Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Mini-Review Article

Phytoconstituents Based Nanomedicines for the Management of Diabetes: A Review

Author(s): Shailaja Jadhav* and Adhikarao Yadav

Volume 11, Issue 3, 2023

Published on: 01 March, 2023

Page: [217 - 237] Pages: 21

DOI: 10.2174/2211738511666230118095936

Price: $65

Abstract

Diabetes mellitus (DM) is a life-threatening multifactorial metabolic syndrome that is still one of the most difficult unsolved health concerns. Different herbal drugs have been proposed to be useful in treating diabetes and its associated complications. Two major obstacles in plant extracts are their limited solubility and bioavailability of lipophilic bioactive components. Applying nanotechnology has opened new avenues to improve solubility, bioavailability, compliance, and efficacy by overcoming the pharmacokinetic and biopharmaceutical obstacles associated with herbal extracts and phytochemicals. Herbal nanomedicines can overcome the drawbacks of conventional therapy of DM, its complications like delayed wound healing, and also decrease the side effects of synthetic drugs. The targeted delivery of herbal nanoparticles employing nano-pumps, nanorobots, smart cells, and nanosized herbal medications is recognized today as one of the most far-reaching discoveries in the therapy of DM. This paper focuses on using nanotechnology and herbal therapies to manage diabetes effectively. The review provides a detailed and up-to-date overview of phytonanoformulations in treating diabetes and its consequences.

Next »
Graphical Abstract

[1]
Firdous SM. Phytochemicals for treatment of diabetes. EXCLI J 2014; 13: 451-3.
[PMID: 26417272]
[2]
Uppal S, Italiya KS, Chitkara D, Mittal A. Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: An emerging paradigm for effective therapy. Acta Biomater 2018; 81: 20-42.
[http://dx.doi.org/10.1016/j.actbio.2018.09.049] [PMID: 30268916]
[3]
Hu FB. Globalization of diabetes. Diabetes Care 2011; 34(6): 1249-57.
[http://dx.doi.org/10.2337/dc11-0442] [PMID: 21617109]
[4]
Thomas CC, Philipson LH. Update on diabetes classification. Med Clin North Am 2015; 99(1): 1-16.
[http://dx.doi.org/10.1016/j.mcna.2014.08.015] [PMID: 25456640]
[5]
Ran Q, Wang J, Wang L, Zeng H, Yang X, Huang Q. Rhizoma coptidis as a potential treatment agent for type 2 diabetes mellitus and the underlying mechanisms: A review. Front Pharmacol 2019; 10(805): 805.
[http://dx.doi.org/10.3389/fphar.2019.00805] [PMID: 31396083]
[6]
Manukumar HM, Shiva Kumar J, Chandrasekhar B, Raghava S, Umesha S. Evidences for diabetes and insulin mimetic activity of medicinal plants: Present status and future prospects. Crit Rev Food Sci Nutr 2017; 57(12): 2712-29.
[http://dx.doi.org/10.1080/10408398.2016.1143446] [PMID: 26857927]
[7]
Dewanjee S, Das S, Das AK, et al. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 2018; 833: 472-523.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.034] [PMID: 29966615]
[8]
Choudhury H, Pandey M, Hua CK, et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J Tradit Complement Med 2018; 8(3): 361-76.
[http://dx.doi.org/10.1016/j.jtcme.2017.08.012] [PMID: 29992107]
[9]
Rajamohamed BS, Siddharthan S, Palanivel V, et al. Facile and eco-friendly fabrication of silver nanoparticles using nyctanthes arbor-tristis leaf extract to study antibiofilm and anticancer properties against Candida albicans. Adv Mater Sci Eng 2022; 2022: 1-10.
[http://dx.doi.org/10.1155/2022/2509089]
[10]
Zinatloo-Ajabshir S, Baladi M, Salavati-Niasari M. Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple and green sonochemical approach. Ultrason Sonochem 2021; 72: 105420.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105420] [PMID: 33385636]
[11]
Zinatloo-Ajabshira S, Maryam SM, Masoud SN. Eco-friendly synthesis of Nd2Sn2O7–based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Compos, Part B Eng 2019; 167: 643-53.
[http://dx.doi.org/10.1016/j.compositesb.2019.03.045]
[12]
Taheri Qazvini N, Zinatloo S. Synthesis and characterization of gelatin nanoparticles using CDI/NHS as a non-toxic cross-linking system. J Mater Sci Mater Med 2011; 22(1): 63-9.
[http://dx.doi.org/10.1007/s10856-010-4178-2] [PMID: 21052793]
[13]
Bhardwaj B, Singh P, Kumar A, Kumar S, Budhwar V. Eco-friendly greener synthesis of nanoparticles. Adv Pharm Bull 2020; 10(4): 566-76.
[http://dx.doi.org/10.34172/apb.2020.067] [PMID: 33072534]
[14]
Verma S, Gupta M, Popli H, Aggarwal G. Diabetes mellitus treatment using herbal drugs. Int J Phytomed 2018; 10(1): 1.
[http://dx.doi.org/10.5138/09750185.2181]
[15]
Sujatha KM, Srinath N, Naga LK, et al. Natural herbs vs allopathic drugs: To treat diabetes. Indo Am J Pharm Sci 2016; 3(5): 415-22.
[16]
Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T, Donath MY. Sulfonylurea induced β-cell apoptosis in cultured human islets. J Clin Endocrinol Metab 2005; 90(1): 501-6.
[http://dx.doi.org/10.1210/jc.2004-0699] [PMID: 15483097]
[17]
DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 1999; 131(4): 281-303.
[http://dx.doi.org/10.7326/0003-4819-131-4-199908170-00008] [PMID: 10454950]
[18]
Dey L, Attele AS, Yuan CS. Alternative therapies for type 2 diabetes. Altern Med Rev 2002; 7(1): 45-58.
[PMID: 11896745]
[19]
Kane M, Abu-Baker A, Busch R. The utility of oral diabetes medications in type 2 diabetes of the young. Curr Diabetes Rev 2005; 1(1): 83-92.
[http://dx.doi.org/10.2174/1573399052952569] [PMID: 18220585]
[20]
Roy N, Barik A. Green synthesis of silver nanoparticles from unexploited weed resources. Int J Nanotechnol Appl 2001; 4(2): 95-101.
[21]
Parashar UP, Preeti SS, Srivastava A. Bio inspired synthesis of Silver nanoparticles. Digest J Nano Bios 2009; 4(1): 159-66.
[22]
Salehi B, Ata A, Sharopov F, et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules 2019; 9(10): 551.
[http://dx.doi.org/10.3390/biom9100551] [PMID: 31575072]
[23]
Amjad S, Jafri A, Sharma AK, Serajuddin M. A novel strategy of nanotized herbal drugs and their delivery in the treatment of diabetes: Present status and future prospects. J Herb Med 2019; 17-18: 100279.
[http://dx.doi.org/10.1016/j.hermed.2019.100279]
[24]
Living stone SJ, Levin D, Looker HC, et al. Estimated life expectancy in a Scottish cohort with type 1 diabetes 2008-2010. JAMA 2015; 2015; 13(1): 37-44.
[25]
Cryer PE. Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: A consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2007; 30(1): 190-2.
[http://dx.doi.org/10.2337/dc-06-1670] [PMID: 17192371]
[26]
Thapa RK, Khan GM, Parajuli-Baral K, Thapa P. Herbal medicine incorporated nanoparticles: Advancements in herbal treatment. Asian J Biomed Pharm Sci 2013; 3(24): 7-14.
[27]
Marella S, Tollamadugu NVKVP. Nanotechnological approaches for the development of herbal drugs in treatment of diabetes mellitus-A critical review. IET Nanobiotechnol 2018; 12(5): 549-56.
[http://dx.doi.org/10.1049/iet-nbt.2017.0242] [PMID: 30095411]
[28]
Petrovska B. Historical review of medicinal plants′ usage. Pharmacogn Rev 2012; 6(11): 1-5.
[http://dx.doi.org/10.4103/0973-7847.95849] [PMID: 22654398]
[29]
Chang CLT, Lin Y, Bartolome AP, Chen YC, Chiu SC, Yang WC. Herbal therapies for type 2 diabetes mellitus: Chemistry, biology, and potential application of selected plants and compounds. Evid Based Complement Alternat Med 2013; 2013: 1-33.
[http://dx.doi.org/10.1155/2013/378657] [PMID: 23662132]
[30]
Singh J, Cumming E, Manoharan G, Kalasz H, Adeghate E. Medicinal chemistry of the anti-diabetic effects of momordica charantia: Active constituents and modes of actions. Open Med Chem J 2011; 5 (Suppl. 2): 70-7.
[http://dx.doi.org/10.2174/1874104501105010070] [PMID: 21966327]
[31]
Oh YS. Plant-derived compounds targeting pancreatic beta cells for the treatment of diabetes. Evid Based Complement Alternat Med 2015; 2015: 1-12.
[http://dx.doi.org/10.1155/2015/629863] [PMID: 26587047]
[32]
Munhoz ACM, Frode TS. Isolated compounds from natural products with potential antidiabetic activity-A systematic review. Curr Diabetes Rev 2018; 14(1): 36-106.
[PMID: 28474555]
[33]
Qaseem A, Barry MJ, Humphrey LL, et al. Oral pharmacologic treatment of type 2 diabetes mellitus: A clinical practice guideline update from the American college of physicians. Ann Intern Med 2017; 166(4): 279-90.
[http://dx.doi.org/10.7326/M16-1860] [PMID: 28055075]
[34]
Apostolova N, Iannantuoni F, Gruevska A, Muntane J, Rocha M, Victor VM. Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions. Redox Biol 2020; 34: 101517.
[http://dx.doi.org/10.1016/j.redox.2020.101517] [PMID: 32535544]
[35]
Alam F, Islam MA, Kamal MA, Gan SH. Updates on managing type 2 diabetes mellitus with natural products: Towards antidiabetic drug development. Curr Med Chem 2019; 25(39): 5395-431.
[http://dx.doi.org/10.2174/0929867323666160813222436] [PMID: 27528060]
[36]
Nouri Z, Hajialyani M, Izadi Z, Bahramsoltani R, Farzaei MH, Abdollahi M. Nanophytomedicines for the prevention of metabolic syndrome: A pharmacological and biopharmaceutical review. Front Bioeng Biotechnol 2020; 8: 425.
[http://dx.doi.org/10.3389/fbioe.2020.00425] [PMID: 32478050]
[37]
Dening TJ, Rao S, Thomas N, Prestidge CA. Oral nanomedicine approaches for the treatment of psychiatric illnesses. J Control Release 2016; 223: 137-56.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.047] [PMID: 26739547]
[38]
Bacanli M, Dilsiz SA, Başaran N, Başaran AA. Effects of phytochemicals against diabetes. Adv Food Nutr Res 2019; 89: 209-38.
[http://dx.doi.org/10.1016/bs.afnr.2019.02.006] [PMID: 31351526]
[39]
Bahmani M, Golshahi H, Saki K, Rafieian-Kopaei M, Delfan B, Mohammadi T. Medicinal plants and secondary metabolites for diabetes mellitus control. Asian Pac J Trop Dis 2014; 4 (Suppl. 2): S687-92.
[http://dx.doi.org/10.1016/S2222-1808(14)60708-8]
[40]
Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. Plant-based antidiabetic nanoformulations: The emerging paradigm for effective therapy. Int J Mol Sci 2020; 21(6): 2217.
[http://dx.doi.org/10.3390/ijms21062217] [PMID: 32210082]
[41]
Nie X Jnr, Chen Z, Pang L, et al. Oral nano drug delivery systems for the treatment of type 2 diabetes mellitus: An available administration strategy for antidiabetic phytocompounds. Int J Nanomedicine 2020; 15: 10215-40.
[http://dx.doi.org/10.2147/IJN.S285134]
[42]
Tundis R, Loizzo MR, Menichini F. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Rev Med Chem 2010; 10(4): 315-31.
[http://dx.doi.org/10.2174/138955710791331007] [PMID: 20470247]
[43]
Gray GM. Carbohydrate digestion and absorption. Role of the small intestine. N Engl J Med 1975; 292(23): 1225-30.
[http://dx.doi.org/10.1056/NEJM197506052922308] [PMID: 1093023]
[44]
Abbas G, Al Harrasi A, Hussain H, Hamaed A, Supuran CT. The management of diabetes mellitus-imperative role of natural products against dipeptidyl peptidase-4, α-glucosidase and sodium-dependent glucose co-transporter 2 (SGLT2). Bioorg Chem 2019; 86: 305-15.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.009] [PMID: 30738330]
[45]
Blaschek W. Natural products as lead compounds for sodium glucose cotransporter (SGLT) inhibitors. Planta Med 2017; 83(12/13): 985-93.
[http://dx.doi.org/10.1055/s-0043-106050] [PMID: 28395363]
[46]
Moradi-Marjaneh R, Paseban M, Sahebkar A. Natural products with SGLT2 inhibitory activity: Possibilities of application for the treatment of diabetes. Phytother Res 2019; 33(10): 2518-30.
[http://dx.doi.org/10.1002/ptr.6421] [PMID: 31359514]
[47]
Gannon NP, Conn CA, Vaughan RA. Dietary stimulators of GLUT4 expression and translocation in skeletal muscle: A mini-review. Mol Nutr Food Res 2015; 59(1): 48-64.
[http://dx.doi.org/10.1002/mnfr.201400414] [PMID: 25215442]
[48]
Hussain T, Tan B, Murtaza G, et al. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol Res 2020; 152: 104629.43.
[http://dx.doi.org/10.1016/j.phrs.2020.104629]
[49]
Cline GW, Petersen KF, Krssak M, et al. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med 1999; 341(4): 240-6.
[http://dx.doi.org/10.1056/NEJM199907223410404] [PMID: 10413736]
[50]
Sayem A, Arya A, Karimian H, Krishnasamy N, Ashok Hasamnis A, Hossain C. Action of phytochemicals on insulin signaling pathways accelerating glucose transporter (GLUT4) protein translocation. Molecules 2018; 23(2): 258.
[http://dx.doi.org/10.3390/molecules23020258] [PMID: 29382104]
[51]
Domínguez Avila J, Rodrigo García J, González Aguilar G, de la Rosa L. The antidiabetic mechanisms of polyphenols related to increased glucagon-like peptide-1 (GLP1) and insulin signaling. Molecules 2017; 22(6): 903.
[http://dx.doi.org/10.3390/molecules22060903] [PMID: 28556815]
[52]
Wani JH, John-Kalarickal J, Fonseca VA. Dipeptidyl peptidase-4 as a new target of action for type 2 diabetes mellitus: A systematic review. Cardiol Clin 2008; 26(4): 639-48.
[http://dx.doi.org/10.1016/j.ccl.2008.06.008] [PMID: 18929237]
[53]
Duarte AM, Guarino MP, Barroso S, Gil MM. Phytopharmacological strategies in the management of type 2 Diabetes mellitus. Foods 2020; 9(3): 271.
[http://dx.doi.org/10.3390/foods9030271] [PMID: 32131470]
[54]
Fukunaga T, Zou W, Rohatgi N, Colca JR, Teitelbaum SL. An insulin-sensitizing thiazolidinedione, which minimally activates PPARγ, does not cause bone loss. J Bone Miner Res 2015; 30(3): 481-8.
[http://dx.doi.org/10.1002/jbmr.2364] [PMID: 25257948]
[55]
Wang L, Waltenberger B, Pferschy-Wenzig EM, et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review. Biochem Pharmacol 2014; 92(1): 73-89.
[http://dx.doi.org/10.1016/j.bcp.2014.07.018] [PMID: 25083916]
[56]
Matsuda H, Nakamura S, Yoshikawa M. Search for new type of PPARγ agonist-like anti-diabetic compounds from medicinal plants. Biol Pharm Bull 2014; 37(6): 884-91.
[http://dx.doi.org/10.1248/bpb.b14-00037] [PMID: 24882400]
[57]
Halim M, Halim A. The effects of inflammation, aging and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes Metab Syndr 2019; 13(2): 1165-72.
[http://dx.doi.org/10.1016/j.dsx.2019.01.040] [PMID: 31336460]
[58]
Rahimi-Madiseh M, Malekpour-Tehrani A, Bahmani M, Rafieian-Kopaei M. The research and development on the antioxidants in prevention of diabetic complications. Asian Pac J Trop Med 2016; 9(9): 825-31.
[http://dx.doi.org/10.1016/j.apjtm.2016.07.001] [PMID: 27633293]
[59]
Gothai S, Ganesan P, Park SY, Fakurazi S, Choi DK, Arulselvan P. Natural phyto-bioactive compounds for the treatment of type 2 diabetes: Inflammation as a target. Nutrients 2016; 8(8): 461.
[http://dx.doi.org/10.3390/nu8080461] [PMID: 27527213]
[60]
Ahangarpour A, Sayahi M, Sayahi M. The antidiabetic and antioxidant properties of some phenolic phytochemicals: A review study. Diabetes Metab Syndr 2019; 13(1): 854-7.
[http://dx.doi.org/10.1016/j.dsx.2018.11.051] [PMID: 30641821]
[61]
Yadev D, Suri S, Choudhary AA, Sikender M. Novel approach, herbal remedies and natural products pharmaceutical science as nano drug delivery systems. Int J Pharm Tech Res 2011; 3(3): 3092-116.
[62]
Chakraborty K, Shivakumar A, Ramachandran S. Nano-technology in herbal medicines: A review. Int J Herb Med 2016; 4(3): 21-7.
[63]
Viswanath B, Kim S. Recent insights into the development of nanotechnology to detect circulating tumor cells. Trends Analyt Chem 2016; 82: 191-8.
[http://dx.doi.org/10.1016/j.trac.2016.05.026]
[64]
Somwanshi SB, Dolas RT, Siddheshwar SS, Merekar AN, Godge RK, Pattan SR. Nanomedicine drug delivery system. Asian J Biomed Pharm Sci 2013; 3(22): 9-15.
[65]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[66]
Prasad M, Lambe UP, Brar B, et al. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 2018; 97: 1521-37.
[http://dx.doi.org/10.1016/j.biopha.2017.11.026] [PMID: 29793315]
[67]
Ho BN, Pfeffer CM, Singh ATK. Update on nanotechnology-based drug delivery systems in cancer treatment. Anticancer Res 2017; 37(11): 5975-81.
[http://dx.doi.org/10.21873/anticanres.12044] [PMID: 29061776]
[68]
Verma S, Singh S. Current and future status of herbal medicines. Vet World 2008; 2(2): 347-50.
[http://dx.doi.org/10.5455/vetworld.2008.347-350]
[69]
Shadma W, Arshad H. Current status of herbal drugs in the development of newer therapeutics agents. Int J Pharm Chem Sci 2013; 2(3): 1462-73.
[70]
Efferth T, Koch E. Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Curr Drug Targets 2011; 12(1): 122-32.
[http://dx.doi.org/10.2174/138945011793591626] [PMID: 20735354]
[71]
Samy RP, Gopalakrishnakone P. Current status of herbal and their future perspectives. Nature Preced 2007. Available From: https://core.ac.uk/download/pdf/287511.pdf
[72]
Iqbal J, Abbasi BA, Mahmood T, et al. Plant-derived anticancer agents: A green anticancer approach. Asian Pac J Trop Biomed 2017; 7(12): 1129-50.
[http://dx.doi.org/10.1016/j.apjtb.2017.10.016]
[73]
Sastry M, Ahmed A, Khan M, et al. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 2003; 85(2): 162-70.
[74]
Wang S, Su R, Nie S, et al. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem 2014; 25(4): 363-76.
[http://dx.doi.org/10.1016/j.jnutbio.2013.10.002] [PMID: 24406273]
[75]
Lemmerman LR, Das D, Higuita-Castro N, Mirmira RG, Gallego-Perez D. Nanomedicine-based strategies for diabetes: Diagnostics, monitoring, and treatment. Trends Endocrinol Metab 2020; 31(6): 448-58.
[http://dx.doi.org/10.1016/j.tem.2020.02.001] [PMID: 32396845]
[76]
des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J Control Release 2006; 116(1): 1-27.
[http://dx.doi.org/10.1016/j.jconrel.2006.08.013] [PMID: 17050027]
[77]
Mohanraj VJ, Chen Y. Nanoparticles-A review. Trop J Pharm Res 2006; 5(1): 561-73.
[78]
Gopalasatheeskumar K, Komala S, Mahalakshmi M. An overview on polymeric nanoparticles used in the treatment of diabetes mellitus. Pharmatutor 2017; 5(12): 40-6.
[http://dx.doi.org/10.29161/PT.v5.i12.2017.40]
[79]
Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm J 2011; 19(3): 129-41.
[http://dx.doi.org/10.1016/j.jsps.2011.04.001] [PMID: 23960751]
[80]
Xie X, Tao Q, Zou Y, et al. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: Characterizations and mechanisms. J Agric Food Chem 2011; 59(17): 9280-9.
[http://dx.doi.org/10.1021/jf202135j] [PMID: 21797282]
[81]
Karri VVSR, Kuppusamy G, Talluri SV, et al. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol 2016; 93(Pt B): 1519-29.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.038] [PMID: 27180291]
[82]
Senthilnathan B, Vivekanandan K, Bhavya E. Masilamani, Priya BS. Impact of nanoparticulate drug delivery system of herbal drug in control of diabetes mellitus. Res J Pharm Technol 2019; 12(4): 1688-94.
[http://dx.doi.org/10.5958/0974-360X.2019.00282.8]
[83]
Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J Pharm Sci 2009; 71(4): 349-58.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[84]
Sadegh Malvajerd S, Azadi A, Izadi Z, et al. Brain delivery of curcumin using solid lipid nanoparticles and nanostructured lipid carriers: Preparation, optimization, and pharmacokinetic evaluation. ACS Chem Neurosci 2019; 10(1): 728-39.
[http://dx.doi.org/10.1021/acschemneuro.8b00510] [PMID: 30335941]
[85]
Garcês A, Amaral MH, Sousa Lobo JM, Silva AC. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur J Pharm Sci 2018; 112: 159-67.
[http://dx.doi.org/10.1016/j.ejps.2017.11.023] [PMID: 29183800]
[86]
Talegaonkar S, Bhattacharyya A. Potential of lipid nanoparticles (SLNS AND NLCS) in enhancing oral bioavailability of drugs with poor intestinal permeability. AAPS PharmSciTech 2019; 20(3): 121.
[http://dx.doi.org/10.1208/s12249-019-1337-8] [PMID: 30805893]
[87]
M¨uller RH, M¨ader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-A review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[88]
Ramteke KH, Joshi SA, Dhole SN. Solid lipid nanoparticle: A review. IOSR J Pharm 2012; 2(6): 34-44.
[http://dx.doi.org/10.9790/3013-26103444]
[89]
Frias I, Neves A, Pinheiro M, Reis S. Design, development, and characterization of lipid nanocarriers-based epigallocatechin gallate delivery system for preventive and therapeutic supplementation. Drug Des Devel Ther 2016; 10: 3519-28.
[http://dx.doi.org/10.2147/DDDT.S109589] [PMID: 27826184]
[90]
Wang N, Tan HY, Li L, Yuen MF, Feng Y. Berberine and Coptidis Rhizoma as potential anticancer agents: Recent updates and future perspectives. J Ethnopharmacol 2015; 176: 35-48.
[http://dx.doi.org/10.1016/j.jep.2015.10.028] [PMID: 26494507]
[91]
Bao J, Huang B, Zou L, et al. Hormetic effect of berberine attenuates the anticancer activity of chemotherapeutic agents. PLoS One 2015; 10(9): e0139298.
[http://dx.doi.org/10.1371/journal.pone.0139298] [PMID: 26421434]
[92]
Li M, Zhang M, Zhang Z, et al. Induction of apoptosis by berberine in hepatocellular carcinoma HepG2 cells via down regulation of NF-κB. Oncol Res 2017; 25(2): 233-9.
[http://dx.doi.org/10.3727/096504016X14742891049073] [PMID: 28277195]
[93]
Xue M, Yang M-X, Zhang W, et al. Characterization, pharmacokinetics, and hypoglycemic effect of berberine loaded solid lipid nanoparticles. Int J Nanomedicine 2013; 8: 4677.
[http://dx.doi.org/10.2147/IJN.S51262]
[94]
Wang T, Wang N, Song H, et al. Preparation of an anhydrous reverse micelle delivery system to enhance oral bioavailability and anti-diabetic efficacy of berberine. Eur J Pharm Sci 2011; 44(1-2): 127-35.
[http://dx.doi.org/10.1016/j.ejps.2011.06.015] [PMID: 21742030]
[95]
Sailor GU, Ramani VD, et al. Design of Experiment approach based formulation optimization of berberine loaded solid lipid nanoparticle for antihyperlipidemic activity. Indian J Pharm Sci 2021; 83(2): 204-18.
[96]
Xue M, Zhang L, Yang M, et al. Berberine-loaded solid lipid nanoparticles are concentrated in the liver and ameliorate hepatosteatosis in db/db mice. Int J Nanomedicine 2015; 10: 5049-57.
[http://dx.doi.org/10.2147/IJN.S84565] [PMID: 26346310]
[97]
Pereira M, Siba IP, Chioca LR, et al. Myricitrin, a nitric oxide and protein kinase C inhibitor, exerts antipsychotic-like effects in animal models. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(7): 1636-44.
[http://dx.doi.org/10.1016/j.pnpbp.2011.06.002] [PMID: 21689712]
[98]
Ahangarpour A, Oroojan AA, Khorsandi L, Kouchak M, Badavi M. Solid lipid nanoparticles of myricitrin have antioxidant and antidiabetic effects on streptozotocin-nicotinamide-induced diabetic model and myotube cell of male mouse. Oxid Med Cell Longev 2018; 2018: 1-18.
[http://dx.doi.org/10.1155/2018/7496936]
[99]
Fernandez SP, Nguyen M, Yow TT, et al. The flavonoid glycosides, myricitrin, gossypin and naringin exert anxiolytic action in mice. Neurochem Res 2009; 34(10): 1867-75.
[http://dx.doi.org/10.1007/s11064-009-9969-9] [PMID: 19387830]
[100]
Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur J Pharm Biopharm 2018; 133: 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[101]
Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 2017; 264: 306-32.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.033] [PMID: 28844756]
[102]
Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother 2018; 103: 598-613.
[http://dx.doi.org/10.1016/j.biopha.2018.04.055] [PMID: 29677547]
[103]
Waisundara VY, Hsu A, Tan BKH, Huang D. Baicalin improves antioxidant status of streptozotocin-induced diabetic Wistar rats. J Agric Food Chem 2009; 57(10): 4096-102.
[http://dx.doi.org/10.1021/jf8028539] [PMID: 19364111]
[104]
Dinda B, Dinda S, DasSharma S, Banik R, Chakraborty A, Dinda M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur J Med Chem 2017; 131: 68-80.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.004] [PMID: 28288320]
[105]
Zhao L, Wei Y, Fu J, Huang Y, He B, Zhou Y. Nanoemulsion improves the oral bioavailability of baicalin in rats: in vitro and in vivo evaluation. Int J Nanomedicine 2013; 8: 3769-79.
[http://dx.doi.org/10.2147/IJN.S51578] [PMID: 24124365]
[106]
Xu X, Shi F, Wei Z, Zhao Y. Nanostructured lipid carriers loaded with baicalin: An efficient carrier for enhanced antidiabetic effects. Pharmacogn Mag 2016; 12(47): 198-202.
[http://dx.doi.org/10.4103/0973-1296.186347] [PMID: 27601850]
[107]
Sánchez-López E, Guerra M, Dias-Ferreira J, et al. Current applications of nanoemulsions in cancer therapeutics. nanomaterials (Basel) 2019; 9(6): 821.
[http://dx.doi.org/10.3390/nano9060821] [PMID: 31159219]
[108]
Karthik P, Ezhilarasi PN, Anandharamakrishnan C. Challenges associated in stability of food grade nanoemulsions. Crit Rev Food Sci Nutr 2017; 57(7): 1435-50.
[http://dx.doi.org/10.1080/10408398.2015.1006767] [PMID: 26114624]
[109]
Rehman FU, Shah KU, Shah SU, Khan IU, Khan GM, Khan A. From nanoemulsions to self-nanoemulsions, with recent advances in self-nanoemulsifying drug delivery systems (SNEDDS). Expert Opin Drug Deliv 2017; 14(11): 1325-40.
[http://dx.doi.org/10.1080/17425247.2016.1218462] [PMID: 27485144]
[110]
Solans C, Solé I. Nano-emulsions: Formation by low-energy methods. Curr Opin Colloid Interface Sci 2012; 17(5): 246-54.
[http://dx.doi.org/10.1016/j.cocis.2012.07.003]
[111]
Tayeb HH, Sainsbury F. Nanoemulsions in drug delivery: formulation to medical application. Nanomedicine (Lond) 2018; 13(19): 2507-25.
[http://dx.doi.org/10.2217/nnm-2018-0088] [PMID: 30265218]
[112]
Paul D, Dey TK, Mukherjee S, Ghosh M, Dhar P. Comparative prophylactic effects of α-eleostearic acid rich nano and conventional emulsions in induced diabetic rats. J Food Sci Technol 2014; 51(9): 1724-36.
[http://dx.doi.org/10.1007/s13197-014-1257-2] [PMID: 25190828]
[113]
Xu HY, Liu CS, Huang CL, et al. Nanoemulsion improves hypoglycemic efficacy of berberine by overcoming its gastrointestinal challenge. Colloids Surf B Biointerfaces 2019; 181: 927-34.
[http://dx.doi.org/10.1016/j.colsurfb.2019.06.006] [PMID: 31382342]
[114]
Dokania S, Joshi AK. Self-microemulsifying drug delivery system (SMEDDS) – challenges and road ahead. Drug Deliv 2015; 22(6): 675-90.
[http://dx.doi.org/10.3109/10717544.2014.896058] [PMID: 24670091]
[115]
Čerpnjak K, Zvonar A, Gašperlin M, Vrečer F. Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. Acta Pharm 2013; 63(4): 427-45.
[http://dx.doi.org/10.2478/acph-2013-0040] [PMID: 24451070]
[116]
Date AA, Desai N, Dixit R, Nagarsenker M. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine (Lond) 2010; 5(10): 1595-616.
[http://dx.doi.org/10.2217/nnm.10.126] [PMID: 21143036]
[117]
Date A, Nagarsenker M. Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. Int J Pharm 2007; 329(1-2): 166-72.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.038] [PMID: 17010543]
[118]
Garg V, Kaur P, Gulati M, et al. Coadministration of polypeptide-k and curcumin through solid self-nanoemulsifying drug delivery system for better therapeutic effect against diabetes mellitus: formulation, optimization, biopharmaceutical characterization, and pharmacodynamic assessment. Assay Drug Dev Technol 2019; 17(4): 201-21.
[http://dx.doi.org/10.1089/adt.2018.902] [PMID: 31100018]
[119]
Wang H, Li Q, Deng W, et al. Self-nanoemulsifying drug delivery system of trans-cinnamic acid: formulation development and pharmacodynamic evaluation in alloxan-induced type 2 diabetic rat model. Drug Dev Res 2015; 76(2): 82-93.
[http://dx.doi.org/10.1002/ddr.21244] [PMID: 25847843]
[120]
Joshi RP, Negi G, Kumar A, et al. SNEDDS curcumin formulation leads to enhanced protection from pain and functional deficits associated with diabetic neuropathy: An insight into its mechanism for neuroprotection. Nanomedicine 2013; 9(6): 776-85.
[http://dx.doi.org/10.1016/j.nano.2013.01.001] [PMID: 23347896]
[121]
Lai F, Schlich M, Pireddu R, Fadda AM, Sinico C. Nanocrystals as effective delivery systems of poorly water-soluble natural molecules. Curr Med Chem 2019; 26(24): 4657-80.
[http://dx.doi.org/10.2174/0929867326666181213095809] [PMID: 30543163]
[122]
Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 1995; 125(1): 91-7.
[http://dx.doi.org/10.1016/0378-5173(95)00122-Y]
[123]
Patel K, Gadewar M, Tripathi R. Pharmacological and analytical aspects of gymnemic acid: a concise report. Asian Pac J Trop Dis 2012; 2(5): 414-6.
[http://dx.doi.org/10.1016/S2222-1808(12)60090-5]
[124]
Ravichandran R. Studies on gymnemic acids nanoparticulate formulations against diabetes mellitus. Int J Biomed Clin Eng 2012; 1(2): 1-12.
[http://dx.doi.org/10.4018/ijbce.2012070101]
[125]
Singh AK, Pandey H, Ramteke PW, Mishra SB. Nano-suspension of ursolic acid for improving oral bioavailability and attenuation of type II diabetes: A histopathological investigation. Biocatal Agric Biotechnol 2019; 22: 101433.
[http://dx.doi.org/10.1016/j.bcab.2019.101433]
[126]
Wang Z, Wu J, Zhou Q, Wang Y, Chen T. Berberine nanosuspension enhances hypoglycemic efficacy on streptozotocin induced diabetic C57BL/6 mice. Evid Based Complement Alternat Med 2015; 2015: 1-5.
[http://dx.doi.org/10.1155/2015/239749] [PMID: 25866534]
[127]
Gao Y, Li Z, Sun M, et al. Preparation and characterization of intravenously injectable curcumin nanosuspension. Drug Deliv 2011; 18(2): 131-42.
[http://dx.doi.org/10.3109/10717544.2010.520353] [PMID: 20939679]
[128]
Ravichandran R. Formulation of Nanosuspensions of Gymnemic acids for oral administration. International Journal of Nanoparticles 2010; 3(4): 309-25.
[http://dx.doi.org/10.1504/IJNP.2010.037135]
[129]
Chen C, Fu X. Spheroidization on Fructus Mori polysaccharides to enhance bioavailability and bioactivity by anti-solvent precipitation method. Food Chem 2019; 300: 125245.
[http://dx.doi.org/10.1016/j.foodchem.2019.125245] [PMID: 31352287]
[130]
Zhao X, Wang W, Zu Y, et al. Preparation and characterization of betulin nanoparticles for oral hypoglycemic drug by antisolvent precipitation. Drug Deliv 2014; 21(6): 467-79.
[http://dx.doi.org/10.3109/10717544.2014.881438] [PMID: 24479653]
[131]
Ranjous Y, Regdon G, Pintye-Hodi K, Sovany T. Standpoint on the priority of TNTs and CNTs as targeted drug delivery systems. Drug Discov Today 2019; 24(9): 1704-9.
[http://dx.doi.org/10.1016/j.drudis.2019.05.019]
[132]
Wong BS, Yoong SL, Jagusiak A, et al. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 2013; 65(15): 1964-2015.
[http://dx.doi.org/10.1016/j.addr.2013.08.005] [PMID: 23954402]
[133]
Martincic M, Tobias G. Filled carbon nanotubes in biomedical imaging and drug delivery. Expert Opin Drug Deliv 2015; 12(4): 563-81.
[http://dx.doi.org/10.1517/17425247.2015.971751] [PMID: 25430876]
[134]
Zheng X, Wang T, Jiang H, et al. Incorporation of Carvedilol into PAMAM-functionalized MWNTs as a sustained drug delivery system for enhanced dissolution and drug-loading capacity. Asian Journal of Pharmaceutical Sciences 2013; 8(5): 278-86.
[http://dx.doi.org/10.1016/j.ajps.2013.09.001]
[135]
Ilie I, Ilie R, Mocan T, Tabaran F, Iancu C, Mocan L. Nicotinamide-functionalized multiwalled carbon nanotubes increase insulin production in pancreatic beta cells via MIF pathway. Int J Nanomedicine 2013; 8: 3345-53.
[PMID: 24039418]
[136]
Arzani G, Haeri A, Daeihamed M, Bakhtiari-Kaboutaraki H, Dadashzadeh S. Niosomal carriers enhance oral bioavailability of carvedilol: effects of bile salt-enriched vesicles and carrier surface charge. Int J Nanomedicine 2015; 10: 4797-813.
[PMID: 26251598]
[137]
Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian Journal of Pharmaceutical Sciences 2015; 10(1): 13-23.
[http://dx.doi.org/10.1016/j.ajps.2014.08.005]
[138]
Gouda W, Hafiz NA, Mageed L, et al. Effects of nano-curcumin on gene expression of insulin and insulin receptor. Bull Natl Res Cent 2019; 43(1): 128.
[http://dx.doi.org/10.1186/s42269-019-0164-0]
[139]
Abu-Taweel GM, Attia MF, Hussein J, et al. Curcumin nanoparticles have potential antioxidant effect and restore tetrahydrobiopterin levels in experimental diabetes. Biomed Pharmacother 2020; 131: 110688.
[http://dx.doi.org/10.1016/j.biopha.2020.110688] [PMID: 33152905]
[140]
Lushchak O, Zayachkivska A, Vaiserman A. Metallic Nanoantioxidants as Potential Therapeutics for Type 2 Diabetes: A Hypothetical Background and Translational Perspectives. Oxid Med Cell Longev 2018; 2018: 1-9.
[http://dx.doi.org/10.1155/2018/3407375] [PMID: 30050652]
[141]
Anand K, Tiloke C, Naidoo P, Chuturgoon AA. Phytonanotherapy for management of diabetes using green synthesis nanoparticles. J Photochem Photobiol B 2017; 173: 626-39.
[142]
Swarnalatha C, Rachela S, Ranjan P, et al. Evaluation of in vitro antidiabetic activity of Sphaeranthus Amaranthoides silver nanoparticles. Int J Nanomat Biostr 2012; 2: 25-9.
[143]
Singh KN, Chandra V. Hypoglycaemic and hypocholesterolaemic effects of proteins of Acacia milanoxylon and Bauhinia retusa wild leguminous seeds in young albino rats. J Indian Med Assoc 1977; 68(10): 201-3.
[PMID: 903619]
[144]
Daisy P, Saipriya K. Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomedicine 2012; 7: 1189-202.
[http://dx.doi.org/10.2147/IJN.S26650] [PMID: 22419867]
[145]
Karthick V, Kumar VG, Dhas TS, Singaravelu G, Sadiq AM, Govindaraju K. Effect of biologically synthesized gold nanoparticles on alloxan-induced diabetic rats—An in vivo approach. Colloids Surf B Biointerfaces 2014; 122: 505-11.
[http://dx.doi.org/10.1016/j.colsurfb.2014.07.022] [PMID: 25092583]
[146]
Ghosh S, More P, Nitnavare R, et al. Antidiabetic and antioxidant properties of copper nanoparticles synthesized by medicinal plant Dioscorea bulbifera. J Nanomed Nanotechnol 2015; S6: 007.
[http://dx.doi.org/10.4172/2157-7439.S6-007]
[147]
Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother 2005; 59(7): 365-73.
[http://dx.doi.org/10.1016/j.biopha.2005.07.002] [PMID: 16081237]
[148]
Elizondo E, Moreno E, Cabrera I, et al. Liposomes and other vesicular systems: structural characteristics, methods of preparation, and use in nanomedicine. Prog Mol Biol Transl Sci 2011; 104: 1-52.
[http://dx.doi.org/10.1016/B978-0-12-416020-0.00001-2] [PMID: 22093216]
[149]
Kapoor B, Gupta R, Singh SK, Gulati M, Singh S. Prodrugs, phospholipids and vesicular delivery - An effective triumvirate of pharmacosomes. Adv Colloid Interface Sci 2018; 253: 35-65.
[http://dx.doi.org/10.1016/j.cis.2018.01.003] [PMID: 29454464]
[150]
Kapoor B, Gupta R, Gulati M, Singh SK, Khursheed R, Gupta M. The Why, Where, Who, How, and What of the vesicular delivery systems. Adv Colloid Interface Sci 2019; 271: 101985.
[http://dx.doi.org/10.1016/j.cis.2019.07.006] [PMID: 31351415]
[151]
Aloulou A, Ali YB, Bezzine S, Gargouri Y, Gelb MH. Phospholipases: An Overview. Methods Mol Biol 2012; 861: 63-85.
[http://dx.doi.org/10.1007/978-1-61779-600-5_4] [PMID: 22426712]
[152]
Li T, Cipolla D, Rades T, Boyd BJ. Drug nanocrystallisation within liposomes. J Control Release 2018; 288: 96-110.
[http://dx.doi.org/10.1016/j.jconrel.2018.09.001] [PMID: 30184465]
[153]
Gnananath K, Sri Nataraj K, Ganga Rao B. Phospholipid Complex Technique for Superior Bioavailability of Phytoconstituents. Adv Pharm Bull 2017; 7(1): 35-42.
[http://dx.doi.org/10.15171/apb.2017.005] [PMID: 28507935]
[154]
Li M, Du C, Guo N, et al. Composition design and medical application of liposomes. Eur J Med Chem 2019; 164: 640-53.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.007] [PMID: 30640028]
[155]
Yücel Ç, Karatoprak GŞ, Aktaş Y. Nanoliposomal Resveratrol as a Novel Approach to Treatment of Diabetes Mellitus. J Nanosci Nanotechnol 2018; 18(6): 3856-64.
[http://dx.doi.org/10.1166/jnn.2018.15247] [PMID: 29442719]
[156]
Zhong X, Chen B, Yang Z. Nanocochleates as the Potential Delivery Systems for Oral Antitumor of Hydroxycamptothecin. J Biomed Nanotechnol 2018; 14(7): 1339-46.
[http://dx.doi.org/10.1166/jbn.2018.2572] [PMID: 29944107]
[157]
Bhosale RR, Ghodake PP, Mane AN, Ghadge AA. Nanocochleates: A novel carrier for drug transfer. J Surg 2013; 2(5): 964-9.
[158]
Bothiraja C, Yojana BD, Pawar AP, Shaikh KS, Thorat UH. Fisetin-loaded nanocochleates: formulation, characterisation, in vitro anticancer testing, bioavailability and biodistribution study. Expert Opin Drug Deliv 2014; 11(1): 17-29.
[http://dx.doi.org/10.1517/17425247.2013.860131] [PMID: 24294925]
[159]
Shende P, Khair R, Gaud RS. Nanostructured cochleates: a multi-layered platform for cellular transportation of therapeutics. Drug Dev Ind Pharm 2019; 45(6): 869-81.
[http://dx.doi.org/10.1080/03639045.2019.1583757] [PMID: 30767577]
[160]
Yucel C. GS karatoprak, Atmar A. Novel Resveratrol-Loaded Nanocochleates and Effectiveness in the Treatment of Diabetes. Fabad Journal of Pharmaceutical Sciences 2018; 43(2): 35-44.
[161]
Mahale NB, Thakkar PD, Mali RG, Walunj DR, Chaudhari SR. Niosomes: Novel sustained release nonionic stable vesicular systems — An overview. Adv Colloid Interface Sci 2012; 183-184(184): 46-54.
[http://dx.doi.org/10.1016/j.cis.2012.08.002] [PMID: 22947187]
[162]
Alam MS, Ahad A, Abidin L, Aqil M, Mir SR, Mujeeb M. Embelin-loaded oral niosomes ameliorate streptozotocin-induced diabetes in Wistar rats. Biomed Pharmacother 2018; 97: 1514-20.
[http://dx.doi.org/10.1016/j.biopha.2017.11.073] [PMID: 29793314]
[163]
Singhal T, Mujeeb M, Ahad A, et al. Preparation, optimization and biological evaluation of gymnemic acid loaded niosomes against streptozotocin-nicotinamide induced diabetic-nephropathy in Wistar rats. J Drug Deliv Sci Technol 2019; 54: 101328.
[http://dx.doi.org/10.1016/j.jddst.2019.101328]
[164]
Ghanbarzadeh B, Babazadeh A, Hamishehkar H. Nano-phytosome as a potential food-grade delivery system. Food Biosci 2016; 15: 126-35.
[http://dx.doi.org/10.1016/j.fbio.2016.07.006]
[165]
Lu M, Qiu Q, Luo X, et al. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian Journal of Pharmaceutical Sciences 2019; 14(3): 265-74.
[http://dx.doi.org/10.1016/j.ajps.2018.05.011] [PMID: 32104457]
[166]
Babazadeh A, Zeinali M, Hamishehkar H. Nano-Phytosome: A developing platform for herbal anti-cancer agents in cancer therapy. Curr Drug Targets 2018; 19(2): 170-80.
[http://dx.doi.org/10.2174/1389450118666170508095250] [PMID: 28482783]
[167]
Kim SM, Jung JI, Chai C, Imm JY. Characteristics and glucose uptake promoting effect of chrysin-loaded phytosomes prepared with different phospholipid matrices. Nutrients 2019; 11(10): 2549.
[http://dx.doi.org/10.3390/nu11102549] [PMID: 31652637]
[168]
Yu F, Li Y, Chen Q, et al. Monodisperse microparticles loaded with the self-assembled berberine-phospholipid complex-based phytosomes for improving oral bioavailability and enhancing hypoglycemic efficiency. Eur J Pharm Biopharm 2016; 103: 136-48.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.019] [PMID: 27020531]
[169]
Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B. Immunomicelles: Targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci USA 2003; 100(10): 6039-44.
[http://dx.doi.org/10.1073/pnas.0931428100] [PMID: 12716967]
[170]
Simoes SM, Figueiras AR, Veiga F, Concheiro A. Polymeric micelles for oral drug administration enabling locoregional and systemic treatments. Expert Opin Drug Deliv 2015; 12(2): 297-318.
[171]
Reddy BPK, Yadav HKS, Nagesha DK, Raizaday A, Karim A. Polymeric Micelles as Novel Carriers for Poorly Soluble Drugs-Review. J Nanosci Nanotechnol 2015; 15(6): 4009-18.
[http://dx.doi.org/10.1166/jnn.2015.9713] [PMID: 26369007]
[172]
Cho H, Lai TC, Tomoda K, Kwon GS. Polymeric micelles for multi-drug delivery in cancer. AAPS PharmSciTech 2015; 16(1): 10-20.
[http://dx.doi.org/10.1208/s12249-014-0251-3] [PMID: 25501872]
[173]
Akbar MU, Zia KM, Akash MSH, Nazir A, Zuber M, Ibrahim M. Invivo anti-diabetic and wound healing potential of chitosan/ alginate/maltodextrin/pluronic-based mixed polymeric micelles: curcumin therapeutic potential. Int J Biol Macromol 2018; 120(Pt B): 2418-30.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.010]
[174]
Kesharwani P, Gorain B, Low SY, et al. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res Clin Pract 2018; 136: 52-77.
[http://dx.doi.org/10.1016/j.diabres.2017.11.018] [PMID: 29196152]
[175]
Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R. Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov 2015; 14(1): 45-57.
[http://dx.doi.org/10.1038/nrd4477] [PMID: 25430866]
[176]
de Jong WH, Borm PJ. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[177]
Chakraborty S, Dlie ZY, Chakraborty S, et al. Aptamer-functionalized drug-nanocarrier improves hepatocellular carcinoma towards normal by targeting neoplastic hepatocytes. Mol Ther Nucleic Acids 2020; 20(20): 34-49.
[http://dx.doi.org/10.1016/j.omtn.2020.01.034] [PMID: 32146417]
[178]
Devadasu VR, Wadsworth RM, Kumar MNVR. Protective effects of nanoparticulate coenzyme Q10 and curcumin on inflammatory markers and lipid metabolism in streptozotocin-induced diabetic rats: a possible remedy to diabetic complications. Drug Deliv Transl Res 2011; 1(6): 448-55.
[http://dx.doi.org/10.1007/s13346-011-0041-3] [PMID: 25786365]
[179]
Akolade JO, Oloyede HOB, Onyenekwe PC. Encapsulation in chitosan-based polyelectrolyte complexes enhances antidiabetic activity of curcumin. J Funct Foods 2017; 35: 584-94.
[http://dx.doi.org/10.1016/j.jff.2017.06.023]
[180]
Khalil NM, Nascimento TCF, Casa DM, et al. Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats. Colloids Surf B Biointerfaces 2013; 101: 353-60.
[http://dx.doi.org/10.1016/j.colsurfb.2012.06.024] [PMID: 23010041]
[181]
El-Far YM, Zakaria MM, Gabr MM, El Gayar AM, Eissa LA, El-Sherbiny IM. Nanoformulated natural therapeutics for management of streptozotocin-induced diabetes: potential use of curcumin nanoformulation. Nanomedicine (Lond) 2017; 12(14): 1689-711.
[http://dx.doi.org/10.2217/nnm-2017-0106] [PMID: 28635562]
[182]
Panwar R, Raghuwanshi N, Srivastava AK, Sharma AK, Pruthi V. In-vivo sustained release of nanoencapsulated ferulic acid and its impact in induced diabetes. Mater Sci Eng C 2018; 92: 381-92.
[http://dx.doi.org/10.1016/j.msec.2018.06.055] [PMID: 30184764]
[183]
Singh J, Mittal P, Vasant Bonde G, Ajmal G, Mishra B. Design, optimization, characterization and in-vivo evaluation of quercetin enveloped soluplus®/P407 micelles in diabetes treatment. Artif Cells Nanomed Biotechnol 2018; 46(sup3): S546-55.
[184]
Alam MM, Abdullah KM, Singh BR, Naqvi AH, Naseem I. Ameliorative effect of quercetin nanorods on diabetic mice: mechanistic and therapeutic strategies. RSC Advances 2016; 6(60): 55092-103.
[http://dx.doi.org/10.1039/C6RA04821H]
[185]
Chitkara D, Nikalaje SK, Mittal A, Chand M, Kumar N. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug Deliv Transl Res 2012; 2(2): 112-23.
[http://dx.doi.org/10.1007/s13346-012-0063-5] [PMID: 25786720]
[186]
Mukhopadhyay P, Maity S, Mandal S, Chakraborti AS, Prajapati AK, Kundu PP. Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr Polym 2018; 182: 42-51.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.098] [PMID: 29279124]
[187]
Mohseni R. ArabSadeghabadi Z, Ziamajidi N, Abbasalipourkabir R, RezaeiFarimani A. oral administration of resveratrol-loaded solid lipid nanoparticle improves insulin resistance through targeting expression of SNARE proteins in adipose and muscle tissue in rats with type 2 diabetes. Nanoscale Res Lett 2019; 14(227): 1-9.
[188]
Balata G, Eassa E, Shamrool H, Zidan S, Abdo Rehab M. Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol. Drug Des Devel Ther 2016; 10: 117-28.
[http://dx.doi.org/10.2147/DDDT.S95905] [PMID: 26792979]
[189]
Maity S, Mukhopadhyay P, Kundu PP, Chakraborti AS. Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals—An in vitro and in vivo approach. Carbohydr Polym 2017; 170: 124-32.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.066] [PMID: 28521977]
[190]
Amjadi S, Mesgari Abbasi M, Shokouhi B, Ghorbani M, Hamishehkar H. Enhancement of therapeutic efficacy of betanin for diabetes treatment by liposomal nanocarriers. J Funct Foods 2019; 59: 119-28.
[http://dx.doi.org/10.1016/j.jff.2019.05.015]
[191]
Wang J, Tan J, Luo J, et al. Enhancement of scutellarin oral delivery efficacy by vitamin B12-modified amphiphilic chitosan derivatives to treat type II diabetes induced-retinopathy. J Nanobiotechnology 2017; 15(1): 18.
[http://dx.doi.org/10.1186/s12951-017-0251-z] [PMID: 28249594]
[192]
Barwal I, Sood A, Sharma M, Singh B, Yadav SC. Development of stevioside Pluronic-F-68 copolymer based PLA-nanoparticles as an antidiabetic nanomedicine. Colloids Surf B Biointerfaces 2013; 101: 510-6.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.005] [PMID: 23022553]
[193]
Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kim KH, Kumar S. Improvement of antihyperglycemic activity of nano-thymoquinone in rat model of type-2 diabetes. Chem Biol Interact 2018; 295: 119-32.
[http://dx.doi.org/10.1016/j.cbi.2018.02.006] [PMID: 29421519]
[194]
Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kim KH, Kumar S. Evaluation of anti-diabetic activity of glycyrrhizin-loaded nanoparticles in nicotinamide-streptozotocin-induced diabetic rats. Eur J Pharm Sci 2017; 106: 220-30.
[http://dx.doi.org/10.1016/j.ejps.2017.05.068] [PMID: 28595874]
[195]
Kozuka C, Shimizu-Okabe C, Takayama C, et al. Marked augmentation of PLGA nanoparticle-induced metabolically beneficial impact of γ-oryzanol on fuel dyshomeostasis in genetically obese-diabetic ob/ob mice. Drug Deliv 2017; 24(1): 558-68.
[http://dx.doi.org/10.1080/10717544.2017.1279237] [PMID: 28181829]
[196]
Mishra SB, Malaviya J, Mukerjee A. attenuation of oxidative stress and glucose toxicity by lutein loaded nanoparticles from Spinacia oleracea leaves. J Pharm Sci Pharmacol 2015; 2(3): 242-9.
[http://dx.doi.org/10.1166/jpsp.2015.1067]
[197]
Nait Bachir Y, Nait Bachir R, Hadj-Ziane-Zafour A. Nanodispersions stabilized by β-cyclodextrin nanosponges: application for simultaneous enhancement of bioactivity and stability of sage essential oil. Drug Dev Ind Pharm 2019; 45(2): 333-47.
[http://dx.doi.org/10.1080/03639045.2018.1542705] [PMID: 30388376]
[198]
Hatanaka J, Chikamori H, Sato H, et al. Physicochemical and pharmacological characterization of α-tocopherol-loaded nano-emulsion system. Int J Pharm 2010; 396(1-2): 188-93.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.017] [PMID: 20558261]
[199]
Garg V, Kaur P, Singh SK, et al. Solid self-nanoemulsifying drug delivery systems for oral delivery of polypeptide-k: Formulation, optimization, in vitro and in vivo antidiabetic evaluation. Eur J Pharm Sci 2017; 109: 297-315.
[http://dx.doi.org/10.1016/j.ejps.2017.08.022] [PMID: 28842349]
[200]
Piazzini V, Micheli L, Luceri C, et al. Nanostructured lipid carriers for oral delivery of silymarin: Improving its absorption and in vivo efficacy in type 2 diabetes and metabolic syndrome model. Int J Pharm 2019; 572: 118838.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118838] [PMID: 31715362]
[201]
El-Far YM, Zakaria MM, Gabr MM, El Gayar AM, El-Sherbiny IM, Eissa LA. A newly developed silymarin nanoformulation as a potential antidiabetic agent in experimental diabetes. Nanomedicine (Lond) 2016; 11(19): 2581-602.
[http://dx.doi.org/10.2217/nnm-2016-0204] [PMID: 27623396]
[202]
Arvanag FM, Bayrami A, Habibi-Yangjeh A, Pouran SR. A comprehensive study on antidiabetic and antibacterial activities of ZnO nanoparticles biosynthesized using Silybum marianum L seed extract. Mater Sci Eng 2019; 97: 397-405.
[http://dx.doi.org/10.1016/j.msec.2018.12.058]
[203]
Pk S. P S, A J, M C, A B. Anti-diabetic activity of lycopene niosomes: experimental observation. J Pharmac and Drug Development 2017; 4(1): 1.
[http://dx.doi.org/10.15744/2348-9782.4.103]
[204]
Zhang J, Zhou J, Zhang T, et al. Facile fabrication of an amentoflavone-loaded micelle system for oral delivery To improve bioavailability and hypoglycemic Effects in KKAy Mice. ACS Appl Mater Interfaces 2019; 11(13): 12904-13.
[http://dx.doi.org/10.1021/acsami.9b03275] [PMID: 30860811]
[205]
Hussein J, Attia MF, El Bana M, et al. Solid state synthesis of docosahexaenoic acid-loaded zinc oxide nanoparticles as a potential antidiabetic agent in rats. Int J Biol Macromol 2019; 140: 1305-14.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.201] [PMID: 31449866]
[206]
Liu Y, Zeng S, Liu Y, et al. Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum. Int J Biol Macromol 2018; 114(4): 632-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.161] [PMID: 29601883]
[207]
Huang PK, Lin SX, Tsai MJ, et al. Encapsulation of 16-hydroxycleroda-3,13-dine-16,15-olide in mesoporous silica nanoparticles as a natural dipeptidyl peptidase-4 inhibitor potentiated hypoglycemia in diabetic mice. nanomaterials (Basel) 2017; 7(5): 112.
[http://dx.doi.org/10.3390/nano7050112] [PMID: 28498352]
[208]
Samadder A, Das S, Das J, Paul A, Khuda-Bukhsh AR. Ameliorative effects of Syzygium jambolanum extract and its poly (lactic-co-glycolic) acid nano-encapsulated form on arsenic-induced hyperglycemic stress: a multi-parametric evaluation. J Acupunct Meridian Stud 2012; 5(6): 310-8.
[http://dx.doi.org/10.1016/j.jams.2012.09.001] [PMID: 23265083]
[209]
Atale N, Saxena S, Nirmala JG, Narendhirakannan RT, Mohanty S, Rani V. Synthesis and characterization of Sygyzium cumini nanoparticles for its protective potential in high glucose-induced cardiac stress: a green approach. Appl Biochem Biotechnol 2017; 181(3): 1140-54.
[http://dx.doi.org/10.1007/s12010-016-2274-6] [PMID: 27734287]
[210]
Bayrami A, Ghorbani E, Rahim Pouran S, Habibi-Yangjeh A, Khataee A, Bayrami M. Enriched zinc oxide nanoparticles by Nasturtium officinale leaf extract: Joint ultrasound-microwave-facilitated synthesis, characterization, and implementation for diabetes control and bacterial inhibition. Ultrason Sonochem 2019; 58: 104613.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104613] [PMID: 31450359]
[211]
Garg A, Pandey P, Sharma P, Shukla AK. Synthesis and characterization of silver nanoparticle of ginger rhizome (Zingiber officinale) extract: synthesis, characterization and anti-diabetic activity in streptozotocin induced diabetic rats. Eur J Biomed Pharm Sci 2016; 3(7): 605-11.
[212]
Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 2012; 41(7): 2885-911.
[http://dx.doi.org/10.1039/c2cs15260f] [PMID: 22286540]
[213]
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J Control Release 2015; 200: 138-57.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[214]
Kettiger H, Schipanski A, Wick P, Huwyler J. Engineered nanomaterial uptake and tissue distribution: from cell to organism. Int J Nanomedicine 2013; 8: 3255-69.
[PMID: 24023514]
[215]
Fubini B, Ghiazza M, Fenoglio I. Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 2010; 4(4): 347-63.
[http://dx.doi.org/10.3109/17435390.2010.509519] [PMID: 20858045]
[216]
Wu L-P, Wang D, Li Z. Grand challenges in nanomedicine. Mater Sci Eng C 2020; 106: 110302.
[http://dx.doi.org/10.1016/j.msec.2019.110302]
[217]
Vasir J, Labhasetwar V. Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev 2007; 59(8): 718-28.
[http://dx.doi.org/10.1016/j.addr.2007.06.003] [PMID: 17683826]
[218]
Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA. The nanoparticle–protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 2007; 134-135: 167-74.
[http://dx.doi.org/10.1016/j.cis.2007.04.021] [PMID: 17574200]
[219]
Lynch I, Dawson KA. Protein-nanoparticle interactions. Nano Today 2008; 3(1-2): 40-7.
[http://dx.doi.org/10.1016/S1748-0132(08)70014-8]
[220]
Monopoli MP, Walczyk D, Campbell A, et al. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 2011; 133(8): 2525-34.
[http://dx.doi.org/10.1021/ja107583h] [PMID: 21288025]
[221]
Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 2009; 61(6): 428-37.
[http://dx.doi.org/10.1016/j.addr.2009.03.009] [PMID: 19376175]
[222]
Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 2003; 42(6): 463-78.
[http://dx.doi.org/10.1016/S0163-7827(03)00033-X] [PMID: 14559067]
[223]
Langer K, Anhorn MG, Steinhauser I, et al. Human serum albumin (HSA) nanoparticles: Reproducibility of preparation process and kinetics of enzymatic degradation. Int J Pharm 2008; 347(1-2): 109-17.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.028] [PMID: 17681686]
[224]
Zamboni WC, Torchilin V, Patri AK, et al. Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin Cancer Res 2012; 18(12): 3229-41.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2938] [PMID: 22669131]
[225]
Pillai G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci 2014; 1(2): 13.
[http://dx.doi.org/10.15226/2374-6866/1/1/00109]
[226]
Loureiro JA, Gomes B, Coelho MAN, Carmo Pereira M, Rocha S. Targeting nanoparticles across the blood–brain barrier with monoclonal antibodies. Nanomedicine (Lond) 2014; 9(5): 709-22.
[http://dx.doi.org/10.2217/nnm.14.27] [PMID: 24827845]
[227]
Jain KK. Nanobiotechnology-based strategies for crossing the blood–brain barrier. Nanomedicine (Lond) 2012; 7(8): 1225-33.
[http://dx.doi.org/10.2217/nnm.12.86] [PMID: 22931448]
[228]
Müller RH, Gohla S, Keck CM. State of the art of nanocrystals – Special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm 2011; 78(1): 1-9.
[http://dx.doi.org/10.1016/j.ejpb.2011.01.007] [PMID: 21266197]
[229]
Bernkop-Schnürch A. Nanocarrier systems for oral drug delivery: Do we really need them? Eur J Pharm Sci 2013; 49(2): 272-7.
[http://dx.doi.org/10.1016/j.ejps.2013.03.008] [PMID: 23537503]
[230]
Krol S. Challenges in drug delivery to the brain: Nature is against us. J Control Release 2012; 164(2): 145-55.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.044] [PMID: 22609350]
[231]
Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine 2015; 10: 6055-74.
[PMID: 26451111]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy