Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Identification of Novel Peptides as Potential Modulators of Aβ42 Amyloidogenesis: An in silico Approach

Author(s): Kavita Kundal, Santhosh Paramasivam, Amit Mitra and Nandini Sarkar*

Volume 19, Issue 4, 2023

Published on: 02 February, 2023

Page: [288 - 299] Pages: 12

DOI: 10.2174/1573409919666230112170012

Price: $65

Abstract

Aims: Alzheimer's disease is a neurodegenerative disease for which no cure is available. The presence of amyloid plaques in the extracellular space of neural cells is the key feature of this fatal disease.

Background: The proteolysis of Amyloid Precursor Protein by presenilin leads to the formation of Amyloid-beta peptides (Aβ 42/40). Deposition of 42 residual Aβ peptides forms fibril’s structure, disrupting neuron synaptic transmission, inducing neural cell toxicity, and ultimately leading to neuron death.

Objective: Various novel peptides have been investigated via molecular docking and molecular dynamic simulation studies to investigate their effects on Aβ amyloidogenesis.

Methods: The sequence-based peptides were rationally designed and investigated for their interaction with Aβ42 monomer and fibril, and their influence on the structural stability of target proteins was studied.

Results: Analyzed docking results suggest that the peptide YRIGY (P6) has the highest binding affinity with Aβ42 fibril amongst all the synthetic peptides, and the peptide DKAPFF (P12) similarly shows a better binding with the Aβ42 monomer. Moreover, simulation results also suggest that the higher the binding affinity, the better the inhibitory action.

Conclusion: These findings indicate that both the rationally designed peptides can modulate amyloidogenesis, but peptide (P6) has better potential for the disaggregation of the fibrils. In contrast, peptide P12 stabilizes the native structure of the Aβ42 monomer more effectively and hence can serve as a potential amyloid inhibitor. Thus, these peptides can be explored as therapeutic agents against Alzheimer's disease. Experimental testing of these peptides for immunogenicity, stability in cellular conditions, toxic effects and membrane permeability can be the future research scope of this study.

Graphical Abstract

[1]
Sunde, M.; Blake, C.C.F. From the globular to the fibrous state: protein structure and structural conversion in amyloid formation. Q. Rev. Biophys., 1998, 31(1), 1-39.
[http://dx.doi.org/10.1017/S0033583598003400] [PMID: 9717197]
[2]
Dobson, C.M. Protein folding and misfolding. Nature, 2003, 426(6968), 884-890.
[http://dx.doi.org/10.1038/nature02261] [PMID: 14685248]
[3]
Selkoe, D.J. The molecular pathology of Alzheimer’s disease. Neuron, 1991, 6(4), 487-498.
[http://dx.doi.org/10.1016/0896-6273(91)90052-2] [PMID: 1673054]
[4]
Chen, G.; Xu, T.; Yan, Y.; Zhou, Y.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin., 2017, 38(9), 1205-1235.
[http://dx.doi.org/10.1038/aps.2017.28] [PMID: 28713158]
[5]
Weggen, S.; Beher, D. Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal-dominant Alzheimer’s disease. Alzheimers Res. Ther., 2012, 4(2), 9.
[http://dx.doi.org/10.1186/alzrt107] [PMID: 22494386]
[6]
Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science, 1992, 256(5054), 184-185.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[7]
Nilsberth, C.; Westlind-Danielsson, A.; Eckman, C.B.; Condron, M.M.; Axelman, K.; Forsell, C.; Stenh, C.; Luthman, J.; Teplow, D.B.; Younkin, S.G.; Näslund, J.; Lannfelt, L. The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Aβ protofibril formation. Nat. Neurosci., 2001, 4(9), 887-893.
[http://dx.doi.org/10.1038/nn0901-887] [PMID: 11528419]
[8]
Gu, L.; Guo, Z. Alzheimer’s Aβ42 and Aβ40 peptides form interlaced amyloid fibrils. J. Neurochem., 2013, 126(3), 305-311.
[http://dx.doi.org/10.1111/jnc.12202] [PMID: 23406382]
[9]
Morgado, I.; Garvey, M. Lipids in amyloid-β processing, aggregation, and toxicity. Adv. Exp. Med. Biol., 2015, 855, 67-94.
[http://dx.doi.org/10.1007/978-3-319-17344-3_3] [PMID: 26149926]
[10]
Paredes-Rosan, C.A.; Valencia, D.E.; Barazorda-Ccahuana, H.L.; Aguilar-Pineda, J.A.; Gómez, B. Amyloid beta oligomers: How pH influences over trimer and pentamer structures? J. Mol. Model., 2020, 26(1), 1.
[http://dx.doi.org/10.1007/s00894-019-4247-5] [PMID: 31834477]
[11]
Radko, S.P.; Khmeleva, S.A.; Mantsyzov, A.B.; Kiseleva, Y.Y.; Mitkevich, V.A.; Kozin, S.A.; Makarov, A.A. Heparin modulates the kinetics of zinc-induced aggregation of amyloid-β peptides. J. Alzheimers Dis., 2018, 63(2), 539-550.
[http://dx.doi.org/10.3233/JAD-171120] [PMID: 29630553]
[12]
Bin, Y.; Li, X.; He, Y.; Chen, S.; Xiang, J. Amyloid-β peptide (1-42) aggregation induced by copper ions under acidic conditions. Acta Biochim. Biophys. Sin., 2013, 45(7), 570-577.
[http://dx.doi.org/10.1093/abbs/gmt044] [PMID: 23747389]
[13]
Roche, J.; Shen, Y.; Lee, J.H.; Ying, J.; Bax, A. Monomeric Aβ 1-40 and Aβ 1–42 peptides in solution adopt very similar ramachandran map distributions that closely resemble random coil. Biochemistry, 2016, 55(5), 762-775.
[http://dx.doi.org/10.1021/acs.biochem.5b01259] [PMID: 26780756]
[14]
White, J.A.; Manelli, A.M.; Holmberg, K.H.; Van Eldik, L.J.; LaDu, M.J. Differential effects of oligomeric and fibrillar amyloid-β1-42 on astrocyte-mediated inflammation. Neurobiol. Dis., 2005, 18(3), 459-465.
[http://dx.doi.org/10.1016/j.nbd.2004.12.013] [PMID: 15755672]
[15]
Hansen, D.V.; Hanson, J.E.; Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol., 2018, 217(2), 459-472.
[http://dx.doi.org/10.1083/jcb.201709069] [PMID: 29196460]
[16]
Giulian, D.; Haverkamp, L.J.; Yu, J.; Karshin, W.; Tom, D.; Li, J.; Kazanskaia, A.; Kirkpatrick, J.; Roher, A.E. The HHQK domain of beta-amyloid provides a structural basis for the immunopathology of Alzheimer’s disease. J. Biol. Chem., 1998, 273(45), 29719-29726.
[http://dx.doi.org/10.1074/jbc.273.45.29719] [PMID: 9792685]
[17]
Garbuzynskiy, S.O.; Lobanov, M.Y.; Galzitskaya, O.V. FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics, 2010, 26(3), 326-332.
[http://dx.doi.org/10.1093/bioinformatics/btp691] [PMID: 20019059]
[18]
de Groot, N.S.; Castillo, V.; Graña-Montes, R.; Ventura, S. AGGRESCAN: Method, application, and perspectives for drug design. Methods Mol. Biol., 2012, 819, 199-220.
[http://dx.doi.org/10.1007/978-1-61779-465-0_14] [PMID: 22183539]
[19]
Eskici, G.; Gur, M. Computational design of new Peptide inhibitors for amyloid beta (aβ) aggregation in Alzheimer’s disease: Application of a novel methodology. PLoS One, 2013, 8(6), e66178.
[http://dx.doi.org/10.1371/journal.pone.0066178] [PMID: 23762479]
[20]
Paramasivam, S.; Kundal, K.; Sarkar, N. Human serum albumin aggregation and its modulation using nanoparticles: A review. Protein Pept. Lett., 2022, 29(1), 11-21.
[http://dx.doi.org/10.2174/0929866528666211125104600] [PMID: 34823451]
[21]
Wiesehan, K.; Stöhr, J.; Nagel-Steger, L.; van Groen, T.; Riesner, D.; Willbold, D. Inhibition of cytotoxicity and amyloid fibril formation by a D-amino acid peptide that specifically binds to Alzheimer’s disease amyloid peptide. Protein Eng. Des. Sel., 2008, 21(4), 241-246.
[http://dx.doi.org/10.1093/protein/gzm054] [PMID: 18252750]
[22]
Arai, T.; Sasaki, D.; Araya, T.; Sato, T.; Sohma, Y.; Kanai, M. A cyclic KLVFF-derived peptide aggregation inhibitor induces the formation of less-toxic off-pathway amyloid-β oligomers. ChemBioChem, 2014, 15(17), 2577-2583.
[http://dx.doi.org/10.1002/cbic.201402430] [PMID: 25262917]
[23]
Viet, M.H.; Ngo, S.T.; Lam, N.S.; Li, M.S. Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity. J. Phys. Chem. B, 2011, 115(22), 7433-7446.
[http://dx.doi.org/10.1021/jp1116728] [PMID: 21563780]
[24]
Soto, C.; Sigurdsson, E.M.; Morelli, L.; Asok Kumar, R.; Castaño, E.M.; Frangione, B. β-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: Implications for Alzheimer’s therapy. Nat. Med., 1998, 4(7), 822-826.
[http://dx.doi.org/10.1038/nm0798-822] [PMID: 9662374]
[25]
Granic, I.; Masman, M.F.; Kees Mulder, C.; Nijholt, I.M.; Naude, P.J.; de Haan, A.; Borbély, E.; Penke, B.; Luiten, P.G.; Eisel, U.L. LPYFDa neutralizes amyloid-beta-induced memory impairment and toxicity. J. Alzheimers Dis., 2010, 19(3), 991-1005.
[http://dx.doi.org/10.3233/JAD-2010-1297] [PMID: 20157254]
[26]
Soto, C. Sheet breaker peptides dissolving the therapeutic problem of Alzheimer' s disease? 2002.
[27]
Orjuela, A. Computational evaluation of interaction between curcumin derivatives and amyloid-β7monomers and fibrils: Relevance to Alzheimer's Disease. J. Alzheimers Dis., 2021, 82(1), 5321-5333.
[http://dx.doi.org/10.3233/JAD-200941]
[28]
Mitra, A.; Sarkar, N. Sequence and structure-based peptides as potent amyloid inhibitors: A review. Arch. Biochem. Biophys., 2020, 695, 108614.
[http://dx.doi.org/10.1016/j.abb.2020.108614] [PMID: 33010227]
[29]
Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmüller, H.; MacKerell, A.D., Jr CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods, 2017, 14(1), 71-73.
[http://dx.doi.org/10.1038/nmeth.4067] [PMID: 27819658]
[30]
Wu, Y.; Tepper, H.L.; Voth, G.A. Flexible simple point-charge water model with improved liquid-state properties. J. Chem. Phys., 2006, 124(2), 024503.
[http://dx.doi.org/10.1063/1.2136877] [PMID: 16422607]
[31]
Zhu, K.; Day, T.; Warshaviak, D.; Murrett, C.; Friesner, R.; Pearlman, D. Antibody structure determination using a combination of homology modeling, energy-based refinement, and loop prediction. Proteins, 2014, 82(8), 1646-1655.
[http://dx.doi.org/10.1002/prot.24551] [PMID: 24619874]
[32]
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[33]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38-27-28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[34]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[35]
Roy, K.; Kar, S.; Das, R.N. Other Related Techniques; Academic Press: Boston, 2015, pp. 357-425.
[36]
Beard, H.; Cholleti, A.; Pearlman, D.; Sherman, W.; Loving, K.A. Applying physics-based scoring to calculate free energies of binding for single amino acid mutations in protein-protein complexes. PLoS One, 2013, 8(12), e82849.
[http://dx.doi.org/10.1371/journal.pone.0082849] [PMID: 24340062]
[37]
Salam, N.K.; Adzhigirey, M.; Sherman, W.; Pearlman, D.A.; Thirumalai, D. Structure-based approach to the prediction of disulfide bonds in proteins. Protein Eng. Des. Sel., 2014, 27(10), 365-374.
[http://dx.doi.org/10.1093/protein/gzu017] [PMID: 24817698]
[38]
Sanchez, G. Science and technology institutions in the learning processes of agrifood production in Argentina. The System argentine innovation Inst. Empres. and networks. The challenge of creation and appropriation Know, 2013.
[39]
Pattar, S.V.; Adhoni, S.A.; Kamanavalli, C.M.; Kumbar, S.S. In silico molecular docking studies and MM/GBSA analysis of coumarin-carbonodithioate hybrid derivatives divulge the anticancer potential against breast cancer. Beni. Suef Univ. J. Basic Appl. Sci., 2020, 9(1), 36.
[http://dx.doi.org/10.1186/s43088-020-00059-7]
[40]
Minicozzi, V. Computational and experimental studies on -sheet breakers targeting A 1-40 Fibrils. J Biol Chem, 2014, 289(16), 11242-11252.
[http://dx.doi.org/10.1074/jbc.M113.537472]
[41]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[42]
Horsley, J.R.; Jovcevski, B.; Wegener, K.L.; Yu, J.; Pukala, T.L.; Abell, A.D. Rationally designed peptide-based inhibitor of Aβ42 fibril formation and toxicity: A potential therapeutic strategy for Alzheimer’s disease. Biochem. J., 2020, 477(11), 2039-2054.
[http://dx.doi.org/10.1042/BCJ20200290] [PMID: 32427336]
[43]
Poduslo, J.F.; Curran, G.L.; Kumar, A.; Frangione, B.; Soto, C. Beta-sheet breaker peptide inhibitor of Alzheimer’s amyloidogenesis with increased blood-brain barrier permeability and resistance to proteolytic degradation in plasma. J. Neurobiol., 1999, 39(3), 371-382.
[http://dx.doi.org/10.1002/(SICI)1097-4695(19990605)39:3<371::AID-NEU4>3.0.CO;2-E] [PMID: 10363910]
[44]
Henning-Knechtel, A.; Kumar, S.; Wallin, C.; Król, S.; Wärmländer, S.K.T.S.; Jarvet, J.; Esposito, G.; Kirmizialtin, S.; Gräslund, A.; Hamilton, A.D.; Magzoub, M. Designed cell-penetrating peptide inhibitors of amyloid-beta aggregation and cytotoxicity. Cell Reports Physical Science, 2020, 1(2), 100014.
[http://dx.doi.org/10.1016/j.xcrp.2020.100014]
[45]
Jokar, S.; Erfani, M.; Bavi, O.; Khazaei, S.; Sharifzadeh, M.; Hajiramezanali, M.; Beiki, D.; Shamloo, A. Design of peptide-based inhibitor agent against amyloid-β aggregation: Molecular docking, synthesis and in vitro evaluation. Bioorg. Chem., 2020, 102, 104050.
[http://dx.doi.org/10.1016/j.bioorg.2020.104050] [PMID: 32663672]
[46]
Miller, Y.; Ma, B.; Nussinov, R. Zinc ions promote Alzheimer Aβ aggregation via population shift of polymorphic states. Proc. Natl. Acad. Sci. USA, 2010, 107(21), 9490-9495.
[http://dx.doi.org/10.1073/pnas.0913114107] [PMID: 20448202]
[47]
Kanchi, P.K.; Dasmahapatra, A.K. Enhancing the binding of the β-sheet breaker peptide LPFFD to the amyloid-β fibrils by aromatic modifications: A molecular dynamics simulation study. Comput. Biol. Chem., 2021, 92, 107471.
[http://dx.doi.org/10.1016/j.compbiolchem.2021.107471]
[48]
Al-Khafaji, K.; AL-Duhaidahawi, D.; Taskin Tok, T. Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2. J. Biomol. Struct. Dyn., 2020, 39(9), 1-9.
[http://dx.doi.org/10.1080/07391102.2020.1764392] [PMID: 32364041]
[49]
Sargsyan, K.; Grauffel, C.; Lim, C. How molecular size impacts RMSD applications in molecular dynamics simulations. J. Chem. Theory Comput., 2017, 13(4), 1518-1524.
[http://dx.doi.org/10.1021/acs.jctc.7b00028] [PMID: 28267328]
[50]
Zhao, Y.; Zeng, C.; Massiah, M. A. Molecular dynamics simulation reveals insights into the mechanism of unfolding by the A130T/V mutations within the MID1 zinc-binding bbox1 domain. PLoS One, 2015, 10(4), e0124377.
[http://dx.doi.org/10.1371/journal.pone.0124377]
[51]
Lobanov, M.Y.; Bogatyreva, N.S.; Galzitskaya, O.V. Radius of gyration as an indicator of protein structure compactness. Mol. Biol., 2008, 42(4), 623-628.
[http://dx.doi.org/10.1134/S0026893308040195] [PMID: 18856071]
[52]
Doytchinova, I.; Petkov, P.; Dimitrov, I.; Atanasova, M.; Flower, D.R. HLA-DP2 binding prediction by molecular dynamics simulations. Protein Sci., 2011, 20(11), 1918-1928.
[http://dx.doi.org/10.1002/pro.732] [PMID: 21898654]
[53]
Quintana, F.J.; Zaltzman, R.; Fernandez-Montesinos, R. NAP, a peptide derived from the activity-dependent neuroprotective protein, modulates macrophage function. Annals of the New York Academy of Sciences, 2006, 1070, 500-506.
[http://dx.doi.org/10.1196/annals.1317.069]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy