Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Research Article

Development and Experimental Investigation of Composite Structure Heat Pipe

Author(s): Rivaan Jadav, Aashay Mehta, Soham Bhatt and Hiral Parikh*

Volume 16, Issue 1, 2023

Published on: 06 January, 2023

Page: [16 - 25] Pages: 10

DOI: 10.2174/2405520416666230102111729

Price: $65

Abstract

Aim: This study aimed at developing a composite structure heat pipe.

Background: Conventionally, the heat pipe enclosure is made out of a single continuous conductive material corresponding to minor heat losses to the surrounding through the middle section, which ideally needs to be adiabatic in nature. The insulating nature of the carbon fiber reduces the axial heat losses and improves the latent heat of vaporization.

Objective: The objective of this study is to develop a carbon fiber-reinforced composite heat pipe and a test rig to check the performance of the heat pipe.

Methods: The hand lay-up technique is used to develop a composite structure heat pipe with a carbon fiber adiabatic section. A test rig is developed to check the performance of the heat pipe. Moreover, the weight comparison is made for a conventional and composite structure heat pipe.

Results: The test results reveal that the composite structure heat pipe gives weight reduction in the range of 25 to 30 percent than the conventional heat pipe for identical dimensions and also shows a faster heat absorption rate.

Conclusion: Conventional heat pipe may be replaced with the lightweight composite structure heat pipe.

Graphical Abstract

[1]
Tang X, Hammel E, Findl W, et al. Study of alsic metal matrix composite based flat plate thin heat pipe. 13th Interna-tional Heat Pipe Conference 2004; 13: 37-44. Available from: http://home.iitk.ac.in/~samkhan/Bio_data/publications/Khandekar_Conf_10.pdf
[2]
Kumar V, Gangacharyulu D, Tathgir RG. Heat transfer studies of a heat pipe. Heat Transf Eng 2007; 28(11): 954-65.
[http://dx.doi.org/10.1080/01457630701421810]
[3]
Nemec P, Caja A. Thermal performance measurement of heat pipe. Glob J Technol Optim 2011; 2(1)
[http://dx.doi.org/10.4172/2229-8711.1000128]
[4]
Mozumder AK, Chowdhury MSH, Akon AF. Characteristics of heat transfer for heat pipe and its correlation. ISRN Mech Eng 2011; 2011: 1-7.
[http://dx.doi.org/10.5402/2011/825073]
[5]
Faghri A. Heat pipes: Review, opportunities and challenges. Front Heat Pipes 2014; 5(1)
[http://dx.doi.org/10.5098/fhp.5.1]
[6]
Slippery A, Ellis M, Conway B, Yun HC. Heat pipe embedded carbon fiber reinforced polymer composite enclosures for avionics thermal management. SAE technical paper series 2014.
[http://dx.doi.org/10.4271/2014-01-2189]
[7]
Narendra Babu N, Kamath H. Materials used in heat pipe. Mater Today Proc 2015; 2(4-5): 1469-78.
[http://dx.doi.org/10.1016/j.matpr.2015.07.072]
[8]
Sharmishtha SH, Jain PK. Influence of different parameters on heat pipe performance. Int J Eng Res Appl 2015; 5(10): 93-8.https://www.ijera.com/papers/Vol5_issue10/Part%20-%201/O510019398.pdf
[9]
Ladekar CL, Chaudhary SK, Khandare SS. A critical review-optimization of a heat pipe. Int J Eng Res Technol (Ahmedabad) 2016; 16(30): 274-80.
[10]
Strain J. Experimental comparison of heat pipes and thermosyphons containing methanol and acetone. Canada: Department of mechanical engineering, university of victoria 2017.http://dspace.library.uvic.ca/handle/1828/7993
[11]
Liu Y, Chen S, Fu Y, et al. A lightweight and high thermal performance graphene heat pipe. Nano Select 2021; 2(2): 364-72.
[http://dx.doi.org/10.1002/nano.202000195]
[12]
Miao S, Sui J, Zhang Y, Yao F, Liu X. Experimental study on thermal performance of a bent copper-water heat pipe. Int J Aerosp Eng 2020; 2020: 1-10.
[http://dx.doi.org/10.1155/2020/8632152]
[13]
Luan X, Younse H, Hong H, Peterson GP. Improving mechanical properties of PVA based nano composite using alig-ned single-wall carbon nanotubes. Mater Res Express 2019; 6(10): 1050a6.
[http://dx.doi.org/10.1088/2053-1591/ab4058]
[14]
Liu M, Younes H, Hong H, Peterson GP. Polymer nanocomposites with improved mechanical and thermal properties by magnetically aligned carbon nanotubes. Polymer (Guildf) 2019; 166: 81-7.
[http://dx.doi.org/10.1016/j.polymer.2019.01.031]
[15]
Khalid SU, Babar H, Ali HM, Janjua MM, Ali MA. Heat pipes: progress in thermal performance enhancement for mi-croelectronics. J Therm Anal Calorim 2020; 143: 2227-43.
[http://dx.doi.org/10.1007/s10973-020-09820-7]
[16]
Younes H, Mao M, Sohel Murshed SM, Lou D, Hong H, Peterson GP. Nanofluids: Key parameters to enhance thermal conductivity and its applications. Appl Therm Eng 2022; 207: 118202.
[http://dx.doi.org/10.1016/j.applthermaleng.2022.118202]
[17]
Cao Y, Gao M. Wickless network heat pipes for high heat flux spreading applications. Int J Heat Mass Transf 2002; 45(12): 2539-47.
[http://dx.doi.org/10.1016/S0017-9310(01)00338-6]
[18]
Goshayeshi HR, Goodarzi M, Dahari M. Effect of magnetic field on the heat transfer rate of kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe. Exp Therm Fluid Sci 2015; 68: 663-8.
[http://dx.doi.org/10.1016/j.expthermflusci.2015.07.014]
[19]
Goshayeshi HR, Goodarzi M, Safaei MR, Dahari M. Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field. Exp Therm Fluid Sci 2016; 74: 265-70.
[http://dx.doi.org/10.1016/j.expthermflusci.2016.01.003]
[20]
Ong KS. Review of heat pipe heat exchangers for enhanced dehumidification and cooling in air conditioning systems. Int J Low Carbon Technol 2016; 11(3): 416-23.
[http://dx.doi.org/10.1093/ijlct/ctu029]
[21]
Nugraha PF, Putra N. The fabrication and testing development of heat pipe wicks: A review. IEEE 2nd international conference on power energy application. 2019 April 27-30; Singapore: IEEE; 2019; p. 264-71.
[http://dx.doi.org/10.1109/ICPEA.2019.8818513]
[22]
Yu Y, An G, Wang L. Major applications of heat pipe and its advances coupled with sorption system: A review. Front Energy 2019; 13(1): 172-84.
[http://dx.doi.org/10.1007/s11708-019-0610-6]
[23]
Yan BH, Wang C, Li LG. The technology of micro heat pipe cooled reactor: A review. Ann Nucl Energy 2020; 135: 106948.
[http://dx.doi.org/10.1016/j.anucene.2019.106948]
[24]
Shafieian A, Khiadani M, Nosrati A. Strategies to improve the thermal performance of heat pipe solar collectors in solar systems: A review. Energy Convers Manage 2019; 183: 307-31.
[http://dx.doi.org/10.1016/j.enconman.2018.12.115]
[25]
Huminic G, Huminic A. Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids. Energy Convers Manage 2013; 76: 393-9.
[http://dx.doi.org/10.1016/j.enconman.2013.07.026]
[26]
Nazari MA, Ahmadi MH, Sadeghzadeh M, Shafii MB, Goodarzi M. A review on application of nanofluid in various types of heat pipes. J Cent South Univ 2019; 26(5): 1021-41.
[http://dx.doi.org/10.1007/s11771-019-4068-9]
[27]
Babar H, Ali HM. Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges. J Mol Liq 2019; 281: 598-633.
[http://dx.doi.org/10.1016/j.molliq.2019.02.102]
[28]
Turkyilmazoglu M. Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis. Comput Methods Prog. Biomed 2020; 187: 105171.
[http://dx.doi.org/10.1016/j.cmpb.2019.105171] [PMID: 31785535]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy