Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Based on the Network Pharmacology to Analyze the Effect of Chuanxiong in Improving Diabetic Nephropathy

Author(s): ChangYan Li, Feng Su, Le Zhang, Fang Liu, Zhen Li, Wen Xing Fan*, Jing Yang* and Niroj Mali

Volume 21, Issue 4, 2024

Published on: 02 February, 2023

Page: [709 - 717] Pages: 9

DOI: 10.2174/1570180820666230110155743

Price: $65

Abstract

Aim: To explore the mechanism of diabetic nephropathy (DN) treated with Chuanxiong.

Background: The development of network pharmacology promotes the process of medicinal transformation of traditional Chinese medicine. This study took Chuanxiong as an example to analyze the active components in the treatment of DN.

Objective: Molecular docking and other technologies have effectively helped the complex find the disease's active ingredients.

Methods: The data of Chuanxiong was collected from the TCPSP database, DN gene expression data were collected through the NCBI database, and DN-related genes were obtained through differential analysis. In addition, the regulatory network of Chuanxiong and the main active components of DN treatment was constructed using String and Cytoscape tools. At the same time, PPI network interaction analysis was performed on core genes and GO. KEGG analysis was performed to predict essential genes using the Auto Dock tool.

Results: Eight active components of Chuanxiong were screened out. NCOA1 and NCOA2 could interact with Angelica lactone A, Myricetin, Chrysophanol, Chuanxiong, naphthalize, and Chrysophanol. Meanwhile, Angelica Lactone A, Myricetin, Chrysophanol, Chuanxiong, naphthafunolide, and Chrysophanol can affect the regulation of estrogen signaling pathway, endocrine and other factors regulating calcium reabsorption and adipogenesis of adipocytes through the regulation of steroid hormone stimulation and regulation of cAMP-dependent protein kinase complex.

Conclusion: NCOA1 and NCOA2 can be used as pharmacodynamic targets of Chuanxiong for improving DN.

[1]
Zhou, Z.; Jiang, L.; Zhao, Q.; Wang, Y.; Zhou, J.; Chen, Q.; Lv, J. Roles of pattern recognition receptors in diabetic nephropathy. J. Zhejiang Univ. Sci. B, 2020, 21(3), 192-203.
[http://dx.doi.org/10.1631/jzus.B1900490] [PMID: 32133797]
[2]
Griffin, T.P.; O’Shea, P.M.; Smyth, A.; Islam, M.N.; Wall, D.; Ferguson, J.; O’Sullivan, E.; Finucane, F.M.; Dinneen, S.F.; Dunne, F.P.; Lappin, D.W.; Reddan, D.N.; Bell, M.; O’Brien, T.; Griffin, D.G.; Griffin, M.D. Burden of chronic kidney disease and rapid decline in renal function among adults attending a hospital-based diabetes center in Northern Europe. BMJ Open Diabetes Res. Care, 2021, 9(1), e002125.
[http://dx.doi.org/10.1136/bmjdrc-2021-002125]
[3]
Zhang, H.; Qi, S.; Song, Y.; Ling, C. Artemisinin attenuates early renal damage in diabetic nephropathy rats through suppressing TGF-β1 regulator and activating the Nrf2 signaling pathway. Life Sci., 2020, 256, 117966.
[http://dx.doi.org/10.1016/j.lfs.2020.117966] [PMID: 32535079]
[4]
Sharma, D.; Kumar Tekade, R.; Kalia, K. Kaempferol in ameliorating diabetes-induced fibrosis and renal damage: An in vitro and in vivo study in diabetic nephropathy mice model. Phytomedicine, 2020, 76, 153235.
[http://dx.doi.org/10.1016/j.phymed.2020.153235] [PMID: 32563017]
[5]
ALTamimi. J.Z.; AlFaris, N.A.; AL-Farga, A.M.; Alshammari, G.M.; BinMowyna, M.N.; Yahya, M.A. Curcumin reverses diabetic nephropathy in streptozotocin-induced diabetes in rats by inhibition of PKCβ/p66Shc axis and activation of FOXO-3a. J. Nutr. Biochem., 2021, 87, 108515.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108515] [PMID: 33017608]
[6]
Wang, F.; Li, R.; Zhao, L.; Ma, S.; Qin, G. Resveratrol ameliorates renal damage by inhibiting oxidative stress-mediated apoptosis of podocytes in diabetic nephropathy. Eur. J. Pharmacol., 2020, 885, 173387.
[http://dx.doi.org/10.1016/j.ejphar.2020.173387] [PMID: 32710953]
[7]
Zuo, C.; Xu, G. Efficacy and safety of mineralocorticoid receptor antagonists with ACEI/ARB treatment for diabetic nephropathy: A meta‐analysis. Int. J. Clin. Pract., 2019, 73(12), e13413.
[http://dx.doi.org/10.1111/ijcp.13413] [PMID: 31464019]
[8]
Umanath, K.; Lewis, J.B. Update on diabetic nephropathy: Core curriculum 2018. Am. J. Kidney Dis., 2018, 71(6), 884-895.
[http://dx.doi.org/10.1053/j.ajkd.2017.10.026] [PMID: 29398179]
[9]
Xiang, E.; Han, B.; Zhang, Q.; Rao, W.; Wang, Z.; Chang, C.; Zhang, Y.; Tu, C.; Li, C.; Wu, D. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis. Stem Cell Res. Ther., 2020, 11(1), 336.
[http://dx.doi.org/10.1186/s13287-020-01852-y] [PMID: 32746936]
[10]
Yuan, X.; Han, B.; Feng, Z.M.; Jiang, J.S.; Yang, Y.N.; Zhang, P.C. Chemical constituents of Ligusticum chuanxiong and their anti-inflammation and hepatoprotective activities. Bioorg. Chem., 2020, 101, 104016.
[http://dx.doi.org/10.1016/j.bioorg.2020.104016] [PMID: 32599365]
[11]
Zhang, Q.; Xu, S.; Qian, J. Pharmacological inhibition of MyD88 suppresses inflammation in tubular epithelial cells and prevents diabetic nephropathy in experimental mice. Acta Pharmacol. Sin., 2021, 43(2), 354-366.
[PMID: 34552217]
[12]
Song, Y; Nephrology, D Randomized controlled study of chuanxiong injection combined with benazepril in the treatment of diabetic nephropathy J. Pract. Tradit. Chin. Int. Med., 2019.
[13]
Chen, X.; Li, H.; Tian, L. Analysis of the physicochemical properties of acaricides based on lipinski’s rule of five. J. Comput. Biol., 2020, 27(9), 1397-1406.
[14]
Williams, R.; Karuranga, S.; Malanda, B. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Prac., 2020, 162, 108072.
[15]
Deng, Y.; Li, N.; Wu, Y.; Wang, M.; Yang, S.; Zheng, Y.; Deng, X.; Xiang, D.; Zhu, Y.; Xu, P.; Zhai, Z.; Zhang, D.; Dai, Z.; Gao, J. Global, regional, and national burden of diabetes-related chronic kidney disease from 1990 to 2019. Front. Endocrinol. (Lausanne), 2021, 12, 672350.
[http://dx.doi.org/10.3389/fendo.2021.672350] [PMID: 34276558]
[16]
Cheng, H.T.; Xu, X.; Lim, P.S.; Hung, K.Y. Worldwide epidemiology of diabetes-related end-stage renal disease, 2000-2015. Diabetes Care, 2021, 44(1), 89-97.
[http://dx.doi.org/10.2337/dc20-1913] [PMID: 33203706]
[17]
Exploration of the compatibility of ligusticum wallichii in the prevention and treatment of diabetic nephropathy. China J. Chin. Med., 2012.
[18]
Walters, W.P. Going further than Lipinski’s rule in drug design. Expert Opin. Drug Discov., 2012, 7(2), 99-107.
[http://dx.doi.org/10.1517/17460441.2012.648612] [PMID: 22468912]
[19]
Legouis, D.; Ricksten, S.E.; Faivre, A.; Verissimo, T.; Gariani, K.; Verney, C.; Galichon, P.; Berchtold, L.; Feraille, E.; Fernandez, M.; Placier, S.; Koppitch, K.; Hertig, A.; Martin, P.Y.; Naesens, M.; Pugin, J.; McMahon, A.P.; Cippà, P.E.; de Seigneux, S. Altered proximal tubular cell glucose metabolism during acute kidney injury is associated with mortality. Nat. Metab., 2020, 2(8), 732-743.
[http://dx.doi.org/10.1038/s42255-020-0238-1] [PMID: 32694833]
[20]
Lichtenecker, D.C.K.; Argeri, R.; Castro, C.H.M.; Dias-da-Silva, M.R.; Gomes, G.N. Cross‐sex testosterone therapy modifies the renal morphology and function in female rats and might underlie increased systolic pressure. Clin. Exp. Pharmacol. Physiol., 2021, 48(7), 978-986.
[http://dx.doi.org/10.1111/1440-1681.13495] [PMID: 33711175]
[21]
Ingelfinger, J.R.; Rosen, C.J. Finerenone-halting relative hyperaldosteronism in chronic kidney disease. N. Engl. J. Med., 2020, 383(23), 2285-2286.
[http://dx.doi.org/10.1056/NEJMe2031382] [PMID: 33095527]
[22]
Liu, B.; Tu, Y.; Ni, G. Abelmoschus manihottotal flavones of ameliorates podocyte pyroptosis and injury in high glucose conditions by targeting METTL3-Dependent mA modification-mediated nlrp3-inflammasome activation and PTEN/PI3K/Akt signaling. Front. Pharmacol., 2021, 12, 667644.
[http://dx.doi.org/10.3389/fphar.2021.667644] [PMID: 34335245]
[23]
Zhang, H.; Liu, B.; Shi, X.; Sun, X. Long noncoding RNAs: Potential therapeutic targets in cardiocerebrovascular diseases. Pharmacol. Ther., 2021, 221, 107744.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107744] [PMID: 33181193]
[24]
Cheung, V.C.; Peng, C.Y. Marinić M; Sakabe, NJ; Aneas, I; Lynch, VJ; Ober, C; Nobrega, MA; Kessler, JA Pluripotent stem cell-derived endometrial stromal fibroblasts in a cyclic, hormone-responsive, coculture model of human decidua. Cell Rep., 2021, 35(7), 109138.
[25]
Jheng, H.F.; Hayashi, K.; Matsumura, Y.; Kawada, T.; Seno, S.; Matsuda, H.; Inoue, K.; Nomura, W.; Takahashi, H.; Goto, T. Anti‐Inflammatory and antioxidative properties of isoflavones provide renal protective effects distinct from those of dietary soy proteins against diabetic nephropathy. Mol. Nutr. Food Res., 2020, 64(10), 2000015.
[http://dx.doi.org/10.1002/mnfr.202000015] [PMID: 32281228]
[26]
Kas, A; Bs, A; Kd, C 4-thiazolidinone-based derivatives rosiglitazone and pioglitazone affect the expression of antioxidant enzymes in different human cell lines. Biomed Pharmacother., 2021, 139, 111684.
[27]
Saw, G.; Krishna, K.; Gupta, N.; Soong, T.W.; Mallilankaraman, K.; Sajikumar, S.; Dheen, S.T. Epigenetic regulation of microglial phosphatidylinositol 3‐kinase pathway involved in long‐term potentiation and synaptic plasticity in rats. Glia, 2020, 68(3), 656-669.
[http://dx.doi.org/10.1002/glia.23748] [PMID: 31702864]
[28]
Gu, Y.; Chen, X.; Fu, S.; Liu, W.; Wang, Q.; Liu, K.J.; Shen, J. Astragali Radix isoflavones synergistically alleviate cerebral ischemia and reperfusion injury via activating estrogen receptor-PI3K-Akt signaling pathway. Front. Pharmacol., 2021, 12, 533028.
[http://dx.doi.org/10.3389/fphar.2021.533028] [PMID: 33692686]

© 2025 Bentham Science Publishers | Privacy Policy