Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Mini-Review Article

The Role of LncRNA XIST in Gynecologic Cancers

Author(s): Razieh Mohammad Jafari, Ali Tahan, Mohammad Amin Askari, Hasti Roshandel, Seyed Mohammad Ali Gharizadeh and Maryam Farzaneh*

Volume 19, Issue 3, 2023

Published on: 09 March, 2023

Page: [172 - 176] Pages: 5

DOI: 10.2174/1573394719666230102124549

Price: $65

Abstract

Long non-coding RNAs (lncRNAs) are non-coding RNAs longer than 200 nucleotides that act by targeting translational and post-translational modifications, epigenetic regulators, and chromatin remodeling complexes. There has been increasing evidence that the lncRNA X-inactive specific transcript (lncRNA Xist) via targeting miRNAs and transcription factors plays a critical role in cell growth, proliferation, and differentiation. This lncRNA also has an important role in the progression of tumors and other human diseases by acting as a competing endogenous RNA (ceRNA). Accumulating evidence revealed that lncRNA Xist by targeting several signaling pathways is involved in the pathogenesis of gynecologic cancers. In this review, we focused on the recent functions of lncRNA Xist in breast, cervical, and ovarian cancers.

[1]
Xu WW, Jin J, Wu X, Ren QL, Farzaneh M. MALAT1-related signaling pathways in colorectal cancer. Cancer Cell Int 2022; 22(1): 126.
[http://dx.doi.org/10.1186/s12935-022-02540-y] [PMID: 35305641]
[2]
Sur S, Ray RB. Emerging role of lncRNA ELDR in development and cancer. FEBS J 2022; 289(11): 3011-23.
[http://dx.doi.org/10.1111/febs.15876] [PMID: 33860640]
[3]
Montalbano A, Canver MC, Sanjana NE. High-throughput approaches to pinpoint function within the noncoding genome. Mol Cell 2017; 68(1): 44-59.
[http://dx.doi.org/10.1016/j.molcel.2017.09.017] [PMID: 28985510]
[4]
Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology. Cell 2019; 179(5): 1033-55.
[http://dx.doi.org/10.1016/j.cell.2019.10.017] [PMID: 31730848]
[5]
Connerty P, Lock RB, de Bock CE. Long non-coding RNAs: Major regulators of cell stress in cancer. Front Oncol 2020; 10: 285.
[http://dx.doi.org/10.3389/fonc.2020.00285] [PMID: 32266130]
[6]
Jiang W, Lv Y, Wang S. Prediction of non-coding RNAs as drug targets. In: Li X, Xu J, Xiao Y, Ning S, Zhang Y, (eds) Non-coding RNAs in Complex Diseases. In: Advances in Experimental Medicine and Biology. Singapore: Springer 2018; 1094.
[http://dx.doi.org/10.1007/978-981-13-0719-5_11]
[7]
Zhou H, Sun L, Wan F. Molecular mechanisms of TUG1 in the proliferation, apoptosis, migration and invasion of cancer cells (Review). Oncol Lett 2019; 18(5): 4393-402.
[http://dx.doi.org/10.3892/ol.2019.10848] [PMID: 31611948]
[8]
Brown CJ, Hendrich BD, Rupert JL, et al. The human XIST gene: Analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 1992; 71(3): 527-42.
[http://dx.doi.org/10.1016/0092-8674(92)90520-M] [PMID: 1423611]
[9]
Debrand E, Heard E, Avner P. Cloning and localization of the murine Xpct gene: Evidence for complex rearrangements during the evolution of the region around the Xist gene. Genomics 1998; 48(3): 296-303.
[http://dx.doi.org/10.1006/geno.1997.5173] [PMID: 9545634]
[10]
Lee JT, Bartolomei MS. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 2013; 152(6): 1308-23.
[http://dx.doi.org/10.1016/j.cell.2013.02.016] [PMID: 23498939]
[11]
da Rocha ST, Heard E. Novel players in X inactivation: Insights into Xist-mediated gene silencing and chromosome conformation. Nat Struct Mol Biol 2017; 24(3): 197-204.
[http://dx.doi.org/10.1038/nsmb.3370] [PMID: 28257137]
[12]
Yang Z, Jiang X, Jiang X, Zhao H. X-inactive-specific transcript: A long noncoding RNA with complex roles in human cancers. Gene 2018; 679: 28-35.
[http://dx.doi.org/10.1016/j.gene.2018.08.071] [PMID: 30171939]
[13]
Brockdorff N. Localized accumulation of Xist RNA in X chromosome inactivation. Open Biol 2019; 9(12)190213
[http://dx.doi.org/10.1098/rsob.190213] [PMID: 31795917]
[14]
Wang W, Min L, Qiu X, et al. Biological function of long non-coding RNA (LncRNA) Xist. Front Cell Dev Biol 2021; 9645647
[http://dx.doi.org/10.3389/fcell.2021.645647] [PMID: 34178980]
[15]
Kopp F. Molecular functions and biological roles of long non-coding RNAs in human physiology and disease. J Gene Med 2019; 21(8)e3104
[http://dx.doi.org/10.1002/jgm.3104] [PMID: 31177599]
[16]
Siniscalchi C, Di Palo A, Russo A, Potenza N. The lncRNAs at X chromosome inactivation center: Not just a matter of sex dosage compensation. Int J Mol Sci 2022; 23(2): 611.
[http://dx.doi.org/10.3390/ijms23020611] [PMID: 35054794]
[17]
Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol 2012; 6(6): 590-610.
[http://dx.doi.org/10.1016/j.molonc.2012.09.006] [PMID: 23102669]
[18]
Zhang Y, Yuan Q, Wei Q, et al. Long noncoding RNA XIST modulates microRNA-135/CREB1 axis to influence osteogenic differentiation of osteoblast-like cells in mice with tibial fracture healing. Hum Cell 2022; 35(1): 133-49.
[http://dx.doi.org/10.1007/s13577-021-00629-6] [PMID: 34635983]
[19]
Vallot C, Ouimette JF, Rougeulle C. Establishment of X chromosome inactivation and epigenomic features of the inactive X depend on cellular contexts. BioEssays 2016; 38(9): 869-80.
[http://dx.doi.org/10.1002/bies.201600121] [PMID: 27389958]
[20]
Fang H, Disteche CM, Berletch JB. X inactivation and escape: Epigenetic and structural features. Front Cell Dev Biol 2019; 7: 219.
[http://dx.doi.org/10.3389/fcell.2019.00219] [PMID: 31632970]
[21]
Zhou K, Li S, Du G, et al. LncRNA XIST depletion prevents cancer progression in invasive pituitary neuroendocrine tumor by inhibiting bFGF via upregulation of microRNA-424-5p. OncoTargets Ther 2019; 12: 7095-109.
[http://dx.doi.org/10.2147/OTT.S208329] [PMID: 31564894]
[22]
Yang J, Qi M, Fei X, Wang X, Wang K. Long non-coding RNA XIST: A novel oncogene in multiple cancers. Mol Med 2021; 27(1): 159.
[http://dx.doi.org/10.1186/s10020-021-00421-0] [PMID: 34930117]
[23]
Eldesouki S, Samara KA, Qadri R, et al. XIST in brain cancer. Clin Chim Acta 2022; 531: 283-90.
[http://dx.doi.org/10.1016/j.cca.2022.04.993] [PMID: 35483442]
[24]
Zhou K, Yang J, Li X, Chen W. Long non coding RNA XIST promotes cell proliferation and migration through targeting miR 133a in bladder cancer. Exp Ther Med 2019; 18(5): 3475-83.
[http://dx.doi.org/10.3892/etm.2019.7960] [PMID: 31602223]
[25]
Yang H, Zhang X, Zhao Y, et al. Downregulation of lncRNA XIST represses tumor growth and boosts radiosensitivity of neuroblastoma via modulation of the miR-375/L1CAM Axis. Neurochem Res 2020; 45(11): 2679-90.
[http://dx.doi.org/10.1007/s11064-020-03117-9] [PMID: 32857295]
[26]
Liu H, Deng H, Zhao Y, Li C, Liang Y. LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT signaling. J Exp Clin Cancer Res 2018; 37(1): 279.
[http://dx.doi.org/10.1186/s13046-018-0950-9] [PMID: 30463570]
[27]
Xu Y, Wang J, Wang J. Long noncoding RNA XIST promotes proliferation and invasion by targeting miR-141 in papillary thyroid carcinoma. OncoTargets Ther 2018; 11: 5035-43.
[http://dx.doi.org/10.2147/OTT.S170439] [PMID: 30174441]
[28]
Razavi ZS, Tajiknia V, Majidi S, et al. Gynecologic cancers and non-coding RNAs: Epigenetic regulators with emerging roles. Crit Rev Oncol Hematol 2021; 157103192
[http://dx.doi.org/10.1016/j.critrevonc.2020.103192] [PMID: 33290823]
[29]
Li J, Ming Z, Yang L, Wang T, Liu G, Ma Q. Long noncoding RNA XIST: Mechanisms for X chromosome inactivation, roles in sex-biased diseases, and therapeutic opportunities. Genes Dis 2022; 9(6): 1478-92.
[http://dx.doi.org/10.1016/j.gendis.2022.04.007] [PMID: 36157489]
[30]
Disteche CM. Dosage compensation of the sex chromosomes and autosomes. In: Seminars in cell & developmental biology. Elsevier 2016; pp. 9-18.
[http://dx.doi.org/10.1016/j.semcdb.2016.04.013]
[31]
Strehle M, Guttman M. Xist drives spatial compartmentalization of DNA and protein to orchestrate initiation and maintenance of X inactivation. Curr Opin Cell Biol 2020; 64: 139-47.
[http://dx.doi.org/10.1016/j.ceb.2020.04.009] [PMID: 32535328]
[32]
Meyer BJ. Mechanisms of sex determination and X-chromosome dosage compensation. Genetics 2022; 220(2)iyab197
[http://dx.doi.org/10.1093/genetics/iyab197] [PMID: 35100381]
[33]
Sahakyan A, Yang Y, Plath K. The role of xist in X-chromosome dosage compensation. Trends Cell Biol 2018; 28(12): 999-1013.
[http://dx.doi.org/10.1016/j.tcb.2018.05.005] [PMID: 29910081]
[34]
Chitiashvili T, Dror I, Kim R, et al. Female human primordial germ cells display X-chromosome dosage compensation despite the absence of X-inactivation. Nat Cell Biol 2020; 22(12): 1436-46.
[http://dx.doi.org/10.1038/s41556-020-00607-4] [PMID: 33257808]
[35]
Maduro C, de Hoon B, Gribnau J. Fitting the puzzle pieces: The bigger picture of XCI. Trends Biochem Sci 2016; 41(2): 138-47.
[http://dx.doi.org/10.1016/j.tibs.2015.12.003] [PMID: 26796628]
[36]
Colognori D, Sunwoo H, Wang D, Wang CY, Lee JT. Xist repeats a and b account for two distinct phases of x inactivation establishment. Dev Cell 2020; 54(1): 21-32.e5.
[http://dx.doi.org/10.1016/j.devcel.2020.05.021] [PMID: 32531209]
[37]
Sidorenko J, Kassam I, Kemper KE, et al. The effect of X-linked dosage compensation on complex trait variation. Nat Commun 2019; 10(1): 3009.
[http://dx.doi.org/10.1038/s41467-019-10598-y] [PMID: 31285442]
[38]
Monfort A, Wutz A. The B-side of Xist. F1000 Res 2020; 9: 55.
[http://dx.doi.org/10.12688/f1000research.21362.1] [PMID: 32047616]
[39]
Pintacuda G, Young AN, Cerase A. Function by structure: Spotlights on Xist long non-coding RNA. Front Mol Biosci 2017; 4: 90.
[http://dx.doi.org/10.3389/fmolb.2017.00090] [PMID: 29302591]
[40]
Robert Finestra T, Gribnau J. X chromosome inactivation: Silencing, topology and reactivation. Curr Opin Cell Biol 2017; 46: 54-61.
[http://dx.doi.org/10.1016/j.ceb.2017.01.007] [PMID: 28236732]
[41]
Giorgetti L, Lajoie BR, Carter AC, et al. Structural organization of the inactive X chromosome in the mouse. Nature 2016; 535(7613): 575-9.
[http://dx.doi.org/10.1038/nature18589] [PMID: 27437574]
[42]
Mira-Bontenbal H, Gribnau J. New xist-interacting proteins in x-chromosome inactivation. Curr Biol 2016; 26(8): R338-42.
[http://dx.doi.org/10.1016/j.cub.2016.03.022] [PMID: 27115694]
[43]
Chu C, Zhang QC, da Rocha ST, et al. Systematic discovery of Xist RNA binding proteins. Cell 2015; 161(2): 404-16.
[http://dx.doi.org/10.1016/j.cell.2015.03.025] [PMID: 25843628]
[44]
Wang Z, Qiu H, He J, et al. The emerging roles of hnRNPK. J Cell Physiol 2020; 235(3): 1995-2008.
[http://dx.doi.org/10.1002/jcp.29186] [PMID: 31538344]
[45]
Alkabban FM, Ferguson T. Breast cancer StatPearls. Treasure Island, FL: StatPearls Publishing LLC 2022.
[46]
Soudyab M, Iranpour M, Ghafouri FS. The role of long non-coding RNAs in breast cancer. Arch Iran Med 2016; 19(7): 508-17.
[47]
Smolarz B, Zadrożna-Nowak A, Romanowicz H. The role of lncrna in the development of tumors, including breast cancer. Int J Mol Sci 2021; 22(16): 8427.
[http://dx.doi.org/10.3390/ijms22168427] [PMID: 34445129]
[48]
Romagnolo A, Romagnolo D, Selmin O. BRCA1 as target for breast cancer prevention and therapy. Anticancer Agents Med Chem 2014; 15(1): 4-14.
[http://dx.doi.org/10.2174/1871520614666141020153543] [PMID: 25329591]
[49]
Librizzi M, Chiarelli R, Bosco L, et al. The histone deacetylase inhibitor JAHA down-regulates pERK and global DNA methylation in MDA-MB231 breast cancer cells. Materials 2015; 8(10): 7041-7.
[http://dx.doi.org/10.3390/ma8105358] [PMID: 28793617]
[50]
Shukla S, Penta D, Mondal P, Meeran SM. Epigenetics of breast cancer: Clinical status of epi-drugs and phytochemicals. Breast Cancer Metastasis and Drug Resistance 2019; pp. 293-310.
[51]
Salvador MA, Wicinski J, Cabaud O, et al. The histone deacetylase inhibitor abexinostat induces cancer stem cells differentiation in breast cancer with low Xist expression. Clin Cancer Res 2013; 19(23): 6520-31.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0877] [PMID: 24141629]
[52]
Chaligné R, Popova T, Mendoza-Parra MA, et al. The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer. Genome Res 2015; 25(4): 488-503.
[http://dx.doi.org/10.1101/gr.185926.114] [PMID: 25653311]
[53]
Zhao L, Zhao Y, He Y, Li Q, Mao Y. The functional pathway analysis and clinical significance of miR-20a and its related lncRNAs in breast cancer. Cell Signal 2018; 51: 152-65.
[http://dx.doi.org/10.1016/j.cellsig.2018.08.004] [PMID: 30092355]
[54]
Zheng R, Lin S, Guan L, et al. Long non-coding RNA XIST inhibited breast cancer cell growth, migration, and invasion via miR-155/CDX1 axis. Biochem Biophys Res Commun 2018; 498(4): 1002-8.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.104] [PMID: 29550489]
[55]
Zong Y, Zhang Y, Hou D, et al. The lncRNA XIST promotes the progression of breast cancer by sponging miR-125b-5p to modulate NLRC5. Am J Transl Res 2020; 12(7): 3501-11.
[PMID: 32774715]
[56]
Zhang M, Wang F, Xiang Z, Huang T, Zhou WB. LncRNA XIST promotes chemoresistance of breast cancer cells to doxorubicin by sponging miRă 200că 3p to upregulate ANLN. Clin Exp Pharmacol Physiol 2020; 47(8): 1464-72.
[http://dx.doi.org/10.1111/1440-1681.13307] [PMID: 32198770]
[57]
Samir A, Tawab R, Eltayebi H. Long non coding RNAs XIST and MALAT1 hijack the PD L1 regulatory signaling pathway in breast cancer subtypes. Oncol Lett 2021; 22(2): 593.
[http://dx.doi.org/10.3892/ol.2021.12854] [PMID: 34149904]
[58]
Hamed MM, Handoussa H, Hussein NH, Eissa RA, Abdel-Aal LK, El Tayebi HM. Oleuropin controls miR-194/XIST/PD-L1 loop in triple negative breast cancer: New role of nutri-epigenetics in immune-oncology. Life Sci 2021; 277119353
[http://dx.doi.org/10.1016/j.lfs.2021.119353] [PMID: 33798547]
[59]
Prat A, Pineda E, Adamo B, et al. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast 2015; 24 (Suppl. 2): S26-35.
[http://dx.doi.org/10.1016/j.breast.2015.07.008] [PMID: 26253814]
[60]
Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 2016; 13(11): 674-90.
[http://dx.doi.org/10.1038/nrclinonc.2016.66] [PMID: 27184417]
[61]
Li X, Hou L, Yin L, Zhao S. LncRNA XIST interacts with miR-454 to inhibit cells proliferation, epithelial mesenchymal transition and induces apoptosis in triple-negative breast cancer. J Biosci 2020; 45(1): 45.
[http://dx.doi.org/10.1007/s12038-020-9999-7] [PMID: 32098924]
[62]
Li M, Pan M, You C, et al. MiR-7 reduces the BCSC subset by inhibiting XIST to modulate the miR-92b/Slug/ESA axis and inhibit tumor growth. Breast Cancer Res 2020; 22(1): 26.
[http://dx.doi.org/10.1186/s13058-020-01264-z] [PMID: 32143670]
[63]
Salama EA, Adbeltawab RE, El Tayebi HM. XIST and TSIX: Novel cancer immune biomarkers in PD-L1-overexpressing breast cancer patients. Front Oncol 2020; 9: 1459.
[http://dx.doi.org/10.3389/fonc.2019.01459] [PMID: 31998636]
[64]
Xing F, Liu Y, Wu SY, et al. Loss of XIST in breast cancer activates msn-c-met and reprograms microglia via exosomal RNA to promote brain metastasis. Cancer Res 2018; 78(15): 4316-30.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1102] [PMID: 30026327]
[65]
Zhang X, Zeng Q, Cai W, Ruan W. Trends of cervical cancer at global, regional, and national level: Data from the global burden of disease study 2019. BMC Public Health 2021; 21(1): 894.
[http://dx.doi.org/10.1186/s12889-021-10907-5] [PMID: 33975583]
[66]
Zhu H, Zheng T, Yu J, Zhou L, Wang L. LncRNA XIST accelerates cervical cancer progression via upregulating Fus through competitively binding with miR-200a. Biomed Pharmacother 2018; 105: 789-97.
[http://dx.doi.org/10.1016/j.biopha.2018.05.053] [PMID: 29909347]
[67]
Liu X, Xie S, Zhang J, Kang Y. Long noncoding RNA XIST contributes to cervical cancer development through targeting miR-889-3p/SIX1 axis. Cancer Biother Radiopharm 2020; 35(9): 640-9.
[http://dx.doi.org/10.1089/cbr.2019.3318] [PMID: 32191528]
[68]
Moga M, Bălan A, Anastasiu C, Dimienescu O, Neculoiu C, Gavriș C. An overview on the anticancer activity of Azadirachta indica (Neem) in gynecological cancers. Int J Mol Sci 2018; 19(12): 3898.
[http://dx.doi.org/10.3390/ijms19123898] [PMID: 30563141]
[69]
Wang C, Qi S, Xie C, Li C, Wang P, Liu D. Upregulation of long non-coding RNA XIST has anticancer effects on epithelial ovarian cancer cells through inverse downregulation of hsa-miR-214-3p. J Gynecol Oncol 2018; 29(6)e99
[http://dx.doi.org/10.3802/jgo.2018.29.e99] [PMID: 30207107]
[70]
Zuo K, Zhao Y, Zheng Y, et al. Long non-coding RNA XIST promotes malignant behavior of epithelial ovarian cancer. OncoTargets Ther 2019; 12: 7261-7.
[http://dx.doi.org/10.2147/OTT.S204369] [PMID: 31564909]
[71]
Meng Q, Wang N, Duan G. Long non-coding RNA XIST regulates ovarian cancer progression via modulating miR-335/BCL2L2 axis. World J Surg Oncol 2021; 19(1): 165.
[http://dx.doi.org/10.1186/s12957-021-02274-7] [PMID: 34090463]
[72]
Zhao Y, Yu Z, Ma R, et al. lncRNA-Xist/miR-101-3p/KLF6/C/EBPα axis promotes TAM polarization to regulate cancer cell proliferation and migration. Mol Ther Nucleic Acids 2021; 23: 536-51.
[http://dx.doi.org/10.1016/j.omtn.2020.12.005] [PMID: 33510942]
[73]
Jiang R, Zhang H, Zhou J, et al. Inhibition of long non-coding RNA XIST upregulates microRNA-149-3p to repress ovarian cancer cell progression. Cell Death Dis 2021; 12(2): 145.
[http://dx.doi.org/10.1038/s41419-020-03358-0] [PMID: 33542185]
[74]
Huang R, Zhu L, Zhang Y. XIST lost induces ovarian cancer stem cells to acquire taxol resistance via a KMT2C-dependent way. Cancer Cell Int 2020; 20(1): 436.
[http://dx.doi.org/10.1186/s12935-020-01500-8] [PMID: 32943985]
[75]
Hu Y, Mei X, Tang D. Long non-coding RNA XIST is down-regulated and correlated to better prognosis in ovarian cancer. Math Biosci Eng 2020; 17(3): 2070-81.
[http://dx.doi.org/10.3934/mbe.2020110] [PMID: 32233524]
[76]
Guo T, Yuan D, Zhang W, et al. Upregulation of long noncoding RNA XIST has anticancer effects on ovarian cancer through sponging miR-106a. Hum Cell 2021; 34(2): 579-87.
[http://dx.doi.org/10.1007/s13577-020-00469-w] [PMID: 33400246]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy