Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Letter Article

Kinetics of Ca2+ Dissociation from Cod Parvalbumin Studied by Fluorescent Stopped-flow Method

Author(s): Victor I. Emelyanenko, Alisa A. Vologzhannikova*, Alexey S. Kazakov, Nadezhda I. Borisova and Eugene A. Permyakov

Volume 30, Issue 2, 2023

Published on: 02 February, 2023

Page: [108 - 115] Pages: 8

DOI: 10.2174/0929866530666230109123224

Price: $65

Abstract

Background: Small Ca2+-binding protein parvalbumin possesses two strong Ca2+/Mg2+- binding sites located within two EF-hand domains. Most parvalbumins have no tryptophan residues, while cod protein contains a single tryptophan residue, which fluorescence (spectrum maximum position and fluorescence quantum yield) is highly sensitive to the Ca2+ association/dissociation.

Objective: Intrinsic protein fluorescence of cod parvalbumin can be used for elucidating the mechanism of Ca2+ binding to this protein. Fluorescence of the single tryptophan residue of cod parvalbumin has been used to monitor Ca2+-induced changes in the protein, both in steady-state and kinetic mode.

Methods: Steady-state fluorescence spectra of cod parvalbumin were measured using Cary Eclipse spectrofluorimeter. Stopped-flow accessories in combination with a novel high-speed spectrofluorimeter were used for measurements of kinetics of Ca2+ dissociation from cod parvalbumin after fast mixing of Ca2+-loaded protein with a chelator of divalent metal cations ethylenediaminetetraacetic acid (EDTA).

Results: The fluorescent phase plots (fluorescence intensity at a fixed wavelength plotted against a fluorescence intensity at another fixed wavelength), constructed from steady state and kinetical data, shows a break at [Ca2+]/[parvalbumin] ratio close to 1. This means that the transition passes through an intermediate state, which is a protein with one bound calcium ion. These observations indicate that the binding of Ca2+ to cod parvalbumin is sequential.

Conclusion: The results of the present spectral study showed that the binding of Ca2+ to cod parvalbumin is a sequential process. Calcium dissociation rate constants for the two binding sites of cod parvalbumin evaluated from the kinetic data are koff1 = 1.0 s-1 and koff2 = 1.5 s-1.

Graphical Abstract

[1]
Permyakov, E.A. Parvalbumin; Nova Science Publishers: New York, 2006.
[2]
Permyakov, E.A.; Kretsinger, R.H. Calcium Binding Proteins; A John Wiley & Sons Inc.: Hoboken: New Jersey , 2011.
[3]
Permyakov, E.A.; Uversky, V.N.; Permyakov, S.E. Parvalbumin as a pleomorphic protein. Curr. Protein Pept. Sci., 2017, 18(8), 780-794.
[http://dx.doi.org/10.2174/1389203717666161213115746] [PMID: 27964700]
[4]
Arif, S.H.A. Ca2+-binding protein with numerous roles and uses: Parvalbumin in molecular biology and physiology. BioEssays, 2009, 31(4), 410-421.
[http://dx.doi.org/10.1002/bies.200800170] [PMID: 19274659]
[5]
Smargiassi, M.; Daghfous, G.; Leroy, B.; Legreneur, P.; Toubeau, G.; Bels, V.; Wattiez, R. Chemical basis of prey recognition in thamnophiine snakes: The unexpected new roles of parvalbumins. PLoS One, 2012, 7(6), e39560.
[http://dx.doi.org/10.1371/journal.pone.0039560] [PMID: 22761824]
[6]
Yin, Y.; Henzl, M.T.; Lorber, B.; Nakazawa, T.; Thomas, T.T.; Jiang, F.; Langer, R.; Benowitz, L.I. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat. Neurosci., 2006, 9(6), 843-852.
[http://dx.doi.org/10.1038/nn1701] [PMID: 16699509]
[7]
Novak Kujundžić R.; Steffens, W.L.; Brewer, J.M.; Henzl, M.T.; Ragland, W.L. Characterization of avian thymic hormone and chicken parvalbumin 3 target cells. Int. Immunopharmacol., 2013, 15(2), 282-288.
[http://dx.doi.org/10.1016/j.intimp.2012.12.013] [PMID: 23333630]
[8]
Nockolds, C.E.; Kretsinger, R.H.; Coffee, C.J.; Bradshaw, R.A. Structure of a calcium-binding carp myogen. Proc. Natl. Acad. Sci. USA, 1972, 69(3), 581-584.
[http://dx.doi.org/10.1073/pnas.69.3.581] [PMID: 4501574]
[9]
Kretsinger, R.H.; Nockolds, C.E. Carp muscle calcium-binding protein. II. Structure determination and general description. J. Biol. Chem., 1973, 248(9), 3313-3326.
[http://dx.doi.org/10.1016/S0021-9258(19)44043-X] [PMID: 4700463]
[10]
Permyakov, E.A.; Yarmolenko, V.V.; Emelyanenko, V.I.; Burstein, E.A.; Closset, J.; Gerday, C. Fluorescence studies of the calcium binding to whiting (Gadus merlangus) parvalbumin. Eur. J. Biochem., 1980, 109(1), 307-315.
[http://dx.doi.org/10.1111/j.1432-1033.1980.tb04796.x] [PMID: 6773772]
[11]
Castelli, F.; White, H.D.; Forster, L.S. Lifetime and quenching of tryptophan fluorescence in whiting parvalbumin. Biochemistry, 1988, 27(9), 3366-3372.
[http://dx.doi.org/10.1021/bi00409a037] [PMID: 3390437]
[12]
Permyakov, E.A.; Ostrovsky, A.V.; Kalinichenko, L.P. Stopped-flow kinetic studies of Ca(II) and Mg(II) dissociation in cod parvalbumin and bovine α-lactalbumin. Biophys. Chem., 1987, 28(3), 225-233.
[http://dx.doi.org/10.1016/0301-4622(87)80093-5] [PMID: 3440123]
[13]
Haiech, J.; Derancourt, J.; Pechere, J.F.; Demaille, J.G. A new large-scale purification procedure for muscular parvalbumins. Biochimie, 1979, 61(5-6), 583-587.
[http://dx.doi.org/10.1016/S0300-9084(79)80155-8] [PMID: 315239]
[14]
Scopes, R.K. Measurement of protein by spectrophotometry at 205 nm. Anal. Biochem., 1974, 59(1), 277-282.
[http://dx.doi.org/10.1016/0003-2697(74)90034-7] [PMID: 4407487]
[15]
Schwaller, B. The use of transgenic mouse models to reveal the functions of Ca2+ buffer proteins in excitable cells. Biochim. Biophys. Acta, 2012, 1820(8), 1294-1303.
[http://dx.doi.org/10.1016/j.bbagen.2011.11.008] [PMID: 22138448]
[16]
Blum, H.E.; Lehky, P.; Kohler, L.; Stein, E.A.; Fischer, E.H. Comparative properties of vertebrate parvalbumins. J. Biol. Chem., 1977, 252(9), 2834-2838.
[http://dx.doi.org/10.1016/S0021-9258(17)40438-8] [PMID: 856805]
[17]
Burstein, E.A.; Emelyanenko, V.I. Log-normal description of fluorescence spectra of organic fluorophores. Photochem. Photobiol., 1996, 64(2), 316-320.
[http://dx.doi.org/10.1111/j.1751-1097.1996.tb02464.x]
[18]
Krivenko, V.G.; Khodasevich, Yu.L.; Pantuz, S.N.; Emelyanonko, V.I.; Borisova, N.I.; Permyakov, E.A. High-speed spectrofluorimeter SFL-S. A Nauchnoye Priborostroeniye, 2021, 31, 23-34.
[http://dx.doi.org/10.18358/np-31-2-i2334]
[19]
Permyakov, S.E.; Vologzhannikova, A.A.; Emelyanenko, V.I.; Knyazeva, E.L.; Kazakov, A.S.; Lapteva, Y.S.; Permyakova, M.E.; Zhadan, A.P.; Permyakov, E.A. The impact of alpha-N-acetylation on structural and functional status of parvalbumin. Cell Calcium, 2012, 52(5), 366-376.
[http://dx.doi.org/10.1016/j.ceca.2012.06.002] [PMID: 22742764]
[20]
Burstein, E.A. Intrinsic Protein Luminescence. Origin and Applications. Biophysics, 1977, 7.
[21]
Permyakov, E.A. Luminescent Spectroscopy of Proteins; CRC Press: Boca Raton, Ann Arbor: London , 1993.
[22]
Forsythe, G.E.; Malcolm, M.A.; Molar, C.B. Computer Methods for Mathematical Computations; Prentice-Hall, 1977.
[23]
Smith, P.D.; Liesegang, G.W.; Berger, R.L.; Czerlinski, G.; Podolsky, R.J. A stopped-flow investigation of calcium ion binding by ethylene glycol bis(β-aminoethyl ether)-N,N′-tetraacetic acid. Anal. Biochem., 1984, 143(1), 188-195.
[http://dx.doi.org/10.1016/0003-2697(84)90575-X] [PMID: 6442108]
[24]
Schwarzenbach, G.; Flaschka, H. Die Komplexometrische Titration; Ferdinand Enke Verlag: Stuttgart, 1965.
[25]
Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math., 1963, 11(2), 431-441.
[http://dx.doi.org/10.1137/0111030]
[26]
White, H.D. Kinetic mechanism of calcium binding to whiting parvalbumin. Biochemistry, 1988, 27(9), 3357-3365.
[http://dx.doi.org/10.1021/bi00409a036] [PMID: 3390436]
[27]
Vologzhannikova, A.A.; Shevelyova, M.P.; Kazakov, A.S.; Sokolov, A.S.; Borisova, N.I.; Permyakov, E.A.; Kircheva, N.; Nikolova, V.; Dudev, T.; Permyakov, S.E. Strontium binding to α-parvalbumin, a canonical CALCIUM-binding protein of the “EF-hand” family. Biomolecules, 2021, 11(8), 1158.
[http://dx.doi.org/10.3390/biom11081158] [PMID: 34439824]
[28]
Breen, P.J.; Hild, E.K.; Horrocks, W.D., Jr Spectroscopic studies of metal ion binding to a tryptophan-containing parvalbumin. Biochemistry, 1985, 24(19), 4991-4997.
[http://dx.doi.org/10.1021/bi00340a005] [PMID: 4074671]
[29]
Lee, L.; Sykes, B.D. Proton nuclear magnetic resonance determination of the sequential ytterbium replacement of calcium in carp parvalbumin. Biochemistry, 1981, 20(5), 1156-1162.
[http://dx.doi.org/10.1021/bi00508a017] [PMID: 7225322]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy