. Modeling and optimization I: Usability of response surface methodology. J. Food Eng., 2007, 78(3), 836-845.
[http://dx.doi.org/10.1016/j.jfoodeng.2005.11.024]
[121]
Bruns, R.E.; Scarminio, I.S.; de Barros, N. B Statistical design-chemometrics; Elsevier: Amsterdam, 2006.
[122]
Natrella, M. Nist/Sematech e-handbook of statistical methods. In: Nist/Sematech; , 2010.
[http://dx.doi.org/10.18434/M32189]
[123]
Ranade, S.S.; Thiagarajan, P. Selection of a design for response surface. IOP Conf. Series Mater. Sci. Eng., 2017, 263(2), 022043.
[http://dx.doi.org/10.1088/1757-899X/263/2/022043]
[124]
Johnson, R.T.; Montgomery, D.C.; Jones, B.A. An expository paper on optimal design. Qual. Eng., 2011, 23(3), 287-301.
[http://dx.doi.org/10.1080/08982112.2011.576203]
[125]
Mitchell, T.J. An algorithm for the construction of “D-optimal” experimental designs. Technometrics, 2000, 42(1), 48-54.
[126]
Meyer, R.K.; Nachtsheim, C.J. The coordinate-exchange algorithm for constructing exact optimal experimental designs. Technometrics, 1995, 37(1), 60-69.
[http://dx.doi.org/10.1080/00401706.1995.10485889]
[127]
Moreira, C.S.; Lourenço, F.R. Development and optimization of a stability-indicating chromatographic method for verapamil hydrochloride and its impurities in tablets using an analytical quality by design (AQbD) approach. Microchem. J., 2020, 154, 104610.
[http://dx.doi.org/10.1016/j.microc.2020.104610]
[128]
Otašević, B.; Šljivić, J.; Protić, A.; Maljurić, N.; Malenović, A.; Zečević, M. Comparison of AQbD and grid point search methodology in the development of micellar HPLC method for the analysis of cilazapril and hydrochlorothiazide dosage form stability. Microchem. J., 2019, 145, 655-663.
[http://dx.doi.org/10.1016/j.microc.2018.11.033]
[129]
Sharma, G.; Thakur, K.; Raza, K.; Katare, O.P. Stability kinetics of fusidic acid: Development and validation of stability indicating analytical method by employing Analytical Quality by Design approach in medicinal product(s). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1120, 113-124.
[http://dx.doi.org/10.1016/j.jchromb.2019.05.001] [PMID: 31082718]
[130]
Wingert, N.R.; Ellwanger, J.B.; Bueno, L.M.; Gobetti, C.; Garcia, C.V.; Steppe, M.; Schapoval, E.E.S. Application of quality by design to optimize a stability-indicating LC method for the determination of ticagrelor and its impurities. Eur. J. Pharm. Sci., 2018, 118, 208-215.
[http://dx.doi.org/10.1016/j.ejps.2018.03.029] [PMID: 29625210]
[131]
Gad, M.A.; Amer, S.M.; Zaazaa, H.E.; Hassan, S.A. Strategies for stabilizing formulation and QbD assisted development of robust stability indicating method of azilsartan medoxomil/chlorthalidone. J. Pharm. Biomed. Anal., 2020, 178, 112910.
[http://dx.doi.org/10.1016/j.jpba.2019.112910] [PMID: 31618701]
[132]
Gad, M.; Hassan, S.A.; Zaazaa, H.E.; Amer, S.M. Multivariate development and optimization of stability indicating method for determination of daclatasvir in presence of potential degradation products. Chromatographia, 2019, 82(11), 1641-1652.
[http://dx.doi.org/10.1007/s10337-019-03793-y]
[133]
Ellwanger, J.B.; Wingert, N.R.; Volpato, N.M.; Garcia, C.V.; Schapoval, E.E.S.; Steppe, M. Analytical quality by design approach for a stability-indicating method to determine apixaban and its related impurities. Chromatographia, 2020, 83(1), 65-75.
[http://dx.doi.org/10.1007/s10337-019-03815-9]
[134]
Patil, K.D.; Bagade, S.B.; Bonde, S.C. QbD-enabled stability-indicating assay method for the estimation of linezolid in newly developed gelatin nanoparticles for anti-tubercular therapy. Chromatographia, 2020, 83(8), 963-973.
[http://dx.doi.org/10.1007/s10337-020-03925-9]
[135]
Dongala, T.; Katari, N.K.; Palakurthi, A.K.; Katakam, L.N.R.; Marisetti, V.M. Stability indicating LC method development for hydroxychloroquine sulfate impurities as available for treatment of COVID-19 and evaluation of risk assessment prior to method validation by quality by design approach. Chromatographia, 2020, 83(10), 1269-1281.
[http://dx.doi.org/10.1007/s10337-020-03945-5] [PMID: 32863397]
[136]
Patil, T.S.; Deshpande, A.S. Development of an innovative quality by design (QbD) based stability-indicating HPLC method and its validation for clofazimine from its bulk and pharmaceutical dosage forms. Chromatographia, 2019, 82(2), 579-590.
[http://dx.doi.org/10.1007/s10337-018-3660-8]
[137]
Garg, L.K.; Reddy, V.S.; Sait, S.S.; Krishnamurthy, T.; Vali, S.J.; Reddy, A.M. Quality by design: Design of experiments approach prior to the validation of a stability-indicating HPLC method for montelukast. Chromatographia, 2013, 76(23-24), 1697-1706.
[http://dx.doi.org/10.1007/s10337-013-2509-4]
[138]
Patel, M.; Kothari, C. Comprehensive stability-indicating method development of avanafil phosphodiesterase type 5 inhibitor using advanced quality-by-design approach. J. Anal. Sci. Technol., 2020, 11(1), 29.
[http://dx.doi.org/10.1186/s40543-020-00228-4]
[139]
Patel, K.G.; Patel, A.T.; Shah, P.A.; Gandhi, T.R. Multivariate optimization for simultaneous determination of aspirin and simvastatin by reverse phase liquid chromatographic method using AQbD approach. Bull. Fac. Pharm. Cairo Univ., 2017, 55(2), 293-301.
[http://dx.doi.org/10.1016/j.bfopcu.2017.08.003]
[140]
Bonde, S.; Bonde, C.G.; Prabhakar, B. Quality by design based development and validation of HPLC method for simultaneous estimation of paclitaxel and vinorelbine tartrate in dual drug loaded liposomes. Microchem. J., 2019, 149, 103982.
[http://dx.doi.org/10.1016/j.microc.2019.103982]
[141]
Palakurthi, A.K.; Dongala, T.; Katakam, L.N.R. QbD based development of HPLC method for simultaneous quantification of Telmisartan and Hydrochlorothiazide impurities in tablets dosage form. Pract. Lab. Med., 2020, 21, e00169.
[http://dx.doi.org/10.1016/j.plabm.2020.e00169] [PMID: 32613068]
[142]
Yabré, M.; Ferey, L.; Somé, T.I.; Sivadier, G.; Gaudin, K. Development of a green HPLC method for the analysis of artesunate and amodiaquine impurities using Quality by Design. J. Pharm. Biomed. Anal., 2020, 190, 113507.
[http://dx.doi.org/10.1016/j.jpba.2020.113507] [PMID: 32846400]
[143]
Dobričić, V.; Vukadinović, D.; Jančić-Stojanović, B.; Vladimirov, S.; Čudina, O. AQbD-oriented development of a new LC method for simultaneous determination of telmisartan and its impurities. Chromatographia, 2017, 80(8), 1199-1209.
[http://dx.doi.org/10.1007/s10337-017-3330-2]
[144]
El-Sayed, H.M.; Hashem, H. Quality by design strategy for simultaneous HPLC determination of bromhexine HCl and its metabolite ambroxol HCl in dosage forms and plasma. Chromatographia, 2020, 83(9), 1075-1085.
[http://dx.doi.org/10.1007/s10337-020-03924-w]
[145]
Habib, A.A.; Hammad, S.F.; Megahed, S.M.; Kamal, A.H. Innovative quality by design approach for development of green micellar HPLC method for simultaneous determination of atorvastatin and amlodipine. Chromatographia, 2020, 83(10), 1221-1231.
[http://dx.doi.org/10.1007/s10337-020-03937-5]
[146]
Tome, T.; Časar, Z.; Obreza, A. Development of a unified reversed-phase HPLC method for efficient determination of EP and USP process-related impurities in celecoxib using analytical quality by design principles. Molecules, 2020, 25(4), 809.
[http://dx.doi.org/10.3390/molecules25040809] [PMID: 32069880]
[147]
Gurrala, S.; Raj, S.; Subrahmanyam, C.V.S.; Anumolu, P.D. Multivariate optimization of liquid chromatographic conditions for determination of dapagliflozin and saxagliptin, application to an in vitro dissolution and stability studies. Future J. Pharmaceut. Sci., 2021, 7(1), 85.
[http://dx.doi.org/10.1186/s43094-021-00229-z]
[148]
Jampana, R.T.; Avula, P.R.; Anumolu, P.D. Multivariate optimization and evaluation of quaternary mixture in bulk and co-formulated dosage forms by central composite design. Future J. Pharmaceut. Sci., 2021, 7(1), 111.
[http://dx.doi.org/10.1186/s43094-021-00266-8]
[149]
Prajapati, P.; Patel, A.; Shah, S. Application of DoE-based analytical QRM to development of the multipurpose RP-HPLC method for estimation of multiple FDC products of telmisartan using enhanced AQbD approach. J. Chromatogr. Sci., 2021, 60(8), 786-799.
[http://dx.doi.org/10.1093/chromsci/bmab123] [PMID: 34121125]
[150]
Patel, M.N.; Patel, A.J.; Shah, U.H.; Patel, S.G. Comparative study of the UV chemometrics, ratio spectra derivative and HPLC-QbD methods for the estimation of their simultaneous estimation in combined marketed formulation. Chromatographia, 2021, 84(1), 75-86.
[http://dx.doi.org/10.1007/s10337-020-03979-9]
[151]
Sylvester, B.; Tefas, L.; Vlase, L.; Tomuţă, I.; Porfire, A. A Quality by Design (QbD) approach to the development of a gradient high-performance liquid chromatography for the simultaneous assay of curcuminoids and doxorubicin from long-circulating liposomes. J. Pharm. Biomed. Anal., 2018, 158, 395-404.
[http://dx.doi.org/10.1016/j.jpba.2018.06.018] [PMID: 29966945]
[152]
Zacharis, C.K.; Vastardi, E. Application of analytical quality by design principles for the determination of alkyl p -toluenesulfonates impurities in Aprepitant by HPLC. Validation using total-error concept. J. Pharm. Biomed. Anal., 2018, 150, 152-161.
[http://dx.doi.org/10.1016/j.jpba.2017.12.009] [PMID: 29245084]
[153]
Mitrović, M.; Protić, A.; Malenović, A.; Otašević, B.; Zečević, M. Analytical quality by design development of an ecologically acceptable enantioselective HPLC method for timolol maleate enantiomeric purity testing on ovomucoid chiral stationary phase. J. Pharm. Biomed. Anal., 2020, 180, 113034.
[http://dx.doi.org/10.1016/j.jpba.2019.113034] [PMID: 31838281]
[154]
Saini, S.; Sharma, T.; Patel, A.; Kaur, R.; Tripathi, S.K.; Katare, O.P.; Singh, B. QbD-steered development and validation of an RP-HPLC method for quantification of ferulic acid: Rational application of chemometric tools. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1155, 122300.
[http://dx.doi.org/10.1016/j.jchromb.2020.122300] [PMID: 32771967]
[155]
Abdel-Moety, E.M.; Rezk, M.R.; Wadie, M.; Tantawy, M.A. A combined approach of green chemistry and Quality-by-Design for sustainable and robust analysis of two newly introduced pharmaceutical formulations treating benign prostate hyperplasia. Microchem. J., 2021, 160, 105711.
[http://dx.doi.org/10.1016/j.microc.2020.105711]
[156]
Čolović, J.; Rmandić, M.; Malenović, A. Robust optimization of chaotropic chromatography assay for lamotrigine and its two impurities in tablets. Chromatographia, 2019, 82(2), 565-577.
[http://dx.doi.org/10.1007/s10337-018-3661-7]
[157]
Elhawi, M.M.; Hassan, W.S.; El-Sheikh, R.; El-Sayed, H.M. Multivariate analysis of perampanel in pharmaceutical formulations using RP-HPLC. Chromatographia, 2020, 83(11), 1335-1343.
[http://dx.doi.org/10.1007/s10337-020-03950-8]
[158]
Monika, J.P.; Madhuri, G.D.; Vikram, D.H. Implementation of quality by design study on analytical method development and validation of teneligliptine hydrobromide. IJCPA, 2018, 6(1), 1-11.
[159]
Patel, K.Y.; Dedania, Z.R.; Dedania, R.R.; Patel, U. QbD approach to HPLC method development and validation of ceftriaxone sodium. Future J. Pharmaceut. Sci., 2021, 7(1), 141.
[http://dx.doi.org/10.1186/s43094-021-00286-4]
[160]
Silva, P.; Silva, C.L.; Perestrelo, R.; Nunes, F.M.; Câmara, J.S. Application of quality-by-design approach in the analytical method development for quantification of sugars in sugarcane honey by reversed-phase liquid chromatography. Food Anal. Methods, 2020, 13(8), 1634-1649.
[http://dx.doi.org/10.1007/s12161-020-01767-7]
[161]
Deidda, R.; Avohou, H.T.; Baronti, R.; Davolio, P.L.; Pasquini, B.; Del Bubba, M.; Hubert, C.; Hubert, P.; Orlandini, S.; Furlanetto, S. Analytical quality by design: Development and control strategy for a LC method to evaluate the cannabinoids content in cannabis olive oil extracts. J. Pharm. Biomed. Anal., 2019, 166, 326-335.
[http://dx.doi.org/10.1016/j.jpba.2019.01.032] [PMID: 30685656]
[162]
Jia, X.; Meng, F.; Pickens, C.J.; Thaisrivongs, D.; Yan, L.; Huo, P.; Maloney, K.M.; Lin, S. Ultrahigh performance liquid chromatography methods facilitate the development of glucose-responsive insulin therapeutics. Anal. Bioanal. Chem., 2020, 412(2), 377-388.
[http://dx.doi.org/10.1007/s00216-019-02249-4] [PMID: 31773226]
[163]
Mohan, T.S.S.J.; Jogia, H.A.; Mukkanti, K. Novel stability-indicating uhplc method development and validation for the quantification of perindopril, amlodipine and their impurities in pharmaceutical formulations: Application of QbD approach. Chromatographia, 2020, 83(10), 1197-1220.
[http://dx.doi.org/10.1007/s10337-020-03936-6]
[164]
Kormány, R.; Molnár, I.; Fekete, J.; Guillarme, D.; Fekete, S. Robust UHPLC separation method development for multi-API product containing amlodipine and bisoprolol: The impact of column selection. Chromatographia, 2014, 77(17-18), 1119-1127.
[http://dx.doi.org/10.1007/s10337-014-2633-9]
[165]
Tome, T.; Obreza, A.; Časar, Z. Developing an improved uhplc method for efficient determination of european pharmacopeia process-related impurities in ropinirole hydrochloride using analytical quality by design principles. Molecules, 2020, 25(11), 2691.
[http://dx.doi.org/10.3390/molecules25112691] [PMID: 32531959]
[166]
Ferey, L.; Raimbault, A.; Rivals, I.; Gaudin, K. UHPLC method for multiproduct pharmaceutical analysis by Quality-by-Design. J. Pharm. Biomed. Anal., 2018, 148, 361-368.
[http://dx.doi.org/10.1016/j.jpba.2017.10.014] [PMID: 29111491]
[167]
Pawar, A.; Pandita, N. Statistically designed, targeted profile uplc method development for assay and purity of haloperidol in haloperidol drug substance and haloperidol 1 mg tablets. Chromatographia, 2020, 83(6), 725-737.
[http://dx.doi.org/10.1007/s10337-020-03889-w]
[168]
Prajapati, P.B.; Jayswal, K.V.; Shah, S.A. Estimation of multiple fixed-dose combination products of ramipril and aspirin by GERV-chromatography using DoE and risk-based enhanced analytical quality by design approach. J. AOAC Int., 2021, 104(6), 1726-1741.
[http://dx.doi.org/10.1093/jaoacint/qsab073] [PMID: 33999149]
[169]
Dave, K.; Desai, S. Factorial design for development of a high-performance thin-layer chromatography method for the simultaneous estimation of abacavir sulfate, lamivudine hydrochloride, and dolutegravir sodium. J. Planar Chromatogr. Mod. TLC, 2018, 31(6), 489-495.
[http://dx.doi.org/10.1556/1006.2018.31.6.9]
[170]
Tathe, S.V.; Deshmukh, P.R.; Kashid, A.M.; Gaikwad, S. Development and validation of a high-performance thin-layer chromatographic method for the simultaneous estimation of torsemide and eplerenone by quality by design approach. J. Planar Chromatogr. Mod. TLC, 2019, 32(6), 495-500.
[http://dx.doi.org/10.1556/1006.2019.32.6.7]
[171]
Prajapati, P.; Shah, H.; Shah, S.A. Implementation of QRM and DoE-based quality by design approach to VEER chromatography method for simultaneous estimation of multiple combined dosage forms of paracetamol. J. Pharm. Innov., 2020, 17(1), 1-7.
[172]
Desai, J.A.; Dedhiya, P.P.; Patel, H.B.; Mishra, A.D.; Shah, S.A. Application of analytical quality by design approach in method development for the simultaneous estimation of levocetrizine hydrochloride and montelukast sodium in their combined dosage form. J. Planar Chromatogr. Mod. TLC, 2020, 33(2), 119-129.
[http://dx.doi.org/10.1007/s00764-020-00019-y]
[173]
Prajapati, P.B.; Radadiya, K.; Shah, S.A. Quality risk management based: Analytical quality by design approach to eco-friendly and versatile chromatography method for simultaneous estimation of multiple fixed-dose-combination products of anti-diabetic drugs. J. Pharm. Innov., 2020, 1, 1-8.
[174]
Prajapati, P.B.; Bodiwala, K.B.; Shah, S.A. Analytical quality-by-design approach for the stability study of thiocolchicoside by eco-friendly chromatographic method. J. Planar Chromatogr. Mod. TLC, 2018, 31(6), 477-487.
[http://dx.doi.org/10.1556/1006.2018.31.6.8]
[175]
Prajapati, P.; Patel, H.B.; Shah, S. DoE based failure mode effect analysis (FMEA) to development of stability indicating HPTLC method for estimation of apremilast. SN Appl. Sci., 2020, 2(8), 1371.
[http://dx.doi.org/10.1007/s42452-020-2890-1]
[176]
Harnisch, H.; Scriba, G.K.E. Capillary electrophoresis method for the determination of (R)-dapoxetine, (3S)-3-(dimethylamino)-3-phenyl-1-propanol, (S)-3-amino-3-phenyl-1-propanol and 1-naphthol as impurities of dapoxetine hydrochloride. J. Pharm. Biomed. Anal., 2019, 162, 257-263.
[http://dx.doi.org/10.1016/j.jpba.2018.09.039] [PMID: 30273816]
[177]
Niedermeier, S.; Scriba, G.K.E. Chiral separation of four phenothiazines by nonaqueous capillary electrophoresis and quality by design-based method development for quantification of dextromepromazine as chiral impurity of levomepromazine. J. Chromatogr. A, 2020, 1624, 461232.
[http://dx.doi.org/10.1016/j.chroma.2020.461232] [PMID: 32540073]
[178]
Orlandini, S.; Pasquini, B.; Del Bubba, M.; Pinzauti, S.; Furlanetto, S. Quality by design in the chiral separation strategy for the determination of enantiomeric impurities: Development of a capillary electrophoresis method based on dual cyclodextrin systems for the analysis of levosulpiride. J. Chromatogr. A, 2015, 1380, 177-185.
[http://dx.doi.org/10.1016/j.chroma.2014.12.065] [PMID: 25582483]
[179]
Krait, S.; Douša, M.; Scriba, G.K.E. Quality by design-guided development of a capillary electrophoresis method for the chiral purity determination of ambrisentan. Chromatographia, 2016, 79(19-20), 1343-1350.
[http://dx.doi.org/10.1007/s10337-016-3137-6]
[180]
Harnisch, H.; Chien, Y.; Scriba, G.K.E. Capillary electrophoresis method for the chiral purity determination of pregabalin derivatized with dansyl chloride. Chromatographia, 2018, 81(4), 719-725.
[http://dx.doi.org/10.1007/s10337-018-3495-3]
[181]
Furlanetto, S.; Orlandini, S.; Pasquini, B.; Caprini, C.; Mura, P.; Pinzauti, S. Fast analysis of glibenclamide and its impurities: Quality by design framework in capillary electrophoresis method development. Anal. Bioanal. Chem., 2015, 407(25), 7637-7646.
[http://dx.doi.org/10.1007/s00216-015-8921-x] [PMID: 26297454]
[182]
Niedermeier, S.; Scriba, G.K.E. Quality by design-based development of a chiral capillary electrophoresis method for the determination of dextrodropropizine and 1-phenylpiperazine as impurities of levodropropizine. Chromatographia, 2020, 83(1), 123-129.
[http://dx.doi.org/10.1007/s10337-019-03817-7]
[183]
van Tricht, E.; Geurink, L.; Backus, H.; Germano, M.; Somsen, G.W. Sänger-van de, G.C.E. One single, fast and robust capillary electrophoresis method for the direct quantification of intact adenovirus particles in upstream and downstream processing samples. Talanta, 2017, 166, 8-14.
[http://dx.doi.org/10.1016/j.talanta.2017.01.013] [PMID: 28213262]
[184]
Shah, K.P.; Kumar, S.; Kurmi, M.; Gohil, D.; Singh, S. Successful development by design of experiments of a gas chromatography method for simultaneous analysis of residual solvents of classes 1 and 2. J. Chromatogr. Sci., 2018, 56(6), 473-479.
[http://dx.doi.org/10.1093/chromsci/bmy026] [PMID: 29635280]
[185]
Mazumder, J.; Pathak, D.; Kumria, R. Analytical method validation of an herbal formulation by headspace gas chromatography using QbD. Int. J. Pharm. Sci. Drug Res., 2014, 6(4), 291-302.
[186]
Pasquini, B.; Orlandini, S.; Furlanetto, S.; Gotti, R.; Del Bubba, M.; Boscaro, F.; Bertaccini, B.; Douša, M.; Pieraccini, G. Quality by design as a risk-based strategy in pharmaceutical analysis: Development of a liquid chromatography-tandem mass spectrometry method for the determination of nintedanib and its impurities. J. Chromatogr. A, 2020, 1611, 460615.
[http://dx.doi.org/10.1016/j.chroma.2019.460615] [PMID: 31630831]
[187]
Jayagopal, B.; Murugesh, S. QbD-mediated RP-UPLC method development invoking an FMEA-based risk assessment to estimate nintedanib degradation products and their pathways. Arab. J. Chem., 2020, 13(9), 7087-7103.
[http://dx.doi.org/10.1016/j.arabjc.2020.07.014]
[188]
Wang, L.; Qu, H. Development and optimization of SPE-HPLC-UV/ELSD for simultaneous determination of nine bioactive components in shenqi fuzheng injection based on quality by design principles. Anal. Bioanal. Chem., 2016, 408(8), 2133-2145.
[http://dx.doi.org/10.1007/s00216-016-9316-3] [PMID: 26825340]
[189]
Ancillotti, C.; Orlandini, S.; Ciofi, L.; Pasquini, B.; Caprini, C.; Droandi, C.; Furlanetto, S.; Del Bubba, M. Quality by design compliant strategy for the development of a liquid chromatography–tandem mass spectrometry method for the determination of selected polyphenols in Diospyros kaki. J. Chromatogr. A, 2018, 1569, 79-90.
[http://dx.doi.org/10.1016/j.chroma.2018.07.046] [PMID: 30029776]
[190]
Du, J.; Chang, Y.; Zhang, X.; Hu, C. Development of a method of analysis for profiling of the impurities in phenoxymethylpenicillin potassium based on the analytical quality by design concept combined with the degradation mechanism of penicillins. J. Pharm. Biomed. Anal., 2020, 186, 113309.
[http://dx.doi.org/10.1016/j.jpba.2020.113309] [PMID: 32380353]
[191]
Žigart, N.; Časar, Z. Development of a stability-indicating analytical method for determination of venetoclax using AQbD principles. ACS Omega, 2020, 5(28), 17726-17742.
[http://dx.doi.org/10.1021/acsomega.0c02338] [PMID: 32715260]
[192]
Robu, S.; Romila, A.; Buzia, O.D.; Spac, A.F.; Diaconu, C.; Tutunaru, D.; Lisa, E.; Nechita, A. Contribution to the optimization of a gas chromatographic method by QbD approach used for analysis of essential oils from Salvia officinalis management. Revis. Chimie., 2019, 23, 24.
[193]
Bandopadhyay, S.; Beg, S.; Katare, O.P.; Sharma, T.; Singh, B. Integrated analytical quality by design (AQbD) approach for the development and validation of bioanalytical liquid chromatography method for estimation of valsartan. J. Chromatogr. Sci., 2020, 58(7), 606-621.
[http://dx.doi.org/10.1093/chromsci/bmaa024] [PMID: 32706387]
[194]
Sandhu, P.S.; Beg, S.; Kumar, R.; Katare, O.P.; Singh, B. Analytical QbD-based systematic bioanalytical HPLC method development for estimation of quercetin dihydrate. J. Liq. Chromatogr. Relat. Technol., 2017, 40(10), 506-516.
[http://dx.doi.org/10.1080/10826076.2017.1329744]
[195]
Panda, S.S.; Sharma, K.; Mohanty, B.; Bera, R.V.V.; Acharjya, S.K.; Chowdhury, B. Quality by design enabled enhanced bioanalytical extraction and uflc determination of vilazodone from rat serum. J. Liq. Chromatogr. Relat. Technol., 2017, 40(15), 775-782.
[http://dx.doi.org/10.1080/10826076.2017.1360908]
[196]
Beg, S.; Chaudhary, V.; Sharma, G.; Garg, B.; Panda, S.S.; Singh, B. QbD-oriented development and validation of a bioanalytical method for nevirapine with enhanced liquid-liquid extraction and chromatographic separation. Biomed. Chromatogr., 2016, 30(6), 818-828.
[http://dx.doi.org/10.1002/bmc.3613] [PMID: 26352459]
[197]
Hasnain, M.S.; Siddiqui, S.; Rao, S.; Mohanty, P.; Jahan Ara, T.; Beg, S. QbD-driven development and validation of a bioanalytical LC–MS method for quantification of fluoxetine in human plasma. J. Chromatogr. Sci., 2016, 54(5), 736-743.
[http://dx.doi.org/10.1093/chromsci/bmv248] [PMID: 26860396]
[198]
Dalvi, A.V.; Uppuluri, C.T.; Bommireddy, E.P.; Ravi, P.R. Design of experiments-based RP – HPLC bioanalytical method development for estimation of Rufinamide in rat plasma and brain and its application in pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1102-1103, 74-82.
[http://dx.doi.org/10.1016/j.jchromb.2018.10.014] [PMID: 30380466]
[199]
Ameeduzzafar, E-B.I.; El-Bagory, I.; Alruwaili, N.K.; Imam, S.S.; Alomar, F.A.; Elkomy, M.H.; Ahmad, N.; Elmowafy, M. Quality by design (QbD) based development and validation of bioanalytical RP-HPLC method for dapagliflozin: Forced degradation and preclinical pharmacokinetic study. J. Liq. Chromatogr. Relat. Technol., 2020, 43(1-2), 53-65.
[http://dx.doi.org/10.1080/10826076.2019.1667820]
[200]
Bheemanapally, K.; Ibrahim, M.M.H.; Briski, K.P. Optimization of ultra-high-performance liquid chromatography-electrospray ionization-mass spectrometry detection of glutamine-FMOC ad-hoc derivative by central composite design. Sci. Rep., 2020, 10(1), 7134.
[http://dx.doi.org/10.1038/s41598-020-64099-w] [PMID: 32346010]
[201]
Beg, S.; Jain, A.; Kaur, R.; Panda, S.S.; Katare, O.P.; Singh, B. QbD-driven development and validation of an efficient bioanalytical UPLC method for estimation of olmesartan medoxomil. J. Liq. Chromatogr. Relat. Technol., 2016, 39(13), 587-597.
[http://dx.doi.org/10.1080/10826076.2016.1206023]
[202]
Stajić, A.; Maksić, J.; Maksić, Đ.; Forsdahl, G.; Medenica, M.; Jančić-Stojanović, B. Analytical Quality by Design-based development and validation of ultra pressure liquid chromatography/MS/MS method for glycopeptide antibiotics determination in human plasma. Bioanalysis, 2018, 10(22), 1861-1876.
[http://dx.doi.org/10.4155/bio-2018-0181] [PMID: 30412677]
[203]
Khurana, K.R.; Beg, S.; Lal, D.; Katare, O.P.; Singh, B. Analytical quality by design approach for development of a validated bioanalytical UPLC method of docetaxel trihydrate. Curr. Pharm. Anal., 2015, 11(3), 180-192.
[http://dx.doi.org/10.2174/1573412911666150121234150]

© 2025 Bentham Science Publishers | Privacy Policy