Abstract
Background: Drug resistance is a current issue affecting parasites caused by Plasmodium. Therefore, researchers have expanded their studies on nanoparticles to find new and effective drugs that can treat drug-resistant strains. The present study systematically investigates the effect of different nanoparticles, including metal, polymer, and lipid nanoparticles, on Plasmodium berghei.
Methods: In this study, English-language online literature was obtained from the databases Science Direct, PubMed, Scopus, Ovid, and Cochrane to conduct a systematic review. In the search, we used the keywords: (Plasmodium Berghei) AND (Malaria) AND (Parasitemia) AND (antimalarial activity) AND (nanoparticles) AND (Solid lipid NPS) AND (Nano lipid carriers) AND (Artemether) AND (Chloroquine) AND (intraperitoneal) AND (in vivo). Initially, a total of 160 studies were retrieved from the search. After removing duplicates, 80 studies remained. After reviewing the title and abstract of each study, 45 unrelated studies were eliminated.
Results: The remaining 35 studies were thoroughly reviewed using the full texts. The final result was 21 studies that met the inclusion/exclusion criteria.
Conclusion: Using these findings, we can conclude that various nanoparticles possess antiparasitic effects that may be applied to emerging and drug-resistant parasites. Together, these findings suggest that nanostructures may be used to design antiparasitic drugs that are effective against Plasmodium berghei.
Graphical Abstract
[http://dx.doi.org/10.1080/17512433.2018.1387773] [PMID: 28965427]
[http://dx.doi.org/10.1155/2021/5539544]
[http://dx.doi.org/10.1016/j.addr.2013.07.011] [PMID: 23892192]
[http://dx.doi.org/10.1007/s11095-004-9003-5] [PMID: 15771224]
[http://dx.doi.org/10.1007/s00253-005-0179-3] [PMID: 16317546]
[http://dx.doi.org/10.1016/j.molstruc.2020.129857]
[http://dx.doi.org/10.1021/acsabm.1c00635] [PMID: 35006689]
[http://dx.doi.org/10.1002/iub.2394] [PMID: 33037778]
[http://dx.doi.org/10.1016/j.ebiom.2019.06.026] [PMID: 31255656]
[http://dx.doi.org/10.1038/s41598-018-21351-8] [PMID: 29449583]
[http://dx.doi.org/10.1007/s00436-016-5310-0] [PMID: 27815736]
[http://dx.doi.org/10.1016/j.rvsc.2016.03.001] [PMID: 27234530]
[http://dx.doi.org/10.1016/j.jgar.2019.08.002] [PMID: 31404680]
[http://dx.doi.org/10.2147/IJN.S227914] [PMID: 32021159]
[http://dx.doi.org/10.1038/s41467-017-02603-z] [PMID: 29358624]
[http://dx.doi.org/10.1080/08982104.2017.1376684] [PMID: 28874081]
[http://dx.doi.org/10.3109/10717544.2016.1162876] [PMID: 27022886]
[http://dx.doi.org/10.3109/10717544.2014.905883] [PMID: 24786480]
[http://dx.doi.org/10.1080/10837450.2017.1372781] [PMID: 28851256]
[http://dx.doi.org/10.3389/fphar.2018.00562] [PMID: 29899700]
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.026] [PMID: 29454237]
[http://dx.doi.org/10.1208/s12249-017-0854-6] [PMID: 28875471]
[http://dx.doi.org/10.4103/1995-7645.242312]
[http://dx.doi.org/10.1631/jzus.B1600389] [PMID: 29119735]
[http://dx.doi.org/10.1016/j.scitotenv.2020.143851] [PMID: 33257061]
[http://dx.doi.org/10.1007/s11686-021-00459-4] [PMID: 34398379]
[http://dx.doi.org/10.4274/tjps.53825] [PMID: 32454652]
[http://dx.doi.org/10.1007/s10876-016-1107-7]
[http://dx.doi.org/10.1016/j.addr.2020.06.018] [PMID: 32592727]
[http://dx.doi.org/10.1021/acsbiomaterials.0c01132] [PMID: 33966377]
[http://dx.doi.org/10.1016/j.jconrel.2021.12.030] [PMID: 34971694]
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.003] [PMID: 23318667]
[http://dx.doi.org/10.1016/j.addr.2009.11.024] [PMID: 19914313]
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.022] [PMID: 28229944]
[http://dx.doi.org/10.1016/j.rvsc.2009.06.010] [PMID: 19647842]
[http://dx.doi.org/10.3390/pharmaceutics11100534] [PMID: 31615112]
[http://dx.doi.org/10.1039/D0TB01398F] [PMID: 32955067]
[http://dx.doi.org/10.15806/j.issn.2311-8571.2016.0002]
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[http://dx.doi.org/10.1016/S0731-7085(01)00611-2] [PMID: 11861104]