Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

A Comparative Study on In vitro Anti-cancer and In vivo Anti-angiogenic Effects of TRPC Blockers Pyr-3 and SKF-96365

Author(s): Hülya Tuba Kıyan*, Ayca Üvez, Merve Erkisa, Elif İlkay Ikitimur-Armutak, Nadim Yılmazer, Osman Behzat Burak Esener, Deniz Erol Kutucu, Savaş Üstünova, Engin Ulukaya, A. Alper Öztürk and Ebru Gürel-Gürevin

Volume 20, Issue 7, 2023

Published on: 23 January, 2023

Page: [957 - 964] Pages: 8

DOI: 10.2174/1570180820666230110155332

Price: $65

Abstract

Introduction: Angiogenesis is involved in many physiological and pathological conditions including cancer. A number of TRP channels induce angiogenesis, promote cell proliferation or induce apoptosis in several types of human cancers. Therefore, TRP channels may be considered potential pharmacological targets for therapeutic options of disorders caused by insufficient angiogenesis or aberrant vascularization.

Aims: This study aimed to comparatively investigate in vitro anti-cancer and in vivo anti-angiogenic effects of TRPC blockers Pyr-3 and SKF-96365.

Methods: For anti-cancer effects, four cancer cell lines (MDA-MB-231, A549, PC-3, and HCT-116) were used. In vivo anti-angiogenic effects were investigated by employing in vivo CAM assay of fertilized hen eggs.

Results: Pyr-3 affected cell viability in a dose-dependent manner, all concentrations of SKF-96365 significantly reduced cell viability in all cell lines. Pyr-3 and SKF-96365 at concentrations of 2.5 μg/pellet and 50 μg/pellet, respectively inhibited in vivo angiogenesis significantly.

Conclusion: The concentration of 2.5 μg/pellet caused no irritation, whereas 50 μg/pellet produced some slight irritation. Apart from their anti-cancer effects, our findings indicate that Pyr-3 and SKF-96365 may be promising anti-angiogenic agents for the treatment of angiogenesis-related disorders.

Graphical Abstract

[1]
Losordo, D.W.; Dimmeler, S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: Angiogenic cytokines. Circulation, 2004, 109(21), 2487-2491.
[http://dx.doi.org/10.1161/01.CIR.0000128595.79378.FA] [PMID: 15173038]
[2]
Potente, M.; Gerhardt, H.; Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell, 2011, 146(6), 873-887.
[http://dx.doi.org/10.1016/j.cell.2011.08.039] [PMID: 21925313]
[3]
Negri, S.; Faris, P.; Berra-Romani, R.; Guerra, G.; Moccia, F. Endothelial transient receptor potential channels and vascular remodeling: Extracellular Ca2+ entry for angiogenesis, arteriogenesis and vasculogenesis. Front. Physiol., 2020, 10, 1618.
[http://dx.doi.org/10.3389/fphys.2019.01618] [PMID: 32038296]
[4]
Liekens, S.; De Clercq, E.; Neyts, J. Angiogenesis: regulators and clinical applications. Biochem. Pharmacol., 2001, 61(3), 253-270.
[http://dx.doi.org/10.1016/S0006-2952(00)00529-3] [PMID: 11172729]
[5]
Bisht, M.; Dhasmana, D.C.; Bist, S.S. Angiogenesis: Future of pharmacological modulation. Indian J. Pharmacol., 2010, 42(1), 2-8.
[http://dx.doi.org/10.4103/0253-7613.62395] [PMID: 20606828]
[6]
Pedersen, S.F.; Owsianik, G.; Nilius, B. TRP channels: An overview. Cell Calcium, 2005, 38(3-4), 233-252.
[http://dx.doi.org/10.1016/j.ceca.2005.06.028] [PMID: 16098585]
[7]
Ramsey, I.S.; Delling, M.; Clapham, D.E. An introduction to TRP channels. Annu. Rev. Physiol., 2006, 68(1), 619-647.
[http://dx.doi.org/10.1146/annurev.physiol.68.040204.100431] [PMID: 16460286]
[8]
Nilius, B.; Owsianik, G. The transient receptor potential family of ion channels. Genome Biol., 2011, 12(3), 218.
[http://dx.doi.org/10.1186/gb-2011-12-3-218] [PMID: 21401968]
[9]
Zheng, J. Molecular mechanism of TRP channels. Compr. Physiol., 2013, 3(1), 221-242.
[http://dx.doi.org/10.1002/cphy.c120001] [PMID: 23720286]
[10]
Neuberger, A.; Nadezhdin, K.D.; Sobolevsky, A.I. TRPV3 expression and purification for structure determination by Cryo-EM. Methods Enzymol., 2021, 652, 31-48.
[http://dx.doi.org/10.1016/bs.mie.2021.02.006]
[11]
Nilius, B.; Szallasi, A. Transient receptor potential channels as drug targets: From the science of basic research to the art of medicine. Pharmacol. Rev., 2014, 66(3), 676-814.
[http://dx.doi.org/10.1124/pr.113.008268] [PMID: 24951385]
[12]
Schönherr, R. Clinical relevance of ion channels for diagnosis and therapy of cancer. J. Membr. Biol., 2005, 205(3), 175-184.
[http://dx.doi.org/10.1007/s00232-005-0782-3] [PMID: 16362505]
[13]
Aydar, E.; Yeo, S.; Djamgoz, M.; Palmer, C. Abnormal expression, localization and interaction of canonical transient receptor potential ion channels in human breast cancer cell lines and tissues: A potential target for breast cancer diagnosis and therapy. Cancer Cell Int., 2009, 9(1), 23.
[http://dx.doi.org/10.1186/1475-2867-9-23] [PMID: 19689790]
[14]
Yang, L.L.; Liu, B.C.; Lu, X.Y.; Yan, Y.; Zhai, Y.J.; Bao, Q.; Doetsch, P.W.; Deng, X.; Thai, T.L.; Alli, A.A.; Eaton, D.C.; Shen, B.Z.; Ma, H.P. Inhibition of TRPC6 reduces non-small cell lung cancer cell proliferation and invasion. Oncotarget, 2017, 8(3), 5123-5134.
[http://dx.doi.org/10.18632/oncotarget.14034] [PMID: 28030826]
[15]
Chang, H.H.; Cheng, Y.C.; Tsai, W.C.; Tsao, M.J.; Chen, Y. Pyr3 induces apoptosis and inhibits migration in human glioblastoma cells. Cell. Physiol. Biochem., 2018, 48(4), 1694-1702.
[http://dx.doi.org/10.1159/000492293] [PMID: 30078005]
[16]
Koivisto, A.P.; Belvisi, M.G.; Gaudet, R.; Szallasi, A. Advances in TRP channel drug discovery: From target validation to clinical studies. Nat. Rev. Drug Discov., 2022, 21(1), 41-59.
[http://dx.doi.org/10.1038/s41573-021-00268-4] [PMID: 34526696]
[17]
Kıyan, H.T.; Demirci, B.; Başer, K.H.C.; Demirci, F. The in vivo evaluation of anti-angiogenic effects of Hypericum essential oils using the chorioallantoic membrane assay. Pharm. Biol., 2014, 52(1), 44-50.
[http://dx.doi.org/10.3109/13880209.2013.810647] [PMID: 24044783]
[18]
Gurel-Gurevin, E.; Kiyan, H.T.; Esener, O.B.B.; Aydinlik, S.; Uvez, A.; Ulukaya, E.; Dimas, K.; Armutak, E.I. Chloroquine used in combination with chemotherapy synergistically suppresses growth and angiogenesis in vitro and in vivo. Anticancer Res., 2018, 38(7), 4011-4020.
[http://dx.doi.org/10.21873/anticanres.12689] [PMID: 29970525]
[19]
Tiapko, O.; Groschner, K. TRPC3 as a target of novel therapeutic interventions. Cells, 2018, 7(7), 83.
[http://dx.doi.org/10.3390/cells7070083] [PMID: 30037143]
[20]
Dietrich, A. Transient receptor potential (TRP) channels in health and disease. Cells, 2019, 8(5), 413.
[21]
Kim, J-M.; Heo, K.; Choi, J.; Kim, K.; An, W. The histone variant MacroH2A regulates Ca2+ influx through TRPC3 and TRPC6 channels. Oncogenesis, 2013, 2(10), e77-e77.
[http://dx.doi.org/10.1038/oncsis.2013.40] [PMID: 24165580]
[22]
Abdoul-Azize, S.; Buquet, C.; Vannier, J.P.; Dubus, I. Pyr3, a TRPC3 channel blocker, potentiates dexamethasone sensitivity and apoptosis in acute lymphoblastic leukemia cells by disturbing Ca2+ signaling, mitochondrial membrane potential changes and reactive oxygen species production. Eur. J. Pharmacol., 2016, 784, 90-98.
[http://dx.doi.org/10.1016/j.ejphar.2016.05.014] [PMID: 27179991]
[23]
Bomben, V.C.; Sontheimer, H.W. Inhibition of transient receptor potential canonical channels impairs cytokinesis in human malignant gliomas. Cell Prolif., 2008, 41(1), 98-121.
[http://dx.doi.org/10.1111/j.1365-2184.2007.00504.x] [PMID: 18211288]
[24]
Chigurupati, S.; Venkataraman, R.; Barrera, D.; Naganathan, A.; Madan, M.; Paul, L.; Pattisapu, J.V.; Kyriazis, G.A.; Sugaya, K.; Bushnev, S.; Lathia, J.D.; Rich, J.N.; Chan, S.L. Receptor channel TRPC6 is a key mediator of Notch-driven glioblastoma growth and invasiveness. Cancer Res., 2010, 70(1), 418-427.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2654] [PMID: 20028870]
[25]
Ding, X.; He, Z.; Zhou, K.; Cheng, J.; Yao, H.; Lu, D.; Cai, R.; Jin, Y.; Dong, B.; Xu, Y.; Wang, Y. Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. J. Natl. Cancer Inst., 2010, 102(14), 1052-1068.
[http://dx.doi.org/10.1093/jnci/djq217] [PMID: 20554944]
[26]
Song, M.; Chen, D.; Yu, S.P. The TRPC channel blocker SKF 96365 inhibits glioblastoma cell growth by enhancing reverse mode of the Na +/Ca 2+ exchanger and increasing intracellular Ca 2+. Br. J. Pharmacol., 2014, 171(14), 3432-3447.
[http://dx.doi.org/10.1111/bph.12691] [PMID: 24641279]
[27]
Guilbert, A.; Dhennin-Duthille, I.; Hiani, Y.E.L.; Haren, N.; Khorsi, H.; Sevestre, H.; Ahidouch, A.; Ouadid-Ahidouch, H. Expression of TRPC6 channels in human epithelial breast cancer cells. BMC Cancer, 2008, 8(1), 125.
[http://dx.doi.org/10.1186/1471-2407-8-125] [PMID: 18452628]
[28]
Wan, Q.; Zheng, A.; Liu, X.; Chen, Y.; Han, L. Expression of transient receptor potential channel 6 in cervical cancer. OncoTargets Ther., 2012, 5, 171-176.
[PMID: 22973112]
[29]
Jing, Z.; Sui, X.; Yao, J.; Xie, J.; Jiang, L.; Zhou, Y.; Pan, H.; Han, W. SKF-96365 activates cytoprotective autophagy to delay apoptosis in colorectal cancer cells through inhibition of the calcium/CaMKIIγ/AKT-mediated pathway. Cancer Lett., 2016, 372(2), 226-238.
[http://dx.doi.org/10.1016/j.canlet.2016.01.006] [PMID: 26803057]
[30]
Song, J.; Wang, Y.; Li, X.; Shen, Y.; Yin, M.; Guo, Y.; Diao, L.; Liu, Y.; Yue, D. Critical role of TRPC6 channels in the development of human renal cell carcinoma. Mol. Biol. Rep., 2013, 40(8), 5115-5122.
[http://dx.doi.org/10.1007/s11033-013-2613-4] [PMID: 23700295]
[31]
El Boustany, C.; Bidaux, G.; Enfissi, A.; Delcourt, P.; Prevarskaya, N.; Capiod, T. Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation. Hepatology, 2008, 47(6), 2068-2077.
[http://dx.doi.org/10.1002/hep.22263] [PMID: 18506892]
[32]
Jiang, H.N.; Zeng, B.; Zhang, Y.; Daskoulidou, N.; Fan, H.; Qu, J.M.; Xu, S.Z. Involvement of TRPC channels in lung cancer cell differentiation and the correlation analysis in human non-small cell lung cancer. PLoS One, 2013, 8(6)e67637
[http://dx.doi.org/10.1371/journal.pone.0067637] [PMID: 23840757]
[33]
Shi, Y.; Ding, X.; He, Z-H.; Zhou, K-C.; Wang, Q.; Wang, Y-Z. Critical role of TRPC6 channels in G2 phase transition and the development of human oesophageal cancer. Gut, 2009, 58(11), 1443-1450.
[http://dx.doi.org/10.1136/gut.2009.181735] [PMID: 19651628]
[34]
Yang, S.L.; Cao, Q.; Zhou, K.C.; Feng, Y.J.; Wang, Y.Z. Transient receptor potential channel C3 contributes to the progression of human ovarian cancer. Oncogene, 2009, 28(10), 1320-1328.
[http://dx.doi.org/10.1038/onc.2008.475] [PMID: 19151765]
[35]
Zeng, B.; Yuan, C.; Yang, X.; Atkin, S.L.; Xu, S.Z. TRPC channels and their splice variants are essential for promoting human ovarian cancer cell proliferation and tumorigenesis. Curr. Cancer Drug Targets, 2013, 13(1), 103-116.
[http://dx.doi.org/10.2174/156800913804486629] [PMID: 22920441]
[36]
Oda, K.; Umemura, M.; Nakakaji, R.; Tanaka, R.; Sato, I.; Nagasako, A.; Oyamada, C.; Baljinnyam, E.; Katsumata, M.; Xie, L.H.; Narikawa, M.; Yamaguchi, Y.; Akimoto, T.; Ohtake, M.; Fujita, T.; Yokoyama, U.; Iwatsubo, K.; Aihara, M.; Ishikawa, Y. Transient receptor potential cation 3 channel regulates melanoma proliferation and migration. J. Physiol. Sci., 2017, 67(4), 497-505.
[http://dx.doi.org/10.1007/s12576-016-0480-1] [PMID: 27613608]
[37]
Cai, R.; Ding, X.; Zhou, K.; Shi, Y.; Ge, R.; Ren, G.; Jin, Y.; Wang, Y. Blockade of TRPC6 channels induced G2/M phase arrest and suppressed growth in human gastric cancer cells. Int. J. Cancer, 2009, 125(10), 2281-2287.
[http://dx.doi.org/10.1002/ijc.24551] [PMID: 19610066]
[38]
Lin, D.C.; Zheng, S.Y.; Zhang, Z.G.; Luo, J.H.; Zhu, Z.L.; Li, L.; Chen, L.S.; Lin, X.; Sham, J.S.K.; Lin, M.J.; Zhou, R.X. TRPC3 promotes tumorigenesis of gastric cancer via the CNB2/GSK3β/NFATc2 signaling pathway. Cancer Lett., 2021, 519, 211-225.
[http://dx.doi.org/10.1016/j.canlet.2021.07.038] [PMID: 34311033]
[39]
Thebault, S.; Flourakis, M.; Vanoverberghe, K.; Vandermoere, F.; Roudbaraki, M.; Lehen’kyi, V.; Slomianny, C.; Beck, B.; Mariot, P.; Bonnal, J.L.; Mauroy, B.; Shuba, Y.; Capiod, T.; Skryma, R.; Prevarskaya, N. Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res., 2006, 66(4), 2038-2047.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0376] [PMID: 16489003]
[40]
Wang, Y.; Yue, D.; Li, K.; Liu, Y.L.; Ren, C.S.; Wang, P. The role of TRPC6 in HGF-induced cell proliferation of human prostate cancer DU145 and PC3 cells. Asian J. Androl., 2010, 12(6), 841-852.
[http://dx.doi.org/10.1038/aja.2010.85] [PMID: 20835261]
[41]
Selvaraj, S.; Sun, Y.; Sukumaran, P.; Singh, B.B. Resveratrol activates autophagic cell death in prostate cancer cells via downregulation of STIM1 and the mTOR pathway. Mol. Carcinog., 2016, 55(5), 818-831.
[http://dx.doi.org/10.1002/mc.22324] [PMID: 25917875]
[42]
Peña, F.; Ordaz, B. Non-selective cation channel blockers: Potential use in nervous system basic research and therapeutics. Mini Rev. Med. Chem., 2008, 8(8), 812-819.
[http://dx.doi.org/10.2174/138955708784912166] [PMID: 18673137]
[43]
Öztürk, A.A.; Kıyan, H.T. Treatment of oxidative stress-induced pain and inflammation with dexketoprofen trometamol loaded different molecular weight chitosan nanoparticles: Formulation, characterization and anti-inflammatory activity by using in vivo HET-CAM assay. Microvasc. Res., 2020, 128, 103961.
[http://dx.doi.org/10.1016/j.mvr.2019.103961] [PMID: 31758946]
[44]
Öztürk, A.A. Namlı, İ; Güleç, K.; Kıyan, H.T. Diclofenac sodium loaded PLGA nanoparticles for inflammatory diseases with high anti-inflammatory properties at low dose: Formulation, characterization and in vivo HET-CAM analysis. Microvasc. Res., 2020, 130103991
[http://dx.doi.org/10.1016/j.mvr.2020.103991] [PMID: 32105668]
[45]
Öztürk, A.A. Yenilmez, E.; Şenel, B.; Kıyan, H.T.; Güven, U.M. Effect of different molecular weight PLGA on flurbiprofen nanoparticles: formulation, characterization, cytotoxicity, and in vivo anti-inflammatory effect by using HET-CAM assay. Drug Dev. Ind. Pharm., 2020, 46(4), 682-695.
[http://dx.doi.org/10.1080/03639045.2020.1755304] [PMID: 32281428]
[46]
Stryker, Z.I.; Rajabi, M.; Davis, P.J.; Mousa, S.A. Evaluation of angiogenesis assays. Biomedicines, 2019, 7(2), 37.
[http://dx.doi.org/10.3390/biomedicines7020037] [PMID: 31100863]
[47]
Tahergorabi, Z.; Khazaei, M. A review on angiogenesis and its assays. Iran. J. Basic Med. Sci., 2012, 15(6), 1110-1126.
[PMID: 23653839]
[48]
Chen, Y.F.; Chen, Y.T.; Chiu, W.T.; Shen, M.R. Remodeling of calcium signaling in tumor progression. J. Biomed. Sci., 2013, 20(1), 23.
[http://dx.doi.org/10.1186/1423-0127-20-23] [PMID: 23594099]
[49]
Andrikopoulos, P.; Eccles, S.A.; Yaqoob, M.M. Coupling between the TRPC3 ion channel and the NCX1 transporter contributed to VEGF-induced ERK1/2 activation and angiogenesis in human primary endothelial cells. Cell. Signal., 2017, 37, 12-30.
[http://dx.doi.org/10.1016/j.cellsig.2017.05.013] [PMID: 28535874]
[50]
Antigny, F.; Girardin, N.; Frieden, M. Transient receptor potential canonical channels are required for in vitro endothelial tube formation. J. Biol. Chem., 2012, 287(8), 5917-5927.
[http://dx.doi.org/10.1074/jbc.M111.295733] [PMID: 22203682]
[51]
Dragoni, S.; Laforenza, U.; Bonetti, E.; Lodola, F.; Bottino, C.; Guerra, G.; Borghesi, A.; Stronati, M.; Rosti, V.; Tanzi, F.; Moccia, F. Canonical transient receptor potential 3 channel triggers vascular endothelial growth factor-induced intracellular Ca2+ oscillations in endothelial progenitor cells isolated from umbilical cord blood. Stem Cells Dev., 2013, 22(19), 2561-2580.
[http://dx.doi.org/10.1089/scd.2013.0032] [PMID: 23682725]
[52]
Smani, T.; Gómez, L.J.; Regodon, S.; Woodard, G.E.; Siegfried, G.; Khatib, A.M.; Rosado, J.A. TRP channels in angiogenesis and other endothelial functions. Front. Physiol., 2018, 9, 1731.
[http://dx.doi.org/10.3389/fphys.2018.01731] [PMID: 30559679]

© 2024 Bentham Science Publishers | Privacy Policy