Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Agent in Urgent Need of Clinical Practice: Corilagin

Author(s): XueJia Wang, David Fisher, Khrystyna Pronyuk, Yiping Dang* and Lei Zhao*

Volume 23, Issue 16, 2023

Published on: 27 January, 2023

Page: [1642 - 1652] Pages: 11

DOI: 10.2174/1389557523666230112110317

Price: $65

Abstract

Corilagin is a naturally occurring water-soluble retrogallic acid tannin, which can be extracted from many kinds of plants. Known at present, it is the main effective ingredient of Phyllanthus urinaria L., Geranium wilfordii Maxim., Phyllanthus matsumurae Hayata, and Trifolium repens L. It also exists in Phyllanthus emblica L., Dimocarpus longan Lour., Canarium album (Lour.) Raeusch., and Terminalia chebula Retz. It can participate in a variety of signaling pathways in vivo and has multiple biological activities, including antitumor, anti-microbial, anti-oxidation, anti-inflammation, hepatoprotective, anti-allergy, anti-proliferation and so on. Given the limited efficacy of first-line treatments for many diseases such as oncology, chronic liver disease, and rheumatic immune system diseases, and the potential for adverse effects to outweigh the therapeutic effects, attention is being focused on alternative treatments, and natural plant extracts are a natural target for alternative treatments, as natural substances tend to have low toxicity to normal tissues. Some proprietary Chinese medicines containing corilagin have been used in clinical applications, being clinically applied to treat chronic liver disease, viral hepatitis B, rheumatoid arthritis and other diseases. This paper reviews the extraction, determination, distribution and harvesting, pharmacokinetics, biological activity, safety assessment of corilagin and its application in clinical practice.

Graphical Abstract

[1]
Anwanwan, D.; Singh, S.K.; Singh, S.; Saikam, V.; Singh, R. Challenges in liver cancer and possible treatment approaches. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(1), 188314.
[http://dx.doi.org/10.1016/j.bbcan.2019.188314] [PMID: 31682895]
[2]
Schmidt, O.T.H.; Lademann, R. Corilagin, another crystallized tanning agent from Dividivi. X. Communication on natural tanning agents. Justus Liebigs Ann. Chem., 1951, 571(3), 232-237.
[http://dx.doi.org/10.1002/jlac.19515710305]
[3]
Kakiuchi, N.; Hattori, M.; Namba, T.; Nishizawa, M.; Yamagishi, T.; Okuda, T. Inhibitory effect of tannins on reverse transcriptase from RNA tumor virus. J. Nat. Prod., 1985, 48(4), 614-621.
[http://dx.doi.org/10.1021/np50040a016] [PMID: 2413172]
[4]
Lu, G.; Zhang, G.; Gao, Y. The study on the antioxidant activity of polysaccharide extract from Phyllanthus emblica L. Zhongguo Nongxue Tongbao, 2011, 20(27), 133-136.
[5]
Yang, B.; Kortesniemi, M.; Liu, P.; Karonen, M.; Salminen, J.P. Analysis of hydrolyzable tannins and other phenolic compounds in emblic leafflower (Phyllanthus emblica L.) fruits by high performance liquid chromatography-electrospray ionization mass spectrometry. J. Agric. Food Chem., 2012, 60(35), 8672-8683.
[http://dx.doi.org/10.1021/jf302925v] [PMID: 22889097]
[6]
Zhang, J.; Miao, D.; Zhu, W.F.; Xu, J.; Liu, W.Y.; Kitdamrongtham, W.; Manosroi, J.; Abe, M.; Akihisa, T.; Feng, F. Biological activities of phenolics from the fruits of Phyllanthus emblica L. (Euphorbiaceae). Chem. Biodivers., 2017, 14(12), e1700404.
[http://dx.doi.org/10.1002/cbdv.201700404] [PMID: 28960771]
[7]
Moreira, J.; Klein-Júnior, L.C.; Filho, V.C.; Buzzi, F.C. Anti-hyperalgesic activity of corilagin, a tannin isolated from Phyllanthus niruri L. (Euphorbiaceae). J. Ethnopharmacol., 2013, 146(1), 318-323.
[http://dx.doi.org/10.1016/j.jep.2012.12.052] [PMID: 23333746]
[8]
Qiu, F.; Liu, L.; Lin, Y.; Yang, Z.; Qiu, F. Corilagin inhibits esophageal squamous cell carcinoma by inducing DNA damage and down-regulation of RNF8. Anticancer. Agents Med. Chem., 2019, 19(8), 1021-1028.
[http://dx.doi.org/10.2174/1871520619666190307120811] [PMID: 30848215]
[9]
Liu, W. Structural identification of phenolic constituents from Phyllanthus emblica L. and their inhibitory activity on α-glucosidase. Xiandai Shipin Keji, 2017, 220(12), 56-61.
[10]
Rangsriwong, P. Subcritical water extraction of polyphenolic compounds from Terminalia chebula Retz. fruits. Sep. Purif. Technol., 2009, 66(1), 51-56.
[11]
Prasad, K.N. High pressure extraction of corilagin from longan (Dimocarpus longan Lour.) fruit pericarp. Separ. Purif. Tech., 2010, 70(70), 41-45.
[12]
Yuan, X.H.; Xu, X.J.; Qiu, X.H. Synthesis and molecule recognition capability of corilagin-molecularly imprinted polymer. Yao Xue Xue Bao, 2007, 42(11), 1218-1221.
[PMID: 18300482]
[13]
Aisa, A.; Adili, G.; Guangying, S.; Abuduaini, M.; Yongxin, Z. Preparation method of high-purity corilagin CN111551656A, 2020.
[14]
Li, X.; Deng, Y.; Zheng, Z.; Huang, W.; Chen, L.; Tong, Q.; Ming, Y. Corilagin, a promising medicinal herbal agent. Biomed. Pharmacother., 2018, 99, 43-50.
[http://dx.doi.org/10.1016/j.biopha.2018.01.030] [PMID: 29324311]
[15]
Yisimayili, Z.; Guo, X.; Liu, H.; Xu, Z.; Abdulla, R.; Akber Aisa, H.; Huang, C. Metabolic profiling analysis of corilagin in vivo and in vitro using high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. J. Pharm. Biomed. Anal., 2019, 165, 251-260.
[http://dx.doi.org/10.1016/j.jpba.2018.12.013] [PMID: 30562708]
[16]
Reddy, B.U.; Mullick, R.; Kumar, A.; Sharma, G.; Bag, P.; Roy, C.L.; Sudha, G.; Tandon, H.; Dave, P.; Shukla, A.; Srinivasan, P.; Nandhitha, M.; Srinivasan, N.; Das, S. A natural small molecule inhibitor corilagin blocks HCV replication and modulates oxidative stress to reduce liver damage. Antiviral Res., 2018, 150, 47-59.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.004] [PMID: 29224736]
[17]
Zheng, B.; Chen, D.; Yang, X.; Igo, L.P.; Li, Z.; Ye, X.; Xiang, Z. Development and validation of an UPLC-PDA method for the determination of corilagin in rat plasma and its application to pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1031, 76-79.
[http://dx.doi.org/10.1016/j.jchromb.2016.07.039] [PMID: 27459126]
[18]
Subramanian, A.P.; John, A.A.; Vellayappan, M.V.; Balaji, A.; Jaganathan, S.K.; Supriyanto, E.; Yusof, M. Gallic acid: Prospects and molecular mechanisms of its anticancer activity. RSC Advances, 2015, 5(45), 35608-35621.
[http://dx.doi.org/10.1039/C5RA02727F]
[19]
Zhang, H.M.; Zhao, L.; Li, H.; Xu, H.; Chen, W.W.; Tao, L. Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol. Med., 2014, 11(2), 92-100.
[PMID: 25009751]
[20]
Miyamoto, K.; Nomura, M.; Murayama, T.; Furukawa, T.; Hatano, T.; Yoshida, T.; Koshiura, R.; Okuda, T. Antitumor activities of ellagitannins against sarcoma-180 in mice. Biol. Pharm. Bull., 1993, 16(4), 379-387.
[http://dx.doi.org/10.1248/bpb.16.379] [PMID: 8358389]
[21]
Tong, H.; Song, X.; Sun, X.; Sun, G.; Du, F. Immunomodulatory and antitumor activities of grape seed proanthocyanidins. J. Agric. Food Chem., 2011, 59(21), 11543-11547.
[http://dx.doi.org/10.1021/jf203170k] [PMID: 21995732]
[22]
Hecht, S.M.; Berry, D.E.; MacKenzie, L.J.; Busby, R.W.; Nasuti, C.A. A strategy for identifying novel, mechanistically unique inhibitors of topoisomerase I. J. Nat. Prod., 1992, 55(4), 401-413.
[http://dx.doi.org/10.1021/np50082a001] [PMID: 1324981]
[23]
Berry, D.E.; MacKenzie, L.; Shultis, E.A.; Chan, J.A.; Hecht, S.M. Naturally occurring inhibitors of topoisomerase I mediated DNA relaxation. J. Org. Chem., 1992, 57(2), 420-422.
[http://dx.doi.org/10.1021/jo00028a002]
[24]
Komori, A.; Yatsunami, J.; Suganuma, M.; Okabe, S.; Abe, S.; Sakai, A.; Sasaki, K.; Fujiki, H. Tumor necrosis factor acts as a tumor promoter in BALB/3T3 cell transformation. Cancer Res., 1993, 53(9), 1982-1985.
[PMID: 8481899]
[25]
Gu, Y.; Xiao, L.; Ming, Y.; Zheng, Z.; Li, W. Corilagin suppresses cholangiocarcinoma progression through Notch signaling pathway in vitro and in vivo. Int. J. Oncol., 2016, 48(5), 1868-1876.
[http://dx.doi.org/10.3892/ijo.2016.3413] [PMID: 26935808]
[26]
Yang, W.T.; Li, G.H.; Li, Z.Y.; Feng, S.; Liu, X.Q.; Han, G.K.; Zhang, H.; Qin, X.Y.; Zhang, R.; Nie, Q.M.; Jin, F. Effect of corilagin on the proliferation and NF- κ B in U251 glioblastoma cells and U251 glioblastoma stem-like cells. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/1418309] [PMID: 27247607]
[27]
Tong, Y.; Zhang, G.; Li, Y.; Xu, J.; Yuan, J.; Zhang, B.; Hu, T.; Song, G. Corilagin inhibits breast cancer growth via reactive oxygen species‐dependent apoptosis and autophagy. J. Cell. Mol. Med., 2018, 22(8), 3795-3807.
[http://dx.doi.org/10.1111/jcmm.13647] [PMID: 29923307]
[28]
Cho, Y.; Challa, S.; Moquin, D.; Genga, R.; Ray, T.D.; Guildford, M.; Chan, F.K.M. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell, 2009, 137(6), 1112-1123.
[http://dx.doi.org/10.1016/j.cell.2009.05.037] [PMID: 19524513]
[29]
He, S.; Wang, L.; Miao, L.; Wang, T.; Du, F.; Zhao, L.; Wang, X. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell, 2009, 137(6), 1100-1111.
[http://dx.doi.org/10.1016/j.cell.2009.05.021] [PMID: 19524512]
[30]
Zhang, D.W.; Shao, J.; Lin, J.; Zhang, N.; Lu, B.J.; Lin, S.C.; Dong, M.Q.; Han, J. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science, 2009, 325(5938), 332-336.
[http://dx.doi.org/10.1126/science.1172308] [PMID: 19498109]
[31]
Xu, J.; Zhang, G.; Tong, Y.; Yuan, J.; Li, Y.; Song, G. Corilagin induces apoptosis, autophagy and ROS generation in gastric cancer cells in vitro. Int. J. Mol. Med., 2019, 43(2), 967-979.
[PMID: 30569134]
[32]
Dashzeveg, N.; Yoshida, K. Cell death decision by p53 via control of the mitochondrial membrane. Cancer Lett., 2015, 367(2), 108-112.
[http://dx.doi.org/10.1016/j.canlet.2015.07.019] [PMID: 26231733]
[33]
Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nat. Rev. Cancer, 2002, 2(7), 489-501.
[http://dx.doi.org/10.1038/nrc839] [PMID: 12094235]
[34]
Ming, Y.; Zheng, Z.; Chen, L.; Zheng, G.; Liu, S.; Yu, Y.; Tong, Q. Corilagin inhibits hepatocellular carcinoma cell proliferation by inducing G2/M phase arrest. Cell Biol. Int., 2013, 37(10), 1046-1054.
[http://dx.doi.org/10.1002/cbin.10132] [PMID: 23686743]
[35]
Coutts, A.S.; Adams, C.J.; La Thangue, N.B. p53 ubiquitination by Mdm2: A never ending tail? DNA Repair, 2009, 8(4), 483-490.
[http://dx.doi.org/10.1016/j.dnarep.2009.01.008] [PMID: 19217357]
[36]
Abbas, T.; Sivaprasad, U.; Terai, K.; Amador, V.; Pagano, M.; Dutta, A. PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes Dev., 2008, 22(18), 2496-2506.
[http://dx.doi.org/10.1101/gad.1676108] [PMID: 18794347]
[37]
Deng, Y.; Li, X.; Li, X.; Zheng, Z.; Huang, W.; Chen, L.; Tong, Q.; Ming, Y. Corilagin induces the apoptosis of hepatocellular carcinoma cells through the mitochondrial apoptotic and death receptor pathways. Oncol. Rep., 2018, 39(6), 2545-2552.
[http://dx.doi.org/10.3892/or.2018.6396] [PMID: 29693193]
[38]
Zheng, Z.Z.; Chen, L.H.; Liu, S.S.; Deng, Y.; Zheng, G.H.; Gu, Y.; Ming, Y.L. Bioguided fraction and isolation of the antitumor components from Phyllanthus niruri L. BioMed Res. Int., 2016, 2016(6), 9729275.
[PMID: 27777954]
[39]
Jian, K. Study on apoptosis of laryngeal carcinoma Hep-2 Induced by corilagiln. Pharm. Clin. Chine. Mat. Med., 2012, (28), 24-27.
[40]
Colak, S.; ten Dijke, P. Targeting TGF-β signaling in cancer. Trends Cancer, 2017, 3(1), 56-71.
[http://dx.doi.org/10.1016/j.trecan.2016.11.008] [PMID: 28718426]
[41]
Dijke, P.; Hill, C.S. New insights into TGF-β–Smad signalling. Trends Biochem. Sci., 2004, 29(5), 265-273.
[http://dx.doi.org/10.1016/j.tibs.2004.03.008] [PMID: 15130563]
[42]
Prasad, R.; De Wergifosse, P.; Goffeau, A.; Balzi, E. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr. Genet., 1995, 27(4), 320-329.
[http://dx.doi.org/10.1007/BF00352101] [PMID: 7614555]
[43]
Chung, K.T.; Wong, T.Y.; Wei, C.I.; Huang, Y.W.; Lin, Y. Tannins and human health: A review. Crit. Rev. Food Sci. Nutr., 1998, 38(6), 421-464.
[http://dx.doi.org/10.1080/10408699891274273] [PMID: 9759559]
[44]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[45]
Fogliani, B.; Raharivelomanana, P.; Bianchini, J.P.; Bouraı¨ma-Madjèbi, S.; Hnawia, E. Bioactive ellagitannins from Cunonia macrophylla, an endemic Cunoniaceae from New Caledonia. Phytochemistry, 2005, 66(2), 241-247.
[http://dx.doi.org/10.1016/j.phytochem.2004.11.016] [PMID: 15652581]
[46]
Scalbert, A. Antimicrobial properties of tannins. Phytochemistry, 1991, 30(12), 3875-3883.
[http://dx.doi.org/10.1016/0031-9422(91)83426-L]
[47]
Shimizu, M.; Shiota, S.; Mizushima, T.; Ito, H.; Hatano, T.; Yoshida, T.; Tsuchiya, T. Marked potentiation of activity of beta-lactams against methicillin-resistant Staphylococcus aureus by corilagin. Antimicrob. Agents Chemother., 2001, 45(11), 3198-3201.
[http://dx.doi.org/10.1128/AAC.45.11.3198-3201.2001] [PMID: 11600378]
[48]
Shiota, S.; Shimizu, M.; Sugiyama, J.; Morita, Y.; Mizushima, T.; Tsuchiya, T. Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol., 2004, 48(1), 67-73.
[http://dx.doi.org/10.1111/j.1348-0421.2004.tb03489.x] [PMID: 14734860]
[49]
Stapleton, P.D.; Taylor, P.W. Methicillin resistance in Staphylococcus aureus: Mechanisms and modulation. Sci. Prog., 2002, 85(1), 57-72.
[http://dx.doi.org/10.3184/003685002783238870] [PMID: 11969119]
[50]
Li, N.; Luo, M.; Fu, Y.; Zu, Y.; Wang, W.; Zhang, L.; Yao, L.; Zhao, C.; Sun, Y. Effect of corilagin on membrane permeability of Escherichia coli, Staphylococcus aureus and Candida albicans. Phytother. Res., 2013, 27(10), 1517-1523.
[http://dx.doi.org/10.1002/ptr.4891] [PMID: 23192753]
[51]
Adhikari, R.P.; Novick, R.P. Regulatory organization of the staphylococcal sae locus. Microbiology, 2008, 154(3), 949-959.
[http://dx.doi.org/10.1099/mic.0.2007/012245-0] [PMID: 18310041]
[52]
Li, R.; Manna, A.C.; Dai, S.; Cheung, A.L.; Zhang, G. Crystal structure of the SarS protein from Staphylococcus aureus. J. Bacteriol., 2003, 185(14), 4219-4225.
[http://dx.doi.org/10.1128/JB.185.14.4219-4225.2003] [PMID: 12837797]
[53]
Askew, C.; Sellam, A.; Epp, E.; Hogues, H.; Mullick, A.; Nantel, A.; Whiteway, M. Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans. PLoS Pathog., 2009, 5(10), e1000612.
[http://dx.doi.org/10.1371/journal.ppat.1000612] [PMID: 19816560]
[54]
Haslam, E. Natural polyphenols (vegetable tannins) as drugs: Possible modes of action. J. Nat. Prod., 1996, 59(2), 205-215.
[http://dx.doi.org/10.1021/np960040+] [PMID: 8991956]
[55]
Guo, J.S.; Wang, S.X.; Li, X.; Zhu, T.R. Studies on the antibacterial constituents of Geranium sibiricum L. Yao Xue Xue Bao, 1987, 22(1), 28-32.
[PMID: 3604689]
[56]
Burapadaja, S.; Bunchoo, A. Antimicrobial activity of tannins from Terminalia citrina. Planta Med., 1995, 61(4), 365-366.
[http://dx.doi.org/10.1055/s-2006-958103] [PMID: 7480186]
[57]
Adesina, S.K.; Idowu, O.; Ogundaini, A.O.; Oladimeji, H.; Olugbade, T.A.; Onawunmi, G.O.; Pais, M. Antimicrobial constituents of the leaves of Acalypha wilkesiana and Acalypha hispida. Phytother. Res., 2000, 14(5), 371-374.
[http://dx.doi.org/10.1002/1099-1573(200008)14:5<371::AID-PTR625>3.0.CO;2-F] [PMID: 10925407]
[58]
Latté, K.P.; Kolodziej, H. Antifungal effects of hydrolysable tannins and related compounds on dermatophytes, mould fungi and yeasts. Z. Naturforsch. C J. Biosci., 2000, 55(5-6), 467-472.
[http://dx.doi.org/10.1515/znc-2000-5-625] [PMID: 10928561]
[59]
Hwang, E.I.; Ahn, B.T.; Lee, H.B.; Kim, Y.K.; Lee, K.S.; Bok, S.H.; Kim, Y.T.; Kim, S.U. Inhibitory activity for chitin synthase II from Saccharomyces cerevisiae by tannins and related compounds. Planta Med., 2001, 67(6), 501-504.
[http://dx.doi.org/10.1055/s-2001-16487-2] [PMID: 11509967]
[60]
Zhang, X.Q.; Gu, H.M.; Li, X.Z.; Xu, Z.N.; Chen, Y.S.; Li, Y. Anti-Helicobacter pylori compounds from the ethanol extracts of Geranium wilfordii. J. Ethnopharmacol., 2013, 147(1), 204-207.
[http://dx.doi.org/10.1016/j.jep.2013.02.032] [PMID: 23500884]
[61]
Miyasaki, Y.; Rabenstein, J.D.; Rhea, J.; Crouch, M.L.; Mocek, U.M.; Kittell, P.E.; Morgan, M.A.; Nichols, W.S.; Van Benschoten, M.M.; Hardy, W.D.; Liu, G.Y. Isolation and characterization of antimicrobial compounds in plant extracts against multidrug-resistant Acinetobacter baumannii. PLoS One, 2013, 8(4), e61594.
[http://dx.doi.org/10.1371/journal.pone.0061594] [PMID: 23630600]
[62]
Chen Liu, K.C.S.; Lin, M.T.; Lee, S.S.; Chiou, J.F.; Ren, S.; Lien, E.J. Antiviral tannins from two Phyllanthus species. Planta Med., 1999, 65(1), 043-046.
[http://dx.doi.org/10.1055/s-1999-13960] [PMID: 10083844]
[63]
Notka, F.; Meier, G.; Wagner, R. Concerted inhibitory activities of Phyllanthus amarus on HIV replication in vitro and ex vivo. Antiviral Res., 2004, 64(2), 93-102.
[http://dx.doi.org/10.1016/S0166-3542(04)00129-9] [PMID: 15498604]
[64]
Notka, F.; Meier, G.R.; Wagner, R. Inhibition of wild-type human immunodeficiency virus and reverse transcriptase inhibitor-resistant variants by Phyllanthus amarus. Antiviral Res., 2003, 58(2), 175-186.
[http://dx.doi.org/10.1016/S0166-3542(02)00213-9] [PMID: 12742578]
[65]
Xu, H.X.; Wan, M.; Dong, H.; But, P.P.H.; Foo, L.Y. Inhibitory activity of flavonoids and tannins against HIV-1 protease. Biol. Pharm. Bull., 2000, 23(9), 1072-1076.
[http://dx.doi.org/10.1248/bpb.23.1072] [PMID: 10993207]
[66]
Yeo, S.G.; Song, J.H.; Hong, E.H.; Lee, B.R.; Kwon, Y.S.; Chang, S.Y.; Kim, S.H.; Lee, S.; Park, J.H.; Ko, H.J. Antiviral effects of Phyllanthus urinaria containing corilagin against human enterovirus 71 and Coxsackievirus A16 in vitro. Arch. Pharm. Res., 2015, 38(2), 193-202.
[http://dx.doi.org/10.1007/s12272-014-0390-9] [PMID: 24752860]
[67]
Yang, L.J.; Chen, R.H.; Hamdoun, S.; Coghi, P.; Ng, J.P.L.; Zhang, D.W.; Guo, X.; Xia, C.; Law, B.Y.K.; Wong, V.K.W. Corilagin prevents SARS-CoV-2 infection by targeting RBD-ACE2 binding. Phytomedicine, 2021, 87, 153591.
[http://dx.doi.org/10.1016/j.phymed.2021.153591] [PMID: 34029937]
[68]
Rangkadilok, N.; Sitthimonchai, S.; Worasuttayangkurn, L.; Mahidol, C.; Ruchirawat, M.; Satayavivad, J. Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food Chem. Toxicol., 2007, 45(2), 328-336.
[http://dx.doi.org/10.1016/j.fct.2006.08.022] [PMID: 17049706]
[69]
Wu, N.; Zu, Y.; Fu, Y.; Kong, Y.; Zhao, J.; Li, X.; Li, J.; Wink, M.; Efferth, T. Antioxidant activities and xanthine oxidase inhibitory effects of extracts and main polyphenolic compounds obtained from Geranium sibiricum L. J. Agric. Food Chem., 2010, 58(8), 4737-4743.
[http://dx.doi.org/10.1021/jf904593n] [PMID: 20205393]
[70]
Pham, A.T.; Malterud, K.E.; Paulsen, B.S.; Diallo, D.; Wangensteen, H. DPPH radical scavenging and xanthine oxidase inhibitory activity of Terminalia macroptera leaves. Nat. Prod. Commun., 2011, 6(8), 1934578X1100600.
[http://dx.doi.org/10.1177/1934578X1100600819] [PMID: 21922915]
[71]
Tabata, H.; Katsube, T.; Tsuma, T.; Ohta, Y.; Imawaka, N.; Utsumi, T. Isolation and evaluation of the radical-scavenging activity of the antioxidants in the leaves of an edible plant, Mallotus japonicus. Food Chem., 2008, 109(1), 64-71.
[http://dx.doi.org/10.1016/j.foodchem.2007.12.017] [PMID: 26054265]
[72]
Tabata, H.; Katsube, T.; Moriya, K.; Utsumi, T.; Yamasaki, Y. Protective activity of components of an edible plant, Mallotus japonicus, against oxidative modification of proteins and lipids. Food Chem., 2010, 118(3), 548-553.
[http://dx.doi.org/10.1016/j.foodchem.2009.05.033]
[73]
Hou, C.W.; Lee, Y.C.; Hung, H.F.; Fu, H.W.; Jeng, K.C. Longan seed extract reduces hyperuricemia via modulating urate transporters and suppressing xanthine oxidase activity. Am. J. Chin. Med., 2012, 40(5), 979-991.
[http://dx.doi.org/10.1142/S0192415X12500723] [PMID: 22928829]
[74]
Hamidzadeh, K.; Christensen, S.M.; Dalby, E.; Chandrasekaran, P.; Mosser, D.M. Macrophages and the recovery from acute and chronic inflammation. Annu. Rev. Physiol., 2017, 79(1), 567-592.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034348] [PMID: 27959619]
[75]
Zhao, L.; Zhang, S.L.; Tao, J.Y.; Pang, R.; Jin, F.; Guo, Y.J.; Dong, J.H.; Ye, P.; Zhao, H.Y.; Zheng, G.H. Preliminary exploration on anti-inflammatory mechanism of Corilagin (beta-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose) in vitro. Int. Immunopharmacol., 2008, 8(7), 1059-1064.
[http://dx.doi.org/10.1016/j.intimp.2008.03.003] [PMID: 18486919]
[76]
Dong, X.R.; Luo, M.; Fan, L.; Zhang, T.; Liu, L.; Dong, J.H.; Wu, G. Corilagin inhibits the double strand break-triggered NF-kappaB pathway in irradiated microglial cells. Int. J. Mol. Med., 2010, 25(4), 531-536.
[PMID: 20198301]
[77]
Li, Y.; Wang, Y.; Chen, Y.; Wang, Y.; Zhang, S.; Liu, P.; Chen, Z.; Song, P.; Luo, L.; Luo, Y.; Dang, Y.; Zhao, L. Corilagin ameliorates atherosclerosis in peripheral artery disease via the toll-like receptor-4 signaling pathway in vitro and in vivo. Front. Immunol., 2020, 11, 1611.
[http://dx.doi.org/10.3389/fimmu.2020.01611] [PMID: 32849545]
[78]
Guo, Y.J.; Luo, T.; Wu, F.; Liu, H.; Li, H.R.; Mei, Y.W.; Zhang, S.L.; Tao, J.Y.; Dong, J.H.; Fang, Y.; Zhao, L. Corilagin protects against HSV1 encephalitis through inhibiting the TLR2 signaling pathways in vivo and in vitro. Mol. Neurobiol., 2015, 52(3), 1547-1560.
[http://dx.doi.org/10.1007/s12035-014-8947-7] [PMID: 25367881]
[79]
Kolodziej, H.; Burmeister, A.; Trun, W.; Radtke, O.A.; Kiderlen, A.F.; Ito, H.; Hatano, T.; Yoshida, T.; Foo, L.Y. Tannins and related compounds induce nitric oxide synthase and cytokines gene expressions in Leishmania major-infected macrophage-like RAW 264.7 cells. Bioorg. Med. Chem., 2005, 13(23), 6470-6476.
[http://dx.doi.org/10.1016/j.bmc.2005.07.012] [PMID: 16143535]
[80]
Kinoshita, S.; Inoue, Y.; Nakama, S.; Ichiba, T.; Aniya, Y. Antioxidant and hepatoprotective actions of medicinal herb, Terminalia catappa L. from Okinawa Island and its tannin corilagin. Phytomedicine, 2007, 14(11), 755-762.
[http://dx.doi.org/10.1016/j.phymed.2006.12.012] [PMID: 17293097]
[81]
McGill, M.R.; Sharpe, M.R.; Williams, C.D.; Taha, M.; Curry, S.C.; Jaeschke, H. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J. Clin. Invest., 2012, 122(4), 1574-1583.
[http://dx.doi.org/10.1172/JCI59755] [PMID: 22378043]
[82]
Liu, F.C.; Yu, H.P.; Chou, A.H.; Lee, H.C.; Liao, C.C. Corilagin reduces acetaminophen-induced hepatotoxicity through MAPK and NF-κB signaling pathway in a mouse model. Am. J. Transl. Res., 2020, 12(9), 5597-5607.
[PMID: 33042441]
[83]
Lv, H.; Hong, L.; Tian, Y.; Yin, C.; Zhu, C.; Feng, H. Corilagin alleviates acetaminophen-induced hepatotoxicity via enhancing the AMPK/GSK3β-Nrf2 signaling pathway. Cell Commun. Signal., 2019, 17(1), 2.
[http://dx.doi.org/10.1186/s12964-018-0314-2] [PMID: 30630510]
[84]
Jin, F.; Cheng, D.; Tao, J.Y.; Zhang, S.L.; Pang, R.; Guo, Y.J.; Ye, P.; Dong, J.H.; Zhao, L. Anti-inflammatory and anti-oxidative effects of corilagin in a rat model of acute cholestasis. BMC Gastroenterol., 2013, 13(1), 79-79.
[http://dx.doi.org/10.1186/1471-230X-13-79] [PMID: 23641818]
[85]
Huang, Y.F.; Zhang, S.L.; Jin, F.; Cheng, D.; Zhou, Y.P.; Li, H.R.; Tang, Z.M.; Xue, J.; Cai, W.; Dong, J.H.; Zhao, L. Activity of corilagin on post-parasiticide liver fibrosis in Schistosomiasis animal model. Int. J. Immunopathol. Pharmacol., 2013, 26(1), 85-92.
[http://dx.doi.org/10.1177/039463201302600108] [PMID: 23527711]
[86]
Yang, F.; Wang, Y.; Xue, J.; Ma, Q.; Zhang, J.; Chen, Y.F.; Shang, Z.Z.; Li, Q.Q.; Zhang, S.L.; Zhao, L. Effect of Corilagin on the miR-21/smad7/ERK signaling pathway in a schistosomiasis-induced hepatic fibrosis mouse model. Parasitol. Int., 2016, 65(4), 308-315.
[http://dx.doi.org/10.1016/j.parint.2016.03.001] [PMID: 26946098]
[87]
Joshi, C.S.; Sanmuga Priya, E. β-glucuronidase inhibitory effect of phenolic constituents from Phyllanthus amarus. Pharm. Biol., 2007, 45(5), 363-365.
[http://dx.doi.org/10.1080/13880200701214706]
[88]
Action of corilagin on hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic rats. Chemico Biological Interactions, 2018.
[89]
Gaona-Gaona, L.; Molina-Jijón, E.; Tapia, E.; Zazueta, C.; Hernández-Pando, R.; Calderón-Oliver, M.; Zarco-Márquez, G.; Pinzón, E.; Pedraza-Chaverri, J. Protective effect of sulforaphane pretreatment against cisplatin-induced liver and mitochondrial oxidant damage in rats. Toxicology, 2011, 286(1-3), 20-27.
[http://dx.doi.org/10.1016/j.tox.2011.04.014] [PMID: 21575670]
[90]
Gunawan-Puteri, M.D.P.T.; Kato, E.; Kawabata, J. α-Amylase inhibitors from an Indonesian medicinal herb, Phyllanthus urinaria. J. Sci. Food Agric., 2012, 92(3), 606-609.
[http://dx.doi.org/10.1002/jsfa.4615] [PMID: 22095704]
[91]
Gunawan-Puteri, M.D.P.T.; Kawabata, J. Novel α-glucosidase inhibitors from Macaranga tanarius leaves. Food Chem., 2010, 123(2), 384-389.
[http://dx.doi.org/10.1016/j.foodchem.2010.04.050]
[92]
Li, Y.Q.; Chen, Y.F.; Dang, Y.P.; Wang, Y.; Shang, Z.Z.; Ma, Q.; Wang, Y.J.; Zhang, J.; Luo, L.; Li, Q.Q.; Zhao, L. Corilagin counteracts IL-13Rα1 signaling pathway in macrophages to mitigate schistosome egg-induced hepatic fibrosis. Front. Cell. Infect. Microbiol., 2017, 7, 443.
[http://dx.doi.org/10.3389/fcimb.2017.00443] [PMID: 29094025]
[93]
Wang, Z.; Guo, Q.Y.; Zhang, X.J.; Li, X.; Li, W.T.; Ma, X.T.; Ma, L.J. Corilagin attenuates aerosol bleomycin-induced experimental lung injury. Int. J. Mol. Sci., 2014, 15(6), 9762-9779.
[http://dx.doi.org/10.3390/ijms15069762] [PMID: 24886817]
[94]
Muresan, X.M.; Cervellati, F.; Sticozzi, C.; Belmonte, G.; Chui, C.H.; Lampronti, I.; Borgatti, M.; Gambari, R.; Valacchi, G. The loss of cellular junctions in epithelial lung cells induced by cigarette smoke is attenuated by corilagin. Oxid. Med. Cell. Longev., 2015, 2015, 1-12.
[http://dx.doi.org/10.1155/2015/631758] [PMID: 25802682]
[95]
Shen, Y.; Teng, L.; Qu, Y.; Liu, J.; Zhu, X.; Chen, S.; Yang, L.; Huang, Y.; Song, Q.; Fu, Q. Anti-proliferation and anti-inflammation effects of corilagin in rheumatoid arthritis by downregulating NF-κB and MAPK signaling pathways. J. Ethnopharmacol., 2022, 284, 114791.
[http://dx.doi.org/10.1016/j.jep.2021.114791] [PMID: 34737112]
[96]
Li, Y.; Yu, Z.; Zhao, D.; Han, D. Corilagin alleviates hypertrophic scars via inhibiting the Transforming Growth Factor (TGF)-β/Smad signal pathway. Life Sci., 2021, 277, 119483.
[http://dx.doi.org/10.1016/j.lfs.2021.119483] [PMID: 33862115]
[97]
Zhou, J.; Zhang, C.; Sun, Y.; Wang, L.; Zhang, J.; Li, F.; Mao, W. Corilagin attenuates allergy and anaphylactic reaction by inhibiting degranulation of mast cells. Med. Sci. Monit., 2018, 24, 891-896.
[http://dx.doi.org/10.12659/MSM.906098] [PMID: 29434182]
[98]
Shen, Z.Q.; Dong, Z.J.; Peng, H.; Liu, J.K. Modulation of PAI-1 and tPA activity and thrombolytic effects of corilagin. Planta Med., 2003, 69(12), 1109-1112.
[http://dx.doi.org/10.1055/s-2003-45191] [PMID: 14750026]
[99]
Cheng, J.T.; Lin, T.C.; Hsu, F.L. Antihypertensive effect of corilagin in the rat. Can. J. Physiol. Pharmacol., 1995, 73(10), 1425-1429.
[http://dx.doi.org/10.1139/y95-198] [PMID: 8748933]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy