Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Plant-sourced Antioxidants in Human Health: A State-of-Art Review

Author(s): Oluwaseun Ruth Alara*, Chinonso Ishmael Ukaegbu, Nour Hamid Abdurahman, John Adewole Alara and Hassan Alsaggaf Ali

Volume 19, Issue 8, 2023

Published on: 03 February, 2023

Page: [817 - 830] Pages: 14

DOI: 10.2174/1573401319666230109145319

Price: $65

Abstract

Nowadays, free radical chemistry is a field that has gained the wider attention of researchers. Our body generates free radicals’ reactive nitrogen and oxygen species through subjection to several pathological states, endogenous systems, and physicochemical conditions. For the physiological state to occur, it is compulsory to propel a balance between antioxidants and free radicals. Oxidative stress will set in when free radicals can no longer be regulated in the body system. Moreover, free radicals negatively affect DNA, protein, and lipids and cause many diseases in the human body. Thus, natural-sourced antioxidants can be used to manage this oxidative stress. Currently, it has been revealed that some synthetic antioxidants, including butylated hydroxyanisole and butylated hydroxytoluene, are hazardous to human health. Therefore, many efforts have been made in search of natural, non-toxic, and effective compounds that possess anti- oxidative properties. Hence, this review comprehensively presents the roles of plant-based antioxidants in resolving the challenging issues associated with free radical diseases in human beings. It further reviews the characteristics and occurrences of free radicals in the human body, the formation and mechanism of free radicals, some of the physiological impacts of free radicals on human health, sources of free radicals, and plant-sourced antioxidants as a frontier in managing free radicals.

[1]
He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell. Physiol. Biochem., 2017, 44(2), 532-553.
[http://dx.doi.org/10.1159/000485089] [PMID: 29145191]
[2]
Zehiroglu, C.; Ozturk Sarikaya, S.B. The importance of antioxidants and place in today’s scientific and technological studies. J. Food Sci. Technol., 2019, 56(11), 4757-4774.
[http://dx.doi.org/10.1007/s13197-019-03952-x] [PMID: 31741500]
[3]
Hayek, M.G. Dietary vitamin E improves immune function in cats, 2002, 555-564.
[4]
Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev., 2017, 2017, 1-13.
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[5]
Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[6]
Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; Tabolacci, C.; Jadeja, R.N. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res. Int., 2019, 2019, 1-16.
[http://dx.doi.org/10.1155/2019/8748253] [PMID: 31080832]
[7]
Salehi, B. Plant-derived bioactives and oxidative stress-related disorders: A key trend towards healthy aging and longevity promotion. Appl. Sci. , 2020, 10, 947.
[http://dx.doi.org/10.3390/app10030947]
[8]
Sharifi-Rad, M.; Anil, K.N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; Prakash Mishra, A.; Nigam, M.; El Rayess, Y.; Beyrouthy, M.E.; Polito, L.; Iriti, M.; Martins, N.; Martorell, M.; Docea, A.O.; Setzer, W.N.; Calina, D.; Cho, W.C.; Sharifi-Rad, J. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol., 2020, 11, 694.
[http://dx.doi.org/10.3389/fphys.2020.00694] [PMID: 32714204]
[9]
Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci., 2015, 11(8), 982-991.
[http://dx.doi.org/10.7150/ijbs.12096] [PMID: 26157352]
[10]
Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci., 2021, 4, 200-214.
[http://dx.doi.org/10.1016/j.crfs.2021.03.011] [PMID: 33899007]
[11]
Sharifi-Rad, J.; Sharifi-Rad, M.; Salehi, B.; Iriti, M.; Roointan, A.; Mnayer, D.; Soltani-Nejad, A.; Afshari, A. In vitro and in vivo assessment of free radical scavenging and antioxidant activities of Veronica persica Poir. Cell. Mol. Biol., 2018, 64(8), 57-64.
[http://dx.doi.org/10.14715/cmb/2018.64.8.9] [PMID: 29981684]
[12]
Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem., 2015, 30(1), 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0] [PMID: 25646037]
[13]
Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv., 2015, 5(35), 27986-28006.
[http://dx.doi.org/10.1039/C4RA13315C]
[14]
Gilbert, D.L. Perspective on the history of oxygen and life.Oxygen and the living process: An inter-disciplinary approach; Springer Verlag: New York, 1981, pp. 1-43.
[http://dx.doi.org/10.1007/978-1-4612-5890-2_1]
[15]
Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol., 1956, 11(3), 298-300.
[http://dx.doi.org/10.1093/geronj/11.3.298] [PMID: 13332224]
[16]
Engwa, G.A. Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases; Phytochemicals - Source of Antioxidants and Role in Disease Prevention, IntechOpen, 2018, pp. 49-73.
[http://dx.doi.org/10.5772/intechopen.76719]
[17]
Collin, F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(10), 2407.
[http://dx.doi.org/10.3390/ijms20102407] [PMID: 31096608]
[18]
Petersen, C. R. Free-radicals and advanced chemistries involved in cell membrane organization influence oxygen diffusion and pathology treatment. AIMS Biophys., 2017, 4(2), 240-283.
[http://dx.doi.org/10.3934/biophy.2017.2.240] [PMID: 29202036]
[19]
Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J., 2015, 15(1), 71.
[http://dx.doi.org/10.1186/s12937-016-0186-5] [PMID: 27456681]
[20]
Chauhan, R.; Kumara, B.H.; Kumari, B.; Rana, M.K.; Chauhan, R. Significance of antioxidants in human health. Sch. J. Appl. Med. Sci., 2016, 4(4C), 1265-1277.
[21]
Fenton, H.J.H. LXXIII.—Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans., 1894, 65, 899-910.
[http://dx.doi.org/10.1039/CT8946500899]
[22]
Tanaka, M.; Vécsei, L. Monitoring the redox status in multiple sclerosis. Biomedicines, 2020, 8(10), 406.
[http://dx.doi.org/10.3390/biomedicines8100406] [PMID: 33053739]
[23]
Kawamura, T.; Muraoka, I. Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants, 2018, 7(9), 119.
[http://dx.doi.org/10.3390/antiox7090119] [PMID: 30189660]
[24]
García-Sánchez, A.; Miranda-Díaz, A.G.; Cardona-Muñoz, E.G. The role of oxidative stress in physiopathology and pharmacological treatment with pro- and antioxidant properties in chronic diseases. Oxid. Med. Cell. Longev., 2020, 2020, 1-16.
[http://dx.doi.org/10.1155/2020/2082145] [PMID: 32774665]
[25]
Díaz, P.; Valenzuela, V.M.; Bravo, J.; Quest, A.F.G. Helicobacter pylori and gastric cancer: Adaptive cellular mechanisms involved in disease progression. Front. Microbiol., 2018, 9(5), 5.
[http://dx.doi.org/10.3389/fmicb.2018.00005] [PMID: 29403459]
[26]
Boonla, C. Oxidative stress in urolithiasisn Reactive Oxygen Species (ROS) in Living Cells 2018; IntechOpen,. , 2018.
[http://dx.doi.org/10.5772/intechopen.75366]
[27]
Yudoh, K.; van Trieu, N.; Nakamura, H.; Hongo-Masuko, K.; Kato, T.; Nishioka, K. Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: Oxidative stress induces chondrocyte telomere instability and down regulation of chondrocyte function. Arthritis Res., 2005, 7(2), R380.
[http://dx.doi.org/10.1186/ar1499]
[28]
Jha, J.C.; Banal, C.; Chow, B.S.M.; Cooper, M.E.; Jandeleit-Dahm, K. Diabetes and kidney disease: Role of oxidative stress. Antioxid. Redox Signal., 2016, 25(12), 657-684.
[http://dx.doi.org/10.1089/ars.2016.6664] [PMID: 26906673]
[29]
Kono, M.; Yoshida, N.; Tsokos, G.C. Amino acid metabolism in lupus. Front. Immunol., 2021, 12, 623844.
[http://dx.doi.org/10.3389/fimmu.2021.623844] [PMID: 33692797]
[30]
Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules, 2015, 20(12), 21138-21156.
[http://dx.doi.org/10.3390/molecules201219753] [PMID: 26633317]
[31]
Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules, 2019, 24(22), 4132.
[http://dx.doi.org/10.3390/molecules24224132] [PMID: 31731614]
[32]
Vastrad, J.V.; Badanayak, P.; Goudar, G. Phenolic compounds in tea: Phytochemical, biological, and therapeutic applications.Phenolic Compounds; IntechOpen, 2021.
[http://dx.doi.org/10.5772/intechopen.98715]
[33]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[34]
Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I.; Alara, J.A. Optimization of microwave-assisted extraction of phenolic compounds from Ocimum gratissimum leaves and its LC–ESI–MS/MS profiling, antioxidant and antimicrobial activities. J. Food Meas. Charact., 2020, 14(6), 3590-3604.
[http://dx.doi.org/10.1007/s11694-020-00602-1]
[35]
Dhalaria, R.; Verma, R.; Kumar, D.; Puri, S.; Tapwal, A.; Kumar, V.; Nepovimova, E.; Kuca, K. Bioactive compounds of edible fruits with their anti-aging properties: A comprehensive review to prolong human life. Antioxidants, 2020, 9(11), 1123.
[http://dx.doi.org/10.3390/antiox9111123] [PMID: 33202871]
[36]
Gilbert, C. What is vitamin A and why do we need it? Community Eye Health, 2013, 26(84), 65.
[PMID: 24782580]
[37]
Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. J. Funct. Foods, 2015, 18, 820-897.
[http://dx.doi.org/10.1016/j.jff.2015.06.018]
[38]
Stahl, W.; Sies, H. Antioxidant activity of carotenoids. Mol. Aspects Med., 2003, 24(6), 345-351.
[http://dx.doi.org/10.1016/S0098-2997(03)00030-X] [PMID: 14585305]
[39]
Săvescu, P. Natural compounds with antioxidant activity-used inthe design of functional foods. In: Functional Foods - Phytochemicalsand Health Promoting Potential; IntechOpen , 2021.
[http://dx.doi.org/10.5772/intechopen.97364]
[40]
Kuršvietienė L.; Mongirdienė A.; Bernatonienė J.; Šulinskienė J.; Stanevičienė I. Selenium anticancer properties and impact on cellular redox status. Antioxidants, 2020, 9(1), 80.
[http://dx.doi.org/10.3390/antiox9010080] [PMID: 31963404]
[41]
Yoo, S.Z.; No, M.H.; Heo, J.W.; Park, D.H.; Kang, J.H.; Kim, S.H.; Kwak, H.B. Role of exercise in age-related sarcopenia. J. Exerc. Rehabil., 2018, 14(4), 551-558.
[http://dx.doi.org/10.12965/jer.1836268.134] [PMID: 30276173]
[42]
Figueira, I.; Garcia, G.; Pimpão, R.C.; Terrasso, A.P.; Costa, I.; Almeida, A.F.; Tavares, L.; Pais, T.F.; Pinto, P.; Ventura, M.R.; Filipe, A.; McDougall, G.J.; Stewart, D.; Kim, K.S.; Palmela, I.; Brites, D.; Brito, M.A.; Brito, C.; Santos, C.N. Polyphenols journey through blood-brain barrier towards neuronal protection. Sci. Rep., 2017, 7(1), 11456.
[http://dx.doi.org/10.1038/s41598-017-11512-6] [PMID: 28904352]
[43]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[44]
Naparlo, K.; Bartosz, G.; Stefaniuk, I.; Cieniek, B.; Soszynski, M.; Sadowska-Bartosz, I. Interaction of catechins with human erythrocytes. Molecules, 2020, 25(6), 1456.
[http://dx.doi.org/10.3390/molecules25061456] [PMID: 32213847]
[45]
Karković Marković A.; Torić J.; Barbarić M.; Jakobušić B.C. Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules, 2019, 24(10), 2001.
[http://dx.doi.org/10.3390/molecules24102001] [PMID: 31137753]
[46]
Zhao, Y.; Shu, P.; Zhang, Y.; Lin, L.; Zhou, H.; Xu, Z.; Suo, D.; Xie, A.; Jin, X. Effect of Centella asiatica on oxidative stress and lipid metabolism in hyperlipidemic animal models. Oxid. Med. Cell. Longev., 2014, 2014, 1-7.
[http://dx.doi.org/10.1155/2014/154295] [PMID: 24829618]
[47]
Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr., 2020, 6(2), 115-123.
[http://dx.doi.org/10.1016/j.aninu.2020.01.001] [PMID: 32542190]
[48]
Mota, A.H. A review of medicinal plants used in therapy of cardiovascular diseases. Int. J. Pharmacogn. Phytochem., 2016, 8(4), 572-591.
[49]
Maiuolo, J.; Gliozzi, M.; Carresi, C.; Musolino, V.; Oppedisano, F.; Scarano, F.; Nucera, S.; Scicchitano, M.; Bosco, F.; Macri, R.; Ruga, S.; Cardamone, A.; Coppoletta, A.; Mollace, A.; Cognetti, F.; Mollace, V. Nutraceuticals and cancer: Potential for natural polyphenols. Nutrients, 2021, 13(11), 3834.
[http://dx.doi.org/10.3390/nu13113834] [PMID: 34836091]
[50]
Salehi, B.; Sharifi-Rad, J.; Cappellini, F.; Reiner, Ž.; Zorzan, D.; Imran, M.; Sener, B.; Kilic, M.; El-Shazly, M.; Fahmy, N.M.; Al-Sayed, E.; Martorell, M.; Tonelli, C.; Petroni, K.; Docea, A.O.; Calina, D.; Maroyi, A. The therapeutic potential of anthocyanins: Current approaches based on their molecular mechanism of action. Front. Pharmacol., 2020, 11, 1300.
[http://dx.doi.org/10.3389/fphar.2020.01300] [PMID: 32982731]
[51]
Almatroodi, S.A.; Almatroudi, A.; Khan, A.A.; Alhumaydhi, F.A.; Alsahli, M.A.; Rahmani, A.H. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules, 2020, 25(14), 3146.
[http://dx.doi.org/10.3390/molecules25143146] [PMID: 32660101]
[52]
Thangavel, P.; Puga-Olguín, A.; Rodríguez-Landa, J.F.; Zepeda, R.C. Genistein as potential therapeutic candidate for menopausal symptoms and other related diseases. Molecules, 2019, 24(21), 3892.
[http://dx.doi.org/10.3390/molecules24213892] [PMID: 31671813]
[53]
Salehi, B.; Ata, A. Sharopov; Ramírez-Alarcón; Ruiz-Ortega; Abdulmajid Ayatollahi; Tsouh Fokou; Kobarfard; Amiruddin Zakaria; Iriti; Taheri; Martorell; Sureda; Setzer; Durazzo; Lucarini; Santini; Capasso; Ostrander; Atta-ur-Rahman; Choudhary, M.I.; Cho, W.C.; Sharifi-Rad, J. Antidiabetic potential of medicinal plants and their active components. Biomolecules, 2019, 9(10), 551.
[http://dx.doi.org/10.3390/biom9100551] [PMID: 31575072]
[54]
Lankatillake, C.; Huynh, T.; Dias, D.A. Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. Plant Methods, 2019, 15(1), 105.
[http://dx.doi.org/10.1186/s13007-019-0487-8] [PMID: 31516543]
[55]
Benard, O.; Chi, Y. Medicinal properties of mangiferin, structural features, derivative synthesis, pharmacokinetics and biological activities. Mini Rev. Med. Chem., 2015, 15(7), 582-594.
[http://dx.doi.org/10.2174/1389557515666150401111410] [PMID: 25827900]
[56]
Lampariello, L.R.; Cortelazzo, A.; Guerranti, R.; Sticozzi, C.; Valacchi, G. The magic velvet bean of Mucuna pruriens. J. Tradit. Complement. Med., 2012, 2(4), 331-339.
[http://dx.doi.org/10.1016/S2225-4110(16)30119-5] [PMID: 24716148]
[57]
Chen, X.; Zhou, Y.; Chen, Y.; Zhu, Y.; Fang, F.; Chen, L. Ginsenoside Rg1 reduces MPTP-induced substantia nigra neuron loss by suppressing oxidative stress1. Acta Pharmacol. Sin., 2005, 26(1), 56-62.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00019.x] [PMID: 15659115]
[58]
Cole, G.M.; Teter, B.; Frautschy, S.A. Neuroprotective effects of curcumin. Adv. Exp. Med. Biol., 2007, 595, 197-212.
[http://dx.doi.org/10.1007/978-0-387-46401-5_8] [PMID: 17569212]
[59]
Niso-Santano, M.; González-Polo, R.A.; Paredes-Barquero, M.; Fuentes, J.M.; Aschner, M. Natural products in the promotion of healthspan and longevity. Clin. Pharmacol. Transl. Med., 2019, 3(1), 149-151.
[PMID: 31363716]
[60]
Eleftheriou, D.; Benetou, V.; Trichopoulou, A.; La Vecchia, C.; Bamia, C. Mediterranean diet and its components in relation to all-cause mortality: meta-analysis. Br. J. Nutr., 2018, 120(10), 1081-1097.
[http://dx.doi.org/10.1017/S0007114518002593] [PMID: 30401007]
[61]
Shi, Z.; Zhang, T.; Byles, J.; Martin, S.; Avery, J.; Taylor, A. Food habits, lifestyle factors and mortality among oldest old Chinese: The Chinese longitudinal healthy longevity survey (CLHLS). Nutrients, 2015, 7(9), 7562-7579.
[http://dx.doi.org/10.3390/nu7095353] [PMID: 26371039]
[62]
Zarse, K.; Bossecker, A.; Müller-Kuhrt, L.; Siems, K.; Hernandez, M.A.; Berendsohn, W.G.; Birringer, M.; Ristow, M. The phytochemical glaucarubinone promotes mitochondrial metabolism, reduces body fat, and extends lifespan of Caenorhabditis elegans. Horm. Metab. Res., 2011, 43(4), 241-243.
[http://dx.doi.org/10.1055/s-0030-1270524] [PMID: 21264793]
[63]
Kumar, R.; Gupta, K.; Saharia, K.; Pradhan, D.; Subramaniam, J.R. Withania somnifera root extract extends lifespan of Caenorhabditis elegans. Ann. Neurosci., 2013, 20(1), 13-16.
[http://dx.doi.org/10.5214/ans.0972.7531.200106] [PMID: 25206003]
[64]
Lee, S.H.; An, H.S.; Jung, Y.W.; Lee, E.J.; Lee, H.Y.; Choi, E.S.; An, S.W.; Son, H.; Lee, S.J.; Kim, J.B.; Min, K.J. Korean mistletoe (Viscum album coloratum) extract extends the lifespan of nematodes and fruit flies. Biogerontology, 2014, 15(2), 153-164.
[http://dx.doi.org/10.1007/s10522-013-9487-7] [PMID: 24337961]
[65]
Zamberlan, D.C.; Amaral, G.P.; Arantes, L.P.; Machado, M.L.; Mizdal, C.R.; Campos, M.M.A.; Soares, F.A.A. Rosmarinus officinalis L. increases Caenorhabditis elegans stress resistance and longevity in a DAF-16, HSF-1 and SKN-1-dependent manner. Braz. J. Med. Biol. Res., 2016, 49(9), e5235.
[http://dx.doi.org/10.1590/1414-431x20165235] [PMID: 27533765]
[66]
Kim, Y.S.; Han, Y.T.; Jeon, H.; Cha, D.S. Antiageing properties of Damaurone D in Caenorhabditis elegans. J. Pharm. Pharmacol., 2018, 70(10), 1423-1429.
[http://dx.doi.org/10.1111/jphp.12979] [PMID: 29992572]
[67]
Pandey, S.; Phulara, S.C.; Mishra, S.K.; Bajpai, R.; Kumar, A.; Niranjan, A.; Lehri, A.; Upreti, D.K.; Chauhan, P.S. Betula utilis extract prolongs life expectancy, protects against amyloid-β toxicity and reduces Alpha Synuclien in Caenorhabditis elegans via DAF-16 and SKN-1. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2020, 228, 108647.
[http://dx.doi.org/10.1016/j.cbpc.2019.108647] [PMID: 31669661]
[68]
Piegholdt, S.; Rimbach, G.; Wagner, A.E. The phytoestrogen prunetin affects body composition and improves fitness and lifespan in male Drosophila melanogaster. FASEB J., 2016, 30(2), 948-958.
[http://dx.doi.org/10.1096/fj.15-282061] [PMID: 26538555]
[69]
Chatzigeorgiou, S.; Thai, Q.D.; Tchoumtchoua, J.; Tallas, K.; Tsakiri, E.N.; Papassideri, I.; Halabalaki, M.; Skaltsounis, A.L.; Trougakos, I.P. Isolation of natural products with anti-ageing activity from the fruits of Platanus orientalis. Phytomedicine, 2017, 33, 53-61.
[http://dx.doi.org/10.1016/j.phymed.2017.07.009] [PMID: 28887920]
[70]
Niraula, P.; Ghimire, S.; Lee, H.; Kim, M.S. Ilex paraguariensis extends lifespan and increases an ability to resist environmental stresses in drosophila. Rejuvenation Res., 2018, 21(6), 497-505.
[http://dx.doi.org/10.1089/rej.2017.2023] [PMID: 29756514]
[71]
Wu, Z.; Wu, A.; Dong, J.; Sigears, A.; Lu, B. Grape skin extract improves muscle function and extends lifespan of a Drosophila model of Parkinson’s disease through activation of mitophagy. Exp. Gerontol., 2018, 113, 10-17.
[http://dx.doi.org/10.1016/j.exger.2018.09.014] [PMID: 30248358]
[72]
Carmona-Gutierrez, D.; Zimmermann, A.; Kainz, K.; Pietrocola, F.; Chen, G.; Maglioni, S.; Schiavi, A.; Nah, J.; Mertel, S.; Beuschel, C.B.; Castoldi, F.; Sica, V.; Trausinger, G.; Raml, R.; Sommer, C.; Schroeder, S.; Hofer, S.J.; Bauer, M.A.; Pendl, T.; Tadic, J.; Dammbrueck, C.; Hu, Z.; Ruckenstuhl, C.; Eisenberg, T.; Durand, S.; Bossut, N.; Aprahamian, F.; Abdellatif, M.; Sedej, S.; Enot, D.P.; Wolinski, H.; Dengjel, J.; Kepp, O.; Magnes, C.; Sinner, F.; Pieber, T.R.; Sadoshima, J.; Ventura, N.; Sigrist, S.J.; Kroemer, G.; Madeo, F. The flavonoid 4,4′-dimethoxychalcone promotes autophagy-dependent longevity across species. Nat. Commun., 2019, 10(1), 651.
[http://dx.doi.org/10.1038/s41467-019-08555-w] [PMID: 30783116]
[73]
Wang, P.; Sun, H.; Liu, D.; Jiao, Z.; Yue, S.; He, X.; Xia, W.; Ji, J.; Xiang, L. Protective effect of a phenolic extract containing indoline amides from Portulaca oleracea against cognitive impairment in senescent mice induced by large dose of D -galactose/NaNO 2. J. Ethnopharmacol., 2017, 203, 252-259.
[http://dx.doi.org/10.1016/j.jep.2017.03.050] [PMID: 28363525]
[74]
Dutta, K.; Patel, P.; Julien, J.P. Protective effects of Withania somnifera extract in SOD1G93A mouse model of amyotrophic lateral sclerosis. Exp. Neurol., 2018, 309, 193-204.
[http://dx.doi.org/10.1016/j.expneurol.2018.08.008] [PMID: 30134145]
[75]
Pan, M.H.; Wu, J.C.; Ho, C.T.; Badmaev, V. Effects of water extract of Curcuma longa (L.) roots on immunity and telomerase function. J. Complement. Integr. Med., 2017, 14(3), 14.
[http://dx.doi.org/10.1515/jcim-2015-0107] [PMID: 28889732]
[76]
Souza-Monteiro, J.R.; Arrifano, G.P.F.; Queiroz, A.I.D.G.; Mello, B.S.F.; Custódio, C.S.; Macêdo, D.S.; Hamoy, M.; Paraense, R.S.O.; Bittencourt, L.O.; Lima, R.R.; Burbano, R.R.; Rogez, H.; Maia, C.F.; Macchi, B.M.; do Nascimento, J.L.M.; Crespo-López, M.E. Antidepressant and antiaging effects of Açaí (Euterpe oleracea Mart.) in mice. Oxid. Med. Cell. Longev., 2019, 2019, 1-16.
[http://dx.doi.org/10.1155/2019/3614960] [PMID: 31428223]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy