Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

The Application of Pyrrolo[2, 3-d]pyrimidine Scaffold in Medicinal Chemistry from 2017 to 2021

Author(s): Ting Liang, Yingxiang Yang, Jiayun Wang, Zhao Xie and Xin Chen*

Volume 23, Issue 10, 2023

Published on: 23 January, 2023

Page: [1118 - 1136] Pages: 19

DOI: 10.2174/1389557523666230111161810

Price: $65

Abstract

The application of privileged structures in drug design is an effective strategy, which usually leads to innovative hits/leads and successful structural optimization. Pyrrolo[2, 3- d]pyrimidine are such a scaffold which are frequently used in many clinical drugs. The biocompounds bearing pyrrolo[2, 3-d]pyrimidine skeleton show different pharmacological effects such as anti-neurodegenerative, anti-inflammatory, antibacterial, and antitumor activities. In this article, we reviewed the representative structures and biological characteristics of reported synthetic pyrrolo[2, 3-d]pyrimidine compounds from 2017 to 2021. The linked diseases and targets were also mentioned briefly. This work might provide a reference for the subsequent drug discovery based on pyrrolo[2, 3-d]pyrimidine scaffold.

Graphical Abstract

[1]
De Coen, L.M.; Heugebaert, T.S.A.; García, D.; Stevens, C.V. Synthetic entries to and biological activity of pyrrolopyrimidines. Chem. Rev., 2016, 116(1), 80-139.
[http://dx.doi.org/10.1021/acs.chemrev.5b00483] [PMID: 26699634]
[2]
Papp, K.A.; Krueger, J.G.; Feldman, S.R.; Langley, R.G.; Thaci, D.; Torii, H.; Tyring, S.; Wolk, R.; Gardner, A.; Mebus, C.; Tan, H.; Luo, Y.; Gupta, P.; Mallbris, L.; Tatulych, S. Tofacitinib, an oral Janus kinase inhibitor, for the treatment of chronic plaque psoriasis: Long-term efficacy and safety results from 2 randomized phase-III studies and 1 open-label long-term extension study. J. Am. Acad. Dermatol., 2016, 74(5), 841-850.
[http://dx.doi.org/10.1016/j.jaad.2016.01.013] [PMID: 26899199]
[3]
Eurtivong, C.; Pilkington, L.I.; van Rensburg, M.; White, R.M.; Brar, H.K.; Rees, S.; Paulin, E.K.; Xu, C.S.; Sharma, N.; Leung, I.K.H.; Leung, E.; Barker, D.; Reynisson, J. Discovery of novel phosphatidylcholine-specific phospholipase C drug-like inhibitors as potential anticancer agents. Eur. J. Med. Chem., 2020, 187, 111919.
[http://dx.doi.org/10.1016/j.ejmech.2019.111919] [PMID: 31810783]
[4]
Noji, S.; Hara, Y.; Miura, T.; Yamanaka, H.; Maeda, K.; Hori, A.; Yamamoto, H.; Obika, S.; Inoue, M.; Hase, Y.; Orita, T.; Doi, S.; Adachi, T.; Tanimoto, A.; Oki, C.; Kimoto, Y.; Ogawa, Y.; Negoro, T.; Hashimoto, H.; Shiozaki, M. Discovery of a janus kinase inhibitor bearing a highly three-dimensional spiro scaffold: JTE-052 (delgocitinib) as a new dermatological agent to treat inflammatory skin disorders. J. Med. Chem., 2020, 63(13), 7163-7185.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00450] [PMID: 32511913]
[5]
Kuriya, B.; Cohen, M.D.; Keystone, E. Baricitinib in rheumatoid arthritis: Evidence-to-date and clinical potential. Ther. Adv. Musculoskelet. Dis., 2017, 9(2), 37-44.
[http://dx.doi.org/10.1177/1759720X16687481] [PMID: 28255337]
[6]
Genovese, M.C.; Kremer, J.; Zamani, O.; Ludivico, C.; Krogulec, M.; Xie, L.; Beattie, S.D.; Koch, A.E.; Cardillo, T.E.; Rooney, T.P.; Macias, W.L.; de Bono, S.; Schlichting, D.E.; Smolen, J.S. Baricitinib in patients with refractory rheumatoid arthritis. N. Engl. J. Med., 2016, 374(13), 1243-1252.
[http://dx.doi.org/10.1056/NEJMoa1507247] [PMID: 27028914]
[7]
Crowley, E.L.; Nezamololama, N.; Papp, K.; Gooderham, M.J. Abrocitinib for the treatment of atopic dermatitis. Expert Rev. Clin. Immunol., 2020, 16(10), 955-962.
[http://dx.doi.org/10.1080/1744666X.2021.1828068] [PMID: 32969750]
[8]
Tripathy, D.; Bardia, A.; Sellers, W.R. Ribociclib (LEE011): Mechanism of action and clinical impact of this selective cyclin-dependent kinase 4/6 inhibitor in various solid tumors. Clin. Cancer Res., 2017, 23(13), 3251-3262.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3157] [PMID: 28351928]
[9]
Musumeci, F.; Sanna, M.; Greco, C.; Giacchello, I.; Fallacara, A.L.; Amato, R.; Schenone, S. Pyrrolo[2,3- d ]pyrimidines active as Btk inhibitors. Expert Opin. Ther. Pat., 2017, 27(12), 1305-1318.
[http://dx.doi.org/10.1080/13543776.2017.1355908] [PMID: 28705083]
[10]
Musumeci, F.; Sanna, M.; Grossi, G.; Brullo, C.; Fallacara, A.L.; Schenone, S. Pyrrolo[2,3-d ]Pyrimidines as kinase inhibitors. Curr. Med. Chem., 2017, 24(19), 2059-2085.
[PMID: 28266267]
[11]
Perlíková, P.; Hocek, M. Pyrrolo[2,3- d ]pyrimidine (7-deazapurine) as a privileged scaffold in design of antitumor and antiviral nucleosides. Med. Res. Rev., 2017, 37(6), 1429-1460.
[http://dx.doi.org/10.1002/med.21465] [PMID: 28834581]
[12]
Karin, M. Nuclear factor-κB in cancer development and progression. Nature, 2006, 441(7092), 431-436.
[http://dx.doi.org/10.1038/nature04870] [PMID: 16724054]
[13]
Anthony, N.G.; Baiget, J.; Berretta, G.; Boyd, M.; Breen, D.; Edwards, J.; Gamble, C.; Gray, A.I.; Harvey, A.L.; Hatziieremia, S.; Ho, K.H.; Huggan, J.K.; Lang, S.; Llona-Minguez, S.; Luo, J.L.; McIntosh, K.; Paul, A.; Plevin, R.J.; Robertson, M.N.; Scott, R.; Suckling, C.J.; Sutcliffe, O.B.; Young, L.C.; Mackay, S.P. Inhibitory Kappa B Kinase α (IKKα) inhibitors that recapitulate their selectivity in cells against isoform-related biomarkers. J. Med. Chem., 2017, 60(16), 7043-7066.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00484] [PMID: 28737909]
[14]
Gardam, S.; Brink, R. Non-Canonical NF-κB signaling initiated by BAFF influences b cell biology at multiple junctures. Front. Immunol., 2014, 4, 509.
[http://dx.doi.org/10.3389/fimmu.2013.00509] [PMID: 24432023]
[15]
Shen, H.; Ji, Y.; Xiong, Y.; Kim, H.; Zhong, X.; Jin, M.G.; Shah, Y.M.; Omary, M.B.; Liu, Y.; Qi, L.; Rui, L. Medullary thymic epithelial NF-kB-inducing kinase (NIK)/IKKα pathway shapes autoimmunity and liver and lung homeostasis in mice. Proc. Natl. Acad. Sci., 2019, 116(38), 19090-19097.
[http://dx.doi.org/10.1073/pnas.1901056116] [PMID: 31481626]
[16]
Shen, H.; Sheng, L.; Chen, Z.; Jiang, L.; Su, H.; Yin, L.; Omary, M.B.; Rui, L. Mouse hepatocyte overexpression of NF‐κB‐inducing kinase (NIK) triggers fatal macrophage-dependent liver injury and fibrosis. Hepatology, 2014, 60(6), 2065-2076.
[http://dx.doi.org/10.1002/hep.27348] [PMID: 25088600]
[17]
Li, Z.; Li, X.; Su, M.B.; Gao, L.X.; Zhou, Y.B.; Yuan, B.; Lyu, X.; Yan, Z.; Hu, C.; Zhang, H.; Luo, C.; Chen, Z.; Li, J.; Zhao, Y. Discovery of a potent and selective NF-κB-Inducing Kinase (NIK) inhibitor that has anti-inflammatory effects in vitro and in vivo. J. Med. Chem., 2020, 63(8), 4388-4407.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00396] [PMID: 32216342]
[18]
Zhu, Y.; Ma, Y.; Zu, W.; Song, J.; Wang, H.; Zhong, Y.; Li, H.; Zhang, Y.; Gao, Q.; Kong, B.; Xu, J.; Jiang, F.; Wang, X.; Li, S.; Liu, C.; Liu, H.; Lu, T.; Chen, Y. Identification of N -Phenyl-7 H -pyrrolo[2,3- d ]pyrimidin-4-amine Derivatives as novel, potent, and selective NF-κB inducing kinase (NIK) inhibitors for the treatment of psoriasis. J. Med. Chem., 2020, 63(13), 6748-6773.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00055] [PMID: 32479083]
[19]
Hendriks, R.W. New Btk inhibitor holds promise. Nat. Chem. Biol., 2011, 7(1), 4-5.
[http://dx.doi.org/10.1038/nchembio.502] [PMID: 21164510]
[20]
Hamasy, A.; Wang, Q.; Blomberg, K.E.M.; Mohammad, D.K.; Yu, L.; Vihinen, M.; Berglöf, A.; Smith, C.I.E. Substitution scanning identifies a novel, catalytically active ibrutinib-resistant BTK cysteine 481 to threonine (C481T) variant. Leukemia, 2017, 31(1), 177-185.
[http://dx.doi.org/10.1038/leu.2016.153] [PMID: 27282255]
[21]
Watterson, S.H.; De Lucca, G.V.; Shi, Q.; Langevine, C.M.; Liu, Q.; Batt, D.G.; Beaudoin Bertrand, M.; Gong, H.; Dai, J.; Yip, S.; Li, P.; Sun, D.; Wu, D.R.; Wang, C.; Zhang, Y.; Traeger, S.C.; Pattoli, M.A.; Skala, S.; Cheng, L.; Obermeier, M.T.; Vickery, R.; Discenza, L.N.; D’Arienzo, C.J.; Zhang, Y.; Heimrich, E.; Gillooly, K.M.; Taylor, T.L.; Pulicicchio, C.; McIntyre, K.W.; Galella, M.A.; Tebben, A.J.; Muckelbauer, J.K.; Chang, C.; Rampulla, R.; Mathur, A.; Salter-Cid, L.; Barrish, J.C.; Carter, P.H.; Fura, A.; Burke, J.R.; Tino, J.A. Discovery of 6-Fluoro-5-( R )-(3-( S )-(8-fluoro-1-methyl-2,4-dioxo-1,2-dihydroquinazolin-3(4 H )-yl)-2-methylphenyl)-2-( S )-(2-hydroxypropan-2-yl)-2,3,4,9-tetrahydro-1 H -carbazole-8-carboxamide (BMS-986142): A Reversible Inhibitor of Bruton’s Tyrosine Kinase (BTK) Conformationally Constrained by Two Locked Atropisomers. J. Med. Chem., 2016, 59(19), 9173-9200.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01088] [PMID: 27583770]
[22]
He, L.; Pei, H.; Zhang, C.; Shao, M.; Li, D.; Tang, M.; Wang, T.; Chen, X.; Xiang, M.; Chen, L. Design, synthesis and biological evaluation of 7 H -pyrrolo[2,3- d ]pyrimidin-4-amine derivatives as selective Btk inhibitors with improved pharmacokinetic properties for the treatment of rheumatoid arthritis. Eur. J. Med. Chem., 2018, 145, 96-112.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.079] [PMID: 29324347]
[23]
Hopkins, B.T.; Bame, E.; Bell, N.; Bohnert, T.; Bowden-Verhoek, J.K.; Bui, M.; Cancilla, M.T.; Conlon, P.; Cullen, P.; Erlanson, D.A.; Fan, J.; Fuchs-Knotts, T.; Hansen, S.; Heumann, S.; Jenkins, T.J.; Marcotte, D.; McDowell, B.; Mertsching, E.; Negrou, E.; Otipoby, K.L.; Poreci, U.; Romanowski, M.J.; Scott, D.; Silvian, L.; Yang, W.; Zhong, M. Optimization of novel reversible Bruton’s tyrosine kinase inhibitors identified using Tethering-fragment-based screens. Bioorg. Med. Chem., 2019, 27(13), 2905-2913.
[http://dx.doi.org/10.1016/j.bmc.2019.05.021] [PMID: 31138459]
[24]
Laurence, A.; Pesu, M.; Silvennoinen, O.; O’Shea, J. JAK kinases in health and disease: An update. Open Rheumatol. J., 2012, 6(1), 232-244.
[http://dx.doi.org/10.2174/1874312901206010232] [PMID: 23028408]
[25]
Kawamura, M.; McVicar, D.W.; Johnston, J.A.; Blake, T.B.; Chen, Y.Q.; Lal, B.K.; Lloyd, A.R.; Kelvin, D.J.; Staples, J.E.; Ortaldo, J.R. Molecular cloning of L-JAK, a Janus family protein-tyrosine kinase expressed in natural killer cells and activated leukocytes. Proc. Natl. Acad. Sci. USA, 1994, 91(14), 6374-6378.
[http://dx.doi.org/10.1073/pnas.91.14.6374] [PMID: 8022790]
[26]
O’Shea, J.J.; Kontzias, A.; Yamaoka, K.; Tanaka, Y.; Laurence, A. Janus kinase inhibitors in autoimmune diseases. Ann. Rheum. Dis., 2013, 72(S2), ii111-ii115.
[http://dx.doi.org/10.1136/annrheumdis-2012-202576] [PMID: 23532440]
[27]
Jiang, F.; Zang, L.; Miao, X.; Jia, F.; Wang, J.; Zhu, M.; Gong, P.; Jiang, N.; Zhai, X. Design, synthesis and anti-inflammatory evaluation of novel pyrrolo[2,3-d]pyrimidin derivatives as potent JAK inhibitors. Bioorg. Med. Chem., 2019, 27(18), 4089-4100.
[http://dx.doi.org/10.1016/j.bmc.2019.07.037] [PMID: 31378597]
[28]
Thorarensen, A.; Dowty, M.E.; Banker, M.E.; Juba, B.; Jussif, J.; Lin, T.; Vincent, F.; Czerwinski, R.M.; Casimiro-Garcia, A.; Unwalla, R.; Trujillo, J.I.; Liang, S.; Balbo, P.; Che, Y.; Gilbert, A.M.; Brown, M.F.; Hayward, M.; Montgomery, J.; Leung, L.; Yang, X.; Soucy, S.; Hegen, M.; Coe, J.; Langille, J.; Vajdos, F.; Chrencik, J.; Telliez, J.B. Design of a Janus Kinase 3 (JAK3) Specific Inhibitor 1-((2 S, 5 R )-5-((7 H -Pyrrolo[2,3- d ]pyrimidin-4-yl)amino)-2-methylpiperidin-1-yl)prop-2-en-1-one (PF-06651600) Allowing for the Interrogation of JAK3 Signaling in Humans. J. Med. Chem., 2017, 60(5), 1971-1993.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01694] [PMID: 28139931]
[29]
Casimiro-Garcia, A.; Trujillo, J.I.; Vajdos, F.; Juba, B.; Banker, M.E.; Aulabaugh, A.; Balbo, P.; Bauman, J.; Chrencik, J.; Coe, J.W.; Czerwinski, R.; Dowty, M.; Knafels, J.D.; Kwon, S.; Leung, L.; Liang, S.; Robinson, R.P.; Telliez, J.B.; Unwalla, R.; Yang, X.; Thorarensen, A. Identification of Cyanamide-Based Janus Kinase 3 (JAK3) Covalent Inhibitors. J. Med. Chem., 2018, 61(23), 10665-10699.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01308] [PMID: 30423248]
[30]
Jin, W.; Dong, C. IL-17 cytokines in immunity and inflammation. Emerg. Microbes Infect., 2013, 2(9), e60.
[PMID: 26038490]
[31]
Bugge, S.; Kaspersen, S.J.; Larsen, S.; Nonstad, U.; Bjørkøy, G.; Sundby, E.; Hoff, B.H. Structure–activity study leading to identification of a highly active thienopyrimidine based EGFR inhibitor. Eur. J. Med. Chem., 2014, 75, 354-374.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.042] [PMID: 24556149]
[32]
Reiersølmoen, A.C.; Han, J.; Sundby, E.; Hoff, B.H. Identification of fused pyrimidines as interleukin 17 secretion inhibitors. Eur. J. Med. Chem., 2018, 155, 562-578.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.019] [PMID: 29909341]
[33]
Vanhaesebroeck, B.; Perry, M.W.D.; Brown, J.R.; André, F.; Okkenhaug, K. PI3K inhibitors are finally coming of age. Nat. Rev. Drug Discov., 2021, 20(10), 741-769.
[http://dx.doi.org/10.1038/s41573-021-00209-1] [PMID: 34127844]
[34]
Erra, M.; Taltavull, J.; Bernal, F.J.; Caturla, J.F.; Carrascal, M.; Pagès, L.; Mir, M.; Espinosa, S.; Gràcia, J.; Domínguez, M.; Sabaté, M.; Paris, S.; Maldonado, M.; Hernández, B.; Bravo, M.; Calama, E.; Miralpeix, M.; Lehner, M.D.; Calbet, M. Discovery of a Novel Inhaled PI3Kδ Inhibitor for the Treatment of Respiratory Diseases. J. Med. Chem., 2018, 61(21), 9551-9567.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00873] [PMID: 30351000]
[35]
Li, Z.; Yin, M.; Zhang, H.; Ni, W.; Pierce, R.W.; Zhou, H.J.; Min, W. BMX Represses thrombin-PAR1–mediated endothelial permeability and vascular leakage during early sepsis. Circ. Res., 2020, 126(4), 471-485.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315769] [PMID: 31910739]
[36]
Sánchez-Martínez, C.; Lallena, M.J.; Sanfeliciano, S.G.; de Dios, A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: Recent advances (2015–2019). Bioorg. Med. Chem. Lett., 2019, 29(20), 126637.
[http://dx.doi.org/10.1016/j.bmcl.2019.126637] [PMID: 31477350]
[37]
Malumbres, M.; Barbacid, M. To cycle or not to cycle: A critical decision in cancer. Nat. Rev. Cancer, 2001, 1(3), 222-231.
[http://dx.doi.org/10.1038/35106065] [PMID: 11902577]
[38]
Jingwen, B.; Yaochen, L.; Guojun, Z. Cell cycle regulation and anticancer drug discovery. Cancer Biol. Med., 2017, 14(4), 348-362.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0033] [PMID: 29372101]
[39]
Leonard, J.P.; LaCasce, A.S.; Smith, M.R.; Noy, A.; Chirieac, L.R.; Rodig, S.J.; Yu, J.Q.; Vallabhajosula, S.; Schoder, H.; English, P.; Neuberg, D.S.; Martin, P.; Millenson, M.M.; Ely, S.A.; Courtney, R.; Shaik, N.; Wilner, K.D.; Randolph, S.; Van den Abbeele, A.D.; Chen-Kiang, S.Y.; Yap, J.T.; Shapiro, G.I. Selective CDK4/6 inhibition with tumor responses by PD0332991 in patients with mantle cell lymphoma. Blood, 2012, 119(20), 4597-4607.
[http://dx.doi.org/10.1182/blood-2011-10-388298] [PMID: 22383795]
[40]
Ma, H.; Seebacher, N.A.; Hornicek, F.J.; Duan, Z. Cyclin-dependent kinase 9 (CDK9) is a novel prognostic marker and therapeutic target in osteosarcoma. EBioMedicine, 2019, 39, 182-193.
[http://dx.doi.org/10.1016/j.ebiom.2018.12.022] [PMID: 30579871]
[41]
Narita, T.; Ishida, T.; Ito, A.; Masaki, A.; Kinoshita, S.; Suzuki, S.; Takino, H.; Yoshida, T.; Ri, M.; Kusumoto, S.; Komatsu, H.; Imada, K.; Tanaka, Y.; Takaori-Kondo, A.; Inagaki, H.; Scholz, A.; Lienau, P.; Kuroda, T.; Ueda, R.; Iida, S. Cyclin-dependent kinase 9 is a novel specific molecular target in adult T-cell leukemia/lymphoma. Blood, 2017, 130(9), 1114-1124.
[http://dx.doi.org/10.1182/blood-2016-09-741983] [PMID: 28646117]
[42]
Wang, J.; Dean, D.C.; Hornicek, F.J.; Shi, H.; Duan, Z. Cyclindependent kinase 9 (CDK9) is a novel prognostic marker and therapeutic target in ovarian cancer. FASEB J., 2019, 33(5), 5990-6000.
[http://dx.doi.org/10.1096/fj.201801789RR] [PMID: 30726104]
[43]
Wang, B.; Wu, J.; Wu, Y.; Chen, C.; Zou, F.; Wang, A.; Wu, H.; Hu, Z.; Jiang, Z.; Liu, Q.; Wang, W.; Zhang, Y.; Liu, F.; Zhao, M.; Hu, J.; Huang, T.; Ge, J.; Wang, L.; Ren, T.; Wang, Y.; Liu, J.; Liu, Q. Discovery of 4-(((4-(5-chloro-2-(((1s,4s)-4-((2-methoxyethyl) amino)cyclohexyl)amino)pyridin-4-yl)thiazol-2-yl)amino)methyl)tetrahydro-2H-pyran-4-carbonitrile (JSH-150) as a novel highly selective and potent CDK9 kinase inhibitor. Eur. J. Med. Chem., 2018, 158, 896-916.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.025] [PMID: 30253346]
[44]
Wu, M.; Li, C.; Zhu, X. FLT3 inhibitors in acute myeloid leukemia. J. Hematol. Oncol., 2018, 11(1), 133.
[http://dx.doi.org/10.1186/s13045-018-0675-4] [PMID: 30514344]
[45]
Kikushige, Y.; Yoshimoto, G.; Miyamoto, T.; Iino, T.; Mori, Y.; Iwasaki, H.; Niiro, H.; Takenaka, K.; Nagafuji, K.; Harada, M.; Ishikawa, F.; Akashi, K. Human Flt3 is expressed at the hematopoietic stem cell and the granulocyte/macrophage progenitor stages to maintain cell survival. J. Immunol., 2008, 180(11), 7358-7367.
[http://dx.doi.org/10.4049/jimmunol.180.11.7358] [PMID: 18490735]
[46]
Oubari, F.; Amirizade, N.; Mohammadpour, H.; Nakhlestani, M.; Zarif, M.N. The Important Role of FLT3-L in Ex Vivo Expansion of Hematopoietic Stem Cells following Co-Culture with Mesenchymal Stem Cells. Cell J., 2015, 17(2), 201-210.
[PMID: 26199899]
[47]
Mosquera Orgueira, A.; Bao Pérez, L.; Mosquera Torre, A.; Peleteiro Raíndo, A.; Cid López, M.; Díaz Arias, J.Á.; Ferreiro Ferro, R.; Antelo Rodríguez, B.; González Pérez, M.S.; Albors Ferreiro, M.; Alonso Vence, N.; Pérez Encinas, M.M.; Bello López, J.L.; Martinelli, G.; Cerchione, C. FLT3 inhibitors in the treatment of acute myeloid leukemia: Current status and future perspectives. Minerva Med., 2020, 111(5), 427-442.
[http://dx.doi.org/10.23736/S0026-4806.20.06989-X] [PMID: 32955823]
[48]
Poh, A.R.; O’Donoghue, R.J.J.; Ernst, M. Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Oncotarget, 2015, 6(18), 15752-15771.
[http://dx.doi.org/10.18632/oncotarget.4199] [PMID: 26087188]
[49]
Drilon, A.; Hu, Z.I.; Lai, G.G.Y.; Tan, D.S.W. Targeting RET-driven cancers: Lessons from evolving preclinical and clinical landscapes. Nat. Rev. Clin. Oncol., 2018, 15(3), 151-167.
[http://dx.doi.org/10.1038/nrclinonc.2017.175] [PMID: 29134959]
[50]
Pao, W.; Chmielecki, J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat. Rev. Cancer, 2010, 10(11), 760-774.
[http://dx.doi.org/10.1038/nrc2947] [PMID: 20966921]
[51]
Pao, W.; Miller, V.; Zakowski, M.; Doherty, J.; Politi, K.; Sarkaria, I.; Singh, B.; Heelan, R.; Rusch, V.; Fulton, L.; Mardis, E.; Kupfer, D.; Wilson, R.; Kris, M.; Varmus, H. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci., 2004, 101(36), 13306-13311.
[http://dx.doi.org/10.1073/pnas.0405220101] [PMID: 15329413]
[52]
Liu, Y.; Zhu, K.; Guan, X.; Xie, S.; Wang, Y.; Tong, Y.; Guo, L.; Zheng, H.; Lu, R. TTK is a potential therapeutic target for cisplatin-resistant ovarian cancer. J. Ovarian Res., 2021, 14(1), 128.
[http://dx.doi.org/10.1186/s13048-021-00884-z] [PMID: 34598710]
[53]
Béraud, C.; Dormoy, V.; Danilin, S.; Lindner, V.; Béthry, A.; Hochane, M.; Coquard, C.; Barthelmebs, M.; Jacqmin, D.; Lang, H.; Massfelder, T. Targeting FAK scaffold functions inhibits human renal cell carcinoma growth. Int. J. Cancer, 2015, 137(7), 1549-1559.
[http://dx.doi.org/10.1002/ijc.29522] [PMID: 25809490]
[54]
Frame, M.C.; Patel, H.; Serrels, B.; Lietha, D.; Eck, M.J. The FERM domain: Organizing the structure and function of FAK. Nat. Rev. Mol. Cell Biol., 2010, 11(11), 802-814.
[http://dx.doi.org/10.1038/nrm2996] [PMID: 20966971]
[55]
Cecchi, F.; Rabe, D.C.; Bottaro, D.P. Targeting the HGF/Met signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(6), 553-572.
[http://dx.doi.org/10.1517/14728222.2012.680957] [PMID: 22530990]
[56]
Al-U’datt, D.G.F.; Al-Husein, B.A.A.; Qasaimeh, G.R. A mini-review of c-Met as a potential therapeutic target in melanoma. Biomed. Pharmacother., 2017, 88, 194-202.
[http://dx.doi.org/10.1016/j.biopha.2017.01.045] [PMID: 28107696]
[57]
Andreotti, A.H.; Schwartzberg, P.L.; Joseph, R.E.; Berg, L.J. T-cell signaling regulated by the Tec family kinase. Itk. Cold Spring Harb. Perspect. Biol., 2010, 2(7), a002287.
[http://dx.doi.org/10.1101/cshperspect.a002287] [PMID: 20519342]
[58]
Kaur, M.; Bahia, M.S.; Silakari, O. Inhibitors of interleukin-2 inducible T-cell kinase as potential therapeutic candidates for the treatment of various inflammatory disease conditions. Eur. J. Pharm. Sci., 2012, 47(3), 574-588.
[http://dx.doi.org/10.1016/j.ejps.2012.07.013] [PMID: 22820564]
[59]
Ngo, V.N.; Young, R.M.; Schmitz, R.; Jhavar, S.; Xiao, W.; Lim, K.H.; Kohlhammer, H.; Xu, W.; Yang, Y.; Zhao, H.; Shaffer, A.L.; Romesser, P.; Wright, G.; Powell, J.; Rosenwald, A.; Muller-Hermelink, H.K.; Ott, G.; Gascoyne, R.D.; Connors, J.M.; Rimsza, L.M.; Campo, E.; Jaffe, E.S.; Delabie, J.; Smeland, E.B.; Fisher, R.I.; Braziel, R.M.; Tubbs, R.R.; Cook, J.R.; Weisenburger, D.D.; Chan, W.C.; Staudt, L.M. Oncogenically active MYD88 mutations in human lymphoma. Nature, 2011, 470(7332), 115-119.
[http://dx.doi.org/10.1038/nature09671] [PMID: 21179087]
[60]
Picard, C.; Puel, A.; Bonnet, M.; Ku, C.L.; Bustamante, J.; Yang, K.; Soudais, C.; Dupuis, S.; Feinberg, J.; Fieschi, C.; Elbim, C.; Hitchcock, R.; Lammas, D.; Davies, G.; Al-Ghonaium, A.; Al-Rayes, H.; Al-Jumaah, S.; Al-Hajjar, S.; Al-Mohsen, I.Z.; Frayha, H.H.; Rucker, R.; Hawn, T.R.; Aderem, A.; Tufenkeji, H.; Haraguchi, S.; Day, N.K.; Good, R.A.; Gougerot-Pocidalo, M.A.; Ozinsky, A.; Casanova, J.L. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science, 2003, 299(5615), 2076-2079.
[http://dx.doi.org/10.1126/science.1081902] [PMID: 12637671]
[61]
Genung, N.E.; Guckian, K.M. Small Molecule Inhibition of Interleukin-1 Receptor-Associated Kinase 4 (IRAK4). Prog. Med. Chem., 2017, 56, 117-163.
[http://dx.doi.org/10.1016/bs.pmch.2016.11.004] [PMID: 28314411]
[62]
Turner, N.; Pearson, A.; Sharpe, R.; Lambros, M.; Geyer, F.; Lopez-Garcia, M.A.; Natrajan, R.; Marchio, C.; Iorns, E.; Mackay, A.; Gillett, C.; Grigoriadis, A.; Tutt, A.; Reis-Filho, J.S.; Ashworth, A. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res., 2010, 70(5), 2085-2094.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3746] [PMID: 20179196]
[63]
Greulich, H.; Pollock, P.M. Targeting mutant fibroblast growth factor receptors in cancer. Trends Mol. Med., 2011, 17(5), 283-292.
[http://dx.doi.org/10.1016/j.molmed.2011.01.012] [PMID: 21367659]
[64]
Santarpia, L.; Lippman, S.M.; El-Naggar, A.K. Targeting the MAPK–RAS–RAF signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 103-119.
[http://dx.doi.org/10.1517/14728222.2011.645805] [PMID: 22239440]
[65]
Wan, P.T.C.; Garnett, M.J.; Roe, S.M.; Lee, S.; Niculescu-Duvaz, D.; Good, V.M.; Project, C.G.; Jones, C.M.; Marshall, C.J.; Springer, C.J.; Barford, D.; Marais, R. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell, 2004, 116(6), 855-867.
[http://dx.doi.org/10.1016/S0092-8674(04)00215-6] [PMID: 15035987]
[66]
Antony, J.; Huang, R.Y.J. AXL-Driven EMT state as a targetable conduit in cancer. Cancer Res., 2017, 77(14), 3725-3732.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0392] [PMID: 28667075]
[67]
Cook, R.S.; Jacobsen, K.M.; Wofford, A.M.; DeRyckere, D.; Stanford, J.; Prieto, A.L.; Redente, E.; Sandahl, M.; Hunter, D.M.; Strunk, K.E.; Graham, D.K.; Earp, H.S. III MerTK inhibition in tumor leukocytes decreases tumor growth and metastasis. J. Clin. Invest., 2013, 123(8), 3231-3242.
[http://dx.doi.org/10.1172/JCI67655] [PMID: 23867499]
[68]
Youssoufian, H.; Hicklin, D.J.; Rowinsky, E.K. Review: Monoclonal antibodies to the vascular endothelial growth factor receptor-2 in cancer therapy. Clin. Cancer Res., 2007, 13(18), 5544s-5548s.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1107] [PMID: 17875787]
[69]
Fontanella, C.; Ongaro, E.; Bolzonello, S.; Guardascione, M.; Fasola, G.; Aprile, G. Clinical advances in the development of novel VEGFR2 inhibitors. Ann. Transl. Med., 2014, 2(12), 123.
[PMID: 25568876]
[70]
Gschwind, A.; Fischer, O.M.; Ullrich, A. The discovery of receptor tyrosine kinases: Targets for cancer therapy. Nat. Rev. Cancer, 2004, 4(5), 361-370.
[http://dx.doi.org/10.1038/nrc1360] [PMID: 15122207]
[71]
Testa, J.R.; Tsichlis, P.N. AKT signaling in normal and malignant cells. Oncogene, 2005, 24(50), 7391-7393.
[http://dx.doi.org/10.1038/sj.onc.1209100] [PMID: 16288285]
[72]
Martini, M.; De Santis, M.C.; Braccini, L.; Gulluni, F.; Hirsch, E. PI3K/AKT signaling pathway and cancer: An updated review. Ann. Med., 2014, 46(6), 372-383.
[http://dx.doi.org/10.3109/07853890.2014.912836] [PMID: 24897931]
[73]
Schenone, S.; Manetti, F.; Botta, M. SRC inhibitors and angiogenesis. Curr. Pharm. Des., 2007, 13(21), 2118-2128.
[http://dx.doi.org/10.2174/138161207781039580] [PMID: 17627544]
[74]
He, L.; Li, D.; Zhang, C.; Bai, P.; Chen, L. Discovery of (R)-5-(benzo[d][1,3]dioxol-5-yl)-7-((1-(vinylsulfonyl)pyrrolidin-2-yl)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (B6) as a potent Bmx inhibitor for the treatment of NSCLC. Bioorg. Med. Chem. Lett., 2017, 27(17), 4171-4175.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.009] [PMID: 28734581]
[75]
Li, Y.; Guo, Q.; Zhang, C.; Huang, Z.; Wang, T.; Wang, X.; Wang, X.; Xu, G.; Liu, Y.; Yang, S.; Fan, Y.; Xiang, R. Discovery of a highly potent, selective and novel CDK9 inhibitor as an anticancer drug candidate. Bioorg. Med. Chem. Lett., 2017, 27(15), 3231-3237.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.041] [PMID: 28651979]
[76]
Conaway, C.C.; Wang, C.X.; Pittman, B.; Yang, Y.M.; Schwartz, J.E.; Tian, D.; McIntee, E.J.; Hecht, S.S.; Chung, F.L. Phenethyl isothiocyanate and sulforaphane and their N-acetylcysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in A/J mice. Cancer Res., 2005, 65(18), 8548-8557.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0237] [PMID: 16166336]
[77]
Wang, X.; Yu, C.; Wang, C.; Ma, Y.; Wang, T.; Li, Y.; Huang, Z.; Zhou, M.; Sun, P.; Zheng, J.; Yang, S.; Fan, Y.; Xiang, R. Novel cyclin-dependent kinase 9 (CDK9) inhibitor with suppression of cancer stemness activity against non-small-cell lung cancer. Eur. J. Med. Chem., 2019, 181, 111535.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.038] [PMID: 31376566]
[78]
Shi, X.; Quan, Y.; Wang, Y.; Wang, Y.; Li, Y. Design, synthesis, and biological evaluation of 2,6,7-substituted pyrrolo[2,3-d ]pyrimidines as cyclin dependent kinase inhibitor in pancreatic cancer cells. Bioorg. Med. Chem. Lett., 2021, 33, 127725.
[http://dx.doi.org/10.1016/j.bmcl.2020.127725] [PMID: 33316409]
[79]
Wang, Y.; Zhi, Y.; Jin, Q.; Lu, S.; Lin, G.; Yuan, H.; Yang, T.; Wang, Z.; Yao, C.; Ling, J.; Guo, H.; Li, T.; Jin, J.; Li, B.; Zhang, L.; Chen, Y.; Lu, T. Discovery of 4-((7 H -Pyrrolo[2,3- d]pyrimidin-4-yl)amino)- N -(4-((4-methylpiperazin-1-yl)methyl)phenyl)-1 H -pyrazole-3-carboxamide (FN-1501), an FLT3- and CDK-Kinase Inhibitor with Potentially High Efficiency against Acute Myelocytic Leukemia. J. Med. Chem., 2018, 61(4), 1499-1518.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01261] [PMID: 29357250]
[80]
Yuan, X.; Chen, Y.; Zhang, W.; He, J.; Lei, L.; Tang, M.; Liu, J.; Li, M.; Dou, C.; Yang, T.; Yang, L.; Yang, S.; Wei, Y.; Peng, A.; Niu, T.; Xiang, M.; Ye, H.; Chen, L. Identification of Pyrrolo[2,3- d ]pyrimidine-Based Derivatives as Potent and Orally Effective Fms-like Tyrosine Receptor Kinase 3 (FLT3) Inhibitors for Treating Acute Myelogenous Leukemia. J. Med. Chem., 2019, 62(8), 4158-4173.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00223] [PMID: 30939008]
[81]
Saito, Y.; Yuki, H.; Kuratani, M.; Hashizume, Y.; Takagi, S.; Honma, T.; Tanaka, A.; Shirouzu, M.; Mikuni, J.; Handa, N.; Ogahara, I.; Sone, A.; Najima, Y.; Tomabechi, Y.; Wakiyama, M.; Uchida, N.; Tomizawa-Murasawa, M.; Kaneko, A.; Tanaka, S.; Suzuki, N.; Kajita, H.; Aoki, Y.; Ohara, O.; Shultz, L.D.; Fukami, T.; Goto, T.; Taniguchi, S.; Yokoyama, S.; Ishikawa, F. A pyrrolo-pyrimidine derivative targets human primary AML stem cells in vivo. Sci. Transl. Med., 2013, 5(181), 181ra52.
[http://dx.doi.org/10.1126/scitranslmed.3004387] [PMID: 23596204]
[82]
Koda, Y.; Kikuzato, K.; Mikuni, J.; Tanaka, A.; Yuki, H.; Honma, T.; Tomabechi, Y.; Kukimoto-Niino, M.; Shirouzu, M.; Shirai, F.; Koyama, H. Identification of pyrrolo[2,3- d ]pyrimidines as potent HCK and FLT3-ITD dual inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(22), 4994-4998.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.012] [PMID: 29037944]
[83]
Yuki, H.; Kikuzato, K.; Koda, Y.; Mikuni, J.; Tomabechi, Y.; Kukimoto-Niino, M.; Tanaka, A.; Shirai, F.; Shirouzu, M.; Koyama, H.; Honma, T. Activity cliff for 7-substituted pyrrolo-pyrimidine inhibitors of HCK explained in terms of predicted basicity of the amine nitrogen. Bioorg. Med. Chem., 2017, 25(16), 4259-4264.
[http://dx.doi.org/10.1016/j.bmc.2017.05.053] [PMID: 28662963]
[84]
Lakkaniga, N.R.; Gunaganti, N.; Zhang, L.; Belachew, B.; Frett, B.; Leung, Y.K.; Li, H. Pyrrolo[2,3-d]pyrimidine derivatives as inhibitors of RET: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2020, 206, 112691.
[http://dx.doi.org/10.1016/j.ejmech.2020.112691] [PMID: 32823007]
[85]
Xia, Z.; Huang, R.; Zhou, X.; Chai, Y.; Chen, H.; Ma, L.; Yu, Q.; Li, Y.; Li, W.; He, Y. The synthesis and bioactivity of pyrrolo[2,3-d]pyrimidine derivatives as tyrosine kinase inhibitors for NSCLC cells with EGFR mutations. Eur. J. Med. Chem., 2021, 224, 113711.
[http://dx.doi.org/10.1016/j.ejmech.2021.113711] [PMID: 34315040]
[86]
Sugimoto, Y.; Sawant, D.B.; Fisk, H.A.; Mao, L.; Li, C.; Chettiar, S.; Li, P.K.; Darby, M.V.; Brueggemeier, R.W. Novel pyrrolopyrimidines as Mps1/TTK kinase inhibitors for breast cancer. Bioorg. Med. Chem., 2017, 25(7), 2156-2166.
[http://dx.doi.org/10.1016/j.bmc.2017.02.030] [PMID: 28259529]
[87]
Riggs, J.R.; Nagy, M.; Elsner, J.; Erdman, P.; Cashion, D.; Robinson, D.; Harris, R.; Huang, D.; Tehrani, L.; Deyanat-Yazdi, G.; Narla, R.K.; Peng, X.; Tran, T.; Barnes, L.; Miller, T.; Katz, J.; Tang, Y.; Chen, M.; Moghaddam, M.F.; Bahmanyar, S.; Pagarigan, B.; Delker, S.; LeBrun, L.; Chamberlain, P.P.; Calabrese, A.; Canan, S.S.; Leftheris, K.; Zhu, D.; Boylan, J.F. The discovery of a dual TTK protein kinase/CDC2-Like Kinase (CLK2) inhibitor for the treatment of triple negative breast cancer initiated from a phenotypic screen. J. Med. Chem., 2017, 60(21), 8989-9002.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01223] [PMID: 28991472]
[88]
Zhu, D.; Xu, S.; Deyanat-Yazdi, G.; Peng, S.X.; Barnes, L.A.; Narla, R.K.; Tran, T.; Mikolon, D.; Ning, Y.; Shi, T.; Jiang, N.; Raymon, H.K.; Riggs, J.R.; Boylan, J.F. Synthetic lethal strategy identifies a potent and selective TTK and CLK1/2 Inhibitor for treatment of triple-negative breast cancer with a compromised G1–S Checkpoint. Mol. Cancer Ther., 2018, 17(8), 1727-1738.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1084] [PMID: 29866747]
[89]
Riggs, J.R.; Elsner, J.; Cashion, D.; Robinson, D.; Tehrani, L.; Nagy, M.; Fultz, K.E.; Krishna Narla, R.; Peng, X.; Tran, T.; Kulkarni, A.; Bahmanyar, S.; Condroski, K.; Pagarigan, B.; Fenalti, G.; LeBrun, L.; Leftheris, K.; Zhu, D.; Boylan, J.F. Design and optimization leading to an orally active ttk protein kinase inhibitor with robust single agent efficacy. J. Med. Chem., 2019, 62(9), 4401-4410.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01869] [PMID: 30998356]
[90]
Wang, R.; Chen, Y.; Zhao, X.; Yu, S.; Yang, B.; Wu, T.; Guo, J.; Hao, C.; Zhao, D.; Cheng, M. Design, synthesis and biological evaluation of novel 7H-pyrrolo[2,3-d]pyrimidine derivatives as potential FAK inhibitors and anticancer agents. Eur. J. Med. Chem., 2019, 183, 111716.
[http://dx.doi.org/10.1016/j.ejmech.2019.111716] [PMID: 31550660]
[91]
Tan, H.; Liu, Y.; Gong, C.; Zhang, J.; Huang, J.; Zhang, Q. Synthesis and evaluation of FAK inhibitors with a 5-fluoro-7H-pyrrolo[2,3-d]pyrimidine scaffold as anti-hepatocellular carcinoma agents. Eur. J. Med. Chem., 2021, 223, 113670.
[http://dx.doi.org/10.1016/j.ejmech.2021.113670] [PMID: 34214842]
[92]
Zhang, J.; Xiong, H.; Yang, F.; He, J.; Chen, T.; Fu, D.; Zheng, P.; Tang, Q. Design, synthesis and biological evaluation of novel 4-(pyrrolo[2,3-d]pyrimidine-4-yloxy)benzamide derivatives as potential antitumor agents. Bioorg. Med. Chem. Lett., 2021, 33, 127740.
[http://dx.doi.org/10.1016/j.bmcl.2020.127740] [PMID: 33316412]
[93]
Zhang, J.; Chen, P.; Duan, Y.; Xiong, H.; Li, H.; Zeng, Y.; Liang, G.; Tang, Q.; Wu, D. Design, synthesis and biological evaluation of 7H-pyrrolo[2,3-d]pyrimidine derivatives containing 1,8-naphthyridine-4-one fragment. Eur. J. Med. Chem., 2021, 215, 113273.
[http://dx.doi.org/10.1016/j.ejmech.2021.113273] [PMID: 33601310]
[94]
Ma, Y.; Zheng, X.; Zhao, H.; Fang, W.; Zhang, Y.; Ge, J.; Wang, L.; Wang, W.; Jiang, J.; Chuai, S.; Zhang, Z.; Xu, W.; Xu, X.; Hu, P.; Zhang, L. First-in-human phase I study of AC0010, a mutant-selective EGFR inhibitor in non–small cell lung cancer: Safety, efficacy, and potential mechanism of resistance. J. Thorac. Oncol., 2018, 13(7), 968-977.
[http://dx.doi.org/10.1016/j.jtho.2018.03.025] [PMID: 29626621]
[95]
Xu, X.; Mao, L.; Xu, W.; Tang, W.; Zhang, X.; Xi, B.; Xu, R.; Fang, X.; Liu, J.; Fang, C.; Zhao, L.; Wang, X.; Jiang, J.; Hu, P.; Zhao, H.; Zhang, L. AC0010, an Irreversible EGFR Inhibitor Selectively Targeting Mutated EGFR and Overcoming T790M-Induced Resistance in Animal Models and Lung Cancer Patients. Mol. Cancer Ther., 2016, 15(11), 2586-2597.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0281] [PMID: 27573423]
[96]
Tang, G.; Liu, L.; Wang, X.; Pan, Z. Discovery of 7H-pyrrolo[2,3-d]pyrimidine derivatives as selective covalent irreversible inhibitors of interleukin-2-inducible T-cell kinase (Itk). Eur. J. Med. Chem., 2019, 173, 167-183.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.055] [PMID: 30999237]
[97]
Scott, J.S.; Degorce, S.L.; Anjum, R.; Culshaw, J.; Davies, R.D.M.; Davies, N.L.; Dillman, K.S.; Dowling, J.E.; Drew, L.; Ferguson, A.D.; Groombridge, S.D.; Halsall, C.T.; Hudson, J.A.; Lamont, S.; Lindsay, N.A.; Marden, S.K.; Mayo, M.F.; Pease, J.E.; Perkins, D.R.; Pink, J.H.; Robb, G.R.; Rosen, A.; Shen, M.; McWhirter, C.; Wu, D. Discovery and Optimization of Pyrrolopyrimidine Inhibitors of Interleukin-1 Receptor Associated Kinase 4 (IRAK4) for the Treatment of Mutant MYD88 L265P Diffuse Large B-Cell Lymphoma. J. Med. Chem., 2017, 60(24), 10071-10091.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01290] [PMID: 29172502]
[98]
Wang, Y.; Li, L.; Fan, J.; Dai, Y.; Jiang, A.; Geng, M.; Ai, J.; Duan, W. Discovery of Potent Irreversible Pan-Fibroblast Growth Factor Receptor (FGFR) Inhibitors. J. Med. Chem., 2018, 61(20), 9085-9104.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01843] [PMID: 29522671]
[99]
Wang, L.; Zhang, Y.; Zhang, Q.; Zhu, G.; Zhang, Z.; Duan, C.; Lu, T.; Tang, W. Discovery of potent Pan-Raf inhibitors with increased solubility to overcome drug resistance. Eur. J. Med. Chem., 2019, 163, 243-255.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.033] [PMID: 30529543]
[100]
Xu, D.; Sun, D.; Wang, W.; Peng, X.; Zhan, Z.; Ji, Y.; Shen, Y.; Geng, M.; Ai, J.; Duan, W. Discovery of pyrrolo[2,3-d]pyrimidine derivatives as potent Axl inhibitors: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2021, 220, 113497.
[http://dx.doi.org/10.1016/j.ejmech.2021.113497] [PMID: 33957388]
[101]
Zhang, W.; DeRyckere, D.; Hunter, D.; Liu, J.; Stashko, M.A.; Minson, K.A.; Cummings, C.T.; Lee, M.; Glaros, T.G.; Newton, D.L.; Sather, S.; Zhang, D.; Kireev, D.; Janzen, W.P.; Earp, H.S.; Graham, D.K.; Frye, S.V.; Wang, X. UNC2025, a potent and orally bioavailable MER/FLT3 dual inhibitor. J. Med. Chem., 2014, 57(16), 7031-7041.
[http://dx.doi.org/10.1021/jm500749d] [PMID: 25068800]
[102]
Zhao, J.; Zhang, D.; Zhang, W.; Stashko, M.A.; DeRyckere, D.; Vasileiadi, E.; Parker, R.E.; Hunter, D.; Liu, Q.; Zhang, Y.; Norris-Drouin, J.; Li, B.; Drewry, D.H.; Kireev, D.; Graham, D.K.; Earp, H.S.; Frye, S.V.; Wang, X. Highly Selective MERTK Inhibitors Achieved by a Single Methyl Group. J. Med. Chem., 2018, 61(22), 10242-10254.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01229] [PMID: 30347155]
[103]
Adel, M.; Serya, R.A.T.; Lasheen, D.S.; Abouzid, K.A.M. Identification of new pyrrolo[2,3-d ]pyrimidines as potent VEGFR-2 tyrosine kinase inhibitors: Design, synthesis, biological evaluation and molecular modeling. Bioorg. Chem., 2018, 81, 612-629.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.001] [PMID: 30248512]
[104]
Lategahn, J.; Hardick, J.; Grabe, T.; Niggenaber, J.; Jeyakumar, K.; Keul, M.; Tumbrink, H.L.; Becker, C.; Hodson, L.; Kirschner, T.; Klövekorn, P.; Ketzer, J.; Baumann, M.; Terheyden, S.; Unger, A.; Weisner, J.; Müller, M.P.; van Otterlo, W.A.L.; Bauer, S.; Rauh, D. Targeting Her2-insYVMA with Covalent Inhibitors—A Focused Compound Screening and Structure-Based Design Approach. J. Med. Chem., 2020, 63(20), 11725-11755.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00870] [PMID: 32931277]
[105]
Liu, Y.; Yin, Y.; Zhang, Z.; Li, C.J.; Zhang, H.; Zhang, D.; Jiang, C.; Nomie, K.; Zhang, L.; Wang, M.L.; Zhao, G. Structural optimization elaborates novel potent Akt inhibitors with promising anticancer activity. Eur. J. Med. Chem., 2017, 138, 543-551.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.067] [PMID: 28704757]
[106]
Musumeci, F.; Fallacara, A.L.; Brullo, C.; Grossi, G.; Botta, L.; Calandro, P.; Chiariello, M.; Kissova, M.; Crespan, E.; Maga, G.; Schenone, S. Identification of new pyrrolo[2,3- d ]pyrimidines as Src tyrosine kinase inhibitors in vitro active against Glioblastoma. Eur. J. Med. Chem., 2017, 127, 369-378.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.036] [PMID: 28076826]
[107]
Maloney, A.; Workman, P. HSP90 as a new therapeutic target for cancer therapy: The story unfolds. Expert Opin. Biol. Ther., 2002, 2(1), 3-24.
[http://dx.doi.org/10.1517/14712598.2.1.3] [PMID: 11772336]
[108]
Whitesell, L.; Lindquist, S.L. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer, 2005, 5(10), 761-772.
[http://dx.doi.org/10.1038/nrc1716] [PMID: 16175177]
[109]
Lee, J.H.; Shin, S.C.; Seo, S.H.; Seo, Y.H.; Jeong, N.; Kim, C.W.; Kim, E.E.; Keum, G. Synthesis and in vitro antiproliferative activity of C5-benzyl substituted 2-amino-pyrrolo[2,3- d ]pyrimidines as potent Hsp90 inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(2), 237-241.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.062] [PMID: 27914802]
[110]
Chen, X.; Zhao, S.; Li, H.; Wang, X.; Geng, A.; Cui, H.; Lu, T.; Chen, Y.; Zhu, Y. Design, synthesis and biological evaluation of novel isoindolinone derivatives as potent histone deacetylase inhibitors. Eur. J. Med. Chem., 2019, 168, 110-122.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.032] [PMID: 30802729]
[111]
Chen, X.; Chen, X.; Steimbach, R.R.; Wu, T.; Li, H.; Dan, W.; Shi, P.; Cao, C.; Li, D.; Miller, A.K.; Qiu, Z.; Gao, J.; Zhu, Y. Novel 2, 5-diketopiperazine derivatives as potent selective histone deacetylase 6 inhibitors: Rational design, synthesis and antiproliferative activity. Eur. J. Med. Chem., 2020, 187, 111950.
[http://dx.doi.org/10.1016/j.ejmech.2019.111950] [PMID: 31865013]
[112]
Gong, G.; Qi, J.; Lv, Y.; Dong, S.; Cao, C.; Li, D.; Zhao, R.; Li, Z.; Chen, X. Discovery of 1,3-Disubstituted 2,5-Diketopiperazine Derivatives as Potent Class I HDACs Inhibitors. Chem. Pharm. Bull. (Tokyo), 2020, 68(5), 466-472.
[http://dx.doi.org/10.1248/cpb.c20-00056] [PMID: 32378544]
[113]
Singh, A.; Chang, T.Y.; Kaur, N.; Hsu, K.C.; Yen, Y.; Lin, T.E.; Lai, M.J.; Lee, S.B.; Liou, J.P. CAP rigidification of MS-275 and chidamide leads to enhanced antiproliferative effects mediated through HDAC1, 2 and tubulin polymerization inhibition. Eur. J. Med. Chem., 2021, 215, 113169.
[http://dx.doi.org/10.1016/j.ejmech.2021.113169] [PMID: 33588178]
[114]
Li, S.; Zhao, C.; Zhang, G.; Xu, Q.; Liu, Q.; Zhao, W.; James Chou, C.; Zhang, Y. Development of selective HDAC6 inhibitors with in vitro and in vivo anti-multiple myeloma activity. Bioorg. Chem., 2021, 116, 105278.
[http://dx.doi.org/10.1016/j.bioorg.2021.105278] [PMID: 34474303]
[115]
Li, Y.; Luo, X.; Guo, Q.; Nie, Y.; Wang, T.; Zhang, C.; Huang, Z.; Wang, X.; Liu, Y.; Chen, Y.; Zheng, J.; Yang, S.; Fan, Y.; Xiang, R. Discovery of N 1-(4-((7-Cyclopentyl-6-(dimethylcarbamoyl)-7 H-pyrrolo[2,3-d]pyrimidin-2-yl)amino)phenyl)-N8-hydroxyoctane-diamide as a Novel Inhibitor Targeting Cyclin-dependent Kinase 4/9 (CDK4/9) and Histone Deacetlyase1 (HDAC1) against Malignant Cancer. J. Med. Chem., 2018, 61(7), 3166-3192.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00209] [PMID: 29518312]
[116]
Liang, X.; Tang, S.; Liu, X.; Liu, Y.; Xu, Q.; Wang, X.; Saidahmatov, A.; Li, C.; Wang, J.; Zhou, Y.; Zhang, Y.; Geng, M.; Huang, M.; Liu, H. Discovery of Novel Pyrrolo[2,3- d ]pyrimidine-based Derivatives as Potent JAK/HDAC Dual Inhibitors for the Treatment of Refractory Solid Tumors. J. Med. Chem., 2022, 65(2), 1243-1264.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02111] [PMID: 33586434]
[117]
Yao, L.; Mustafa, N.; Tan, E.C.; Poulsen, A.; Singh, P.; Duong-Thi, M.D.; Lee, J.X.T.; Ramanujulu, P.M.; Chng, W.J.; Yen, J.J.Y.; Ohlson, S.; Dymock, B.W. Design and Synthesis of Ligand Efficient Dual Inhibitors of Janus Kinase (JAK) and Histone Deacetylase (HDAC) Based on Ruxolitinib and Vorinostat. J. Med. Chem., 2017, 60(20), 8336-8357.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00678] [PMID: 28953386]
[118]
Yao, L.; Ramanujulu, P.M.; Poulsen, A.; Ohlson, S.; Dymock, B.W. Merging of ruxolitinib and vorinostat leads to highly potent inhibitors of JAK2 and histone deacetylase 6 (HDAC6). Bioorg. Med. Chem. Lett., 2018, 28(15), 2636-2640.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.037] [PMID: 29945795]
[119]
Yao, L.; Ohlson, S.; Dymock, B.W. Design and synthesis of triple inhibitors of janus kinase (JAK), histone deacetylase (HDAC) and Heat Shock Protein 90 (HSP90). Bioorg. Med. Chem. Lett., 2018, 28(8), 1357-1362.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.009] [PMID: 29545103]
[120]
Shoaib Ahmad Shah, S.; Rivera, G.; Ashfaq, M. Recent advances in medicinal chemistry of sulfonamides. Rational design as anti-tumoral, anti-bacterial and anti-inflammatory agents. Mini Rev. Med. Chem., 2013, 13(1), 70-86.
[http://dx.doi.org/10.2174/138955713804484749] [PMID: 22625411]
[121]
Alterio, V.; Hilvo, M.; Di Fiore, A.; Supuran, C.T.; Pan, P.; Parkkila, S.; Scaloni, A.; Pastorek, J.; Pastorekova, S.; Pedone, C.; Scozzafava, A.; Monti, S.M.; De Simone, G. Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc. Natl. Acad. Sci. USA, 2009, 106(38), 16233-16238.
[http://dx.doi.org/10.1073/pnas.0908301106] [PMID: 19805286]
[122]
Závada, J. Závadová, Z.; Pastoreková, S.; Čiampor, F.; Pastorek, J.; Zelník, V. Expression of MaTu-MN protein in human tumor cultures and in clinical specimens. Int. J. Cancer, 1993, 54(2), 268-274.
[http://dx.doi.org/10.1002/ijc.2910540218] [PMID: 8486430]
[123]
Nordfors, K.; Haapasalo, J.; Korja, M.; Niemelä, A.; Laine, J.; Parkkila, A.K.; Pastorekova, S.; Pastorek, J.; Waheed, A.; Sly, W.S.; Parkkila, S.; Haapasalo, H. The tumour-associated carbonic anhydrases CA II, CA IX and CA XII in a group of medulloblastomas and supratentorial primitive neuroectodermal tumours: An association of CA IX with poor prognosis. BMC Cancer, 2010, 10(1), 148.
[http://dx.doi.org/10.1186/1471-2407-10-148] [PMID: 20398423]
[124]
Khalil, O.M.; Kamal, A.M.; Bua, S.; El Sayed Teba, H.; Nissan, Y.M.; Supuran, C.T. Pyrrolo and pyrrolopyrimidine sulfonamides act as cytotoxic agents in hypoxia via inhibition of transmembrane carbonic anhydrases. Eur. J. Med. Chem., 2020, 188, 112021.
[http://dx.doi.org/10.1016/j.ejmech.2019.112021] [PMID: 31901743]
[125]
Shi, X.J.; Wang, S.; Li, X.J.; Yuan, X.H.; Cao, L.J.; Yu, B.; Liu, H.M. Discovery of tofacitinib derivatives as orally active antitumor agents based on the scaffold hybridization strategy. Eur. J. Med. Chem., 2020, 203, 112601.
[http://dx.doi.org/10.1016/j.ejmech.2020.112601] [PMID: 32682202]
[126]
Hulpia, F.; Noppen, S.; Schols, D.; Andrei, G.; Snoeck, R.; Liekens, S.; Vervaeke, P.; Van Calenbergh, S. Synthesis of a 3′-C-ethynyl-β-d-ribofuranose purine nucleoside library: Discovery of C7-deazapurine analogs as potent antiproliferative nucleosides. Eur. J. Med. Chem., 2018, 157, 248-267.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.062] [PMID: 30098481]
[127]
De Clercq, E. Fifty Years in Search of Selective Antiviral Drugs. J. Med. Chem., 2019, 62(16), 7322-7339.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00175] [PMID: 30939009]
[128]
Huang, B.; Ginex, T.; Luque, F.J.; Jiang, X.; Gao, P.; Zhang, J.; Kang, D.; Daelemans, D.; De Clercq, E.; Pannecouque, C.; Zhan, P.; Liu, X. Structure-based design and discovery of pyridyl-bearing fused bicyclic HIV-1 inhibitors: Synthesis, biological characterization, and molecular modeling studies. J. Med. Chem., 2021, 64(18), 13604-13621.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00987] [PMID: 34496571]
[129]
Huang, B.; Liu, X.; Tian, Y.; Kang, D.; Zhou, Z.; Daelemans, D.; De Clercq, E.; Pannecouque, C.; Zhan, P.; Liu, X. First discovery of a potential carbonate prodrug of NNRTI drug candidate RDEA427 with submicromolar inhibitory activity against HIV-1 K103N/Y181C double mutant strain. Bioorg. Med. Chem. Lett., 2018, 28(8), 1348-1351.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.012] [PMID: 29534929]
[130]
Cookson, M.R. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease. Nat. Rev. Neurosci., 2010, 11(12), 791-797.
[http://dx.doi.org/10.1038/nrn2935] [PMID: 21088684]
[131]
Williamson, D.S.; Smith, G.P.; Mikkelsen, G.K.; Jensen, T.; Acheson-Dossang, P.; Badolo, L.; Bedford, S.T.; Chell, V.; Chen, I.J.; Dokurno, P.; Hentzer, M.; Newland, S.; Ray, S.C.; Shaw, T.; Surgenor, A.E.; Terry, L.; Wang, Y.; Christensen, K.V. Design and Synthesis of Pyrrolo[2,3- d ]pyrimidine-Derived leucine-rich repeat kinase 2 (LRRK2) inhibitors using a checkpoint kinase 1 (CHK1)-derived crystallographic surrogate. J. Med. Chem., 2021, 64(14), 10312-10332.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00720] [PMID: 34184879]
[132]
Ding, X.; Stasi, L.P.; Ho, M.H.; Zhao, B.; Wang, H.; Long, K.; Xu, Q.; Sang, Y.; Sun, C.; Hu, H.; Yu, H.; Wan, Z.; Wang, L.; Edge, C.; Liu, Q.; Li, Y.; Dong, K.; Guan, X.; Tattersall, F.D.; Reith, A.D.; Ren, F. Discovery of 4-ethoxy-7H-pyrrolo[2,3-d]pyrimidin-2-amines as potent, selective and orally bioavailable LRRK2 inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(9), 1615-1620.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.045] [PMID: 29588215]
[133]
Chen, X.; Zhang, Q.; Zhang, Y.; Fang, J.; Jiang, D.; Mou, Z.; Liu, H.; Su, R.; Wang, C.; He, F.; Chen, X.; Xie, F.; Pan, X.; Li, Z. 18F-Labelled pyrrolopyrimidines reveal brain leucine-rich repeat kinase 2 expression implicated in Parkinson’s disease. Eur. J. Med. Chem., 2021, 214, 113245.
[http://dx.doi.org/10.1016/j.ejmech.2021.113245] [PMID: 33582389]
[134]
Malik, N.; Kornelsen, R.; McCormick, S.; Colpo, N.; Merkens, H.; Bendre, S.; Benard, F.; Sossi, V.; Schirrmacher, R.; Schaffer, P. Development and biological evaluation of[18F]FMN3PA & [18F]FMN3PU for leucine-rich repeat kinase 2 (LRRK2) in vivo PET imaging. Eur. J. Med. Chem., 2021, 211, 113005.
[http://dx.doi.org/10.1016/j.ejmech.2020.113005] [PMID: 33248850]
[135]
Parsons, M.E.; Ganellin, C.R. Histamine and its receptors. Br. J. Pharmacol., 2006, 147(S1)(Suppl. 1), S127-S135.
[http://dx.doi.org/10.1038/sj.bjp.0706440] [PMID: 16402096]
[136]
Labeeuw, O.; Levoin, N.; Poupardin-Olivier, O.; Calmels, T.; Ligneau, X.; Berrebi-Bertrand, I.; Robert, P.; Lecomte, J.M.; Schwartz, J.C.; Capet, M. Novel and highly potent histamine H3 receptor ligands. Part 3: An alcohol function to improve the pharmacokinetic profile. Bioorg. Med. Chem. Lett., 2013, 23(9), 2548-2554.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.118] [PMID: 23535326]
[137]
Espinosa-Bustos, C.; Frank, A.; Arancibia-Opazo, S.; Salas, C.O.; Fierro, A.; Stark, H. New lead elements for histamine H3 receptor ligands in the pyrrolo[2,3-d]pyrimidine class. Bioorg. Med. Chem. Lett., 2018, 28(17), 2890-2893.
[http://dx.doi.org/10.1016/j.bmcl.2018.07.023] [PMID: 30025902]
[138]
Frank, A.; Meza-Arriagada, F.; Salas, C.O.; Espinosa-Bustos, C.; Stark, H. Nature-inspired pyrrolo[2,3-d ]pyrimidines targeting the histamine H3 receptor. Bioorg. Med. Chem., 2019, 27(14), 3194-3200.
[http://dx.doi.org/10.1016/j.bmc.2019.05.042] [PMID: 31176569]
[139]
Deng, Y.; Wang, X.Z.; Huang, S.H.; Li, C.H. Antibacterial activity evaluation of synthetic novel pleuromutilin derivatives in vitro and in experimental infection mice. Eur. J. Med. Chem., 2019, 162, 194-202.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.006] [PMID: 30445267]
[140]
Leppla, S.H. Anthrax toxin edema factor: A bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc. Natl. Acad. Sci. USA, 1982, 79(10), 3162-3166.
[http://dx.doi.org/10.1073/pnas.79.10.3162] [PMID: 6285339]
[141]
Jernigan, J.A.; Stephens, D.S.; Ashford, D.A.; Omenaca, C.; Topiel, M.S.; Galbraith, M.; Tapper, M.; Fisk, T.L.; Zaki, S.; Popovic, T.; Meyer, R.F.; Quinn, C.P.; Harper, S.A.; Fridkin, S.K.; Sejvar, J.J.; Shepard, C.W.; McConnell, M.; Guarner, J.; Shieh, W.J.; Malecki, J.M.; Gerberding, J.L.; Hughes, J.M.; Perkins, B.A.; Anthrax Bioterrorism Investigation, T. Bioterrorism-related inhalational anthrax: The first 10 cases reported in the United States. Emerg. Infect. Dis., 2001, 7(6), 933-944.
[http://dx.doi.org/10.3201/eid0706.010604] [PMID: 11747719]
[142]
Jiao, G.S.; Kim, S.; Moayeri, M.; Thai, A.; Cregar-Hernandez, L.; McKasson, L.; O’Malley, S.; Leppla, S.H.; Johnson, A.T. Small molecule inhibitors of anthrax edema factor. Bioorg. Med. Chem. Lett., 2018, 28(2), 134-139.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.040] [PMID: 29198864]
[143]
Huang, Y.S.; Yang, J.J.; Lee, N.Y.; Chen, G.J.; Ko, W.C.; Sun, H.Y.; Hung, C.C. Treatment of Pneumocystis jirovecii pneumonia in HIV-infected patients: A review. Expert Rev. Anti Infect. Ther., 2017, 15(9), 873-892.
[http://dx.doi.org/10.1080/14787210.2017.1364991] [PMID: 28782390]
[144]
Hawser, S.; Lociuro, S.; Islam, K. Dihydrofolate reductase inhibitors as antibacterial agents. Biochem. Pharmacol., 2006, 71(7), 941-948.
[http://dx.doi.org/10.1016/j.bcp.2005.10.052] [PMID: 16359642]
[145]
Shah, K.; Lin, X.; Queener, S.F.; Cody, V.; Pace, J.; Gangjee, A. Targeting species specific amino acid residues: Design, synthesis and biological evaluation of 6-substituted pyrrolo[2,3-d ]pyrimidines as dihydrofolate reductase inhibitors and potential anti-opportunistic infection agents. Bioorg. Med. Chem., 2018, 26(9), 2640-2650.
[http://dx.doi.org/10.1016/j.bmc.2018.04.032] [PMID: 29691153]
[146]
Gutteridge, W.E.; Gaborak, M. A re-examination of purine and pyrimidine synthesis in the three main forms of Trypanosoma cruzi. Int. J. Biochem., 1979, 10(5), 415-422.
[http://dx.doi.org/10.1016/0020-711X(79)90065-X] [PMID: 383542]
[147]
Berens, R.L.; Marr, J.J.; LaFon, S.W.; Nelson, D.J. Purine metabolism in Trypanosoma cruzi. Mol. Biochem. Parasitol., 1981, 3(3), 187-196.
[http://dx.doi.org/10.1016/0166-6851(81)90049-9] [PMID: 6166862]
[148]
Hulpia, F.; Van Hecke, K.; França da Silva, C.; da Gama Jaen Batista, D.; Maes, L.; Caljon, G.; de Nazaré, C. Soeiro, M.; Van Calenbergh, S. Discovery of Novel 7-Aryl 7-Deazapurine 3′-Deoxy-ribofuranosyl Nucleosides with Potent Activity against Trypanosoma cruzi. J. Med. Chem., 2018, 61(20), 9287-9300.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00999] [PMID: 30234983]
[149]
Dye, C.; Williams, B.G. The population dynamics and control of tuberculosis. Science, 2010, 328(5980), 856-861.
[http://dx.doi.org/10.1126/science.1185449] [PMID: 20466923]
[150]
Shiva Raju, K.; AnkiReddy, S.; Sabitha, G.; Siva Krishna, V.; Sriram, D.; Bharathi Reddy, K.; Rao Sagurthi, S. Synthesis and biological evaluation of 1H-pyrrolo[2,3-d]pyrimidine-1,2,3-triazole derivatives as novel anti-tubercular agents. Bioorg. Med. Chem. Lett., 2019, 29(2), 284-290.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.036] [PMID: 30497913]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy