Abstract
The essentiality of a gene can be defined at different levels and is context-dependent. Essential protein-coding genes have been well studied. However, the essentiality of non-coding genes is not well characterized. Although experimental technologies, like CRISPR-Cas9, can provide insights into the essentiality of non-coding regions of the genome, scoring the essentiality of noncoding genes in different contexts is still challenging. With machine learning algorithms, the essentiality of protein-coding genes can be estimated well. But the development of these algorithms for non-coding genes was very early. Based on several recent studies, we believe the essentiality of noncoding genes will be a new and fertile ground in bioinformatics. We pointed out some possible research topics in this perspective article.
[http://dx.doi.org/10.1126/science.abj6987] [PMID: 35357919]
[http://dx.doi.org/10.1016/j.neuroscience.2013.12.009] [PMID: 24342564]
[http://dx.doi.org/10.1128/JB.185.19.5673-5684.2003] [PMID: 13129938]
[http://dx.doi.org/10.1038/nature00935] [PMID: 12140549]
[http://dx.doi.org/10.1126/science.286.5447.2165] [PMID: 10591650]
[http://dx.doi.org/10.1126/science.aad6253] [PMID: 27013737]
[http://dx.doi.org/10.1073/pnas.93.19.10004] [PMID: 8816738]
[http://dx.doi.org/10.1038/nrg.2017.75] [PMID: 29082913]
[http://dx.doi.org/10.1038/nrg.2017.74] [PMID: 29033457]
[http://dx.doi.org/10.1126/science.aad7925] [PMID: 26612934]
[http://dx.doi.org/10.1126/science.aah7111] [PMID: 27980086]
[http://dx.doi.org/10.1126/science.aac7557] [PMID: 26472760]
[http://dx.doi.org/10.1126/science.aac7041] [PMID: 26472758]
[http://dx.doi.org/10.1093/nar/gkaa884] [PMID: 33084874]
[http://dx.doi.org/10.1186/s13287-018-0813-5] [PMID: 29562912]
[http://dx.doi.org/10.1038/s41580-020-00315-9] [PMID: 33353982]
[http://dx.doi.org/10.1038/ng.3192] [PMID: 25599403]
[http://dx.doi.org/10.1038/nature11233] [PMID: 22955620]
[http://dx.doi.org/10.1016/j.cell.2018.03.006] [PMID: 29570994]
[http://dx.doi.org/10.1016/j.omtn.2019.07.019] [PMID: 31479921]
[http://dx.doi.org/10.1145/2939672.2939785]
[http://dx.doi.org/10.1093/bioinformatics/bty738] [PMID: 30165607]
[http://dx.doi.org/10.1186/s12859-020-3426-9] [PMID: 32183740]
[http://dx.doi.org/10.1002/pmic.202100232] [PMID: 34730875]
[http://dx.doi.org/10.1016/j.gene.2021.145643] [PMID: 33848577]
[http://dx.doi.org/10.3389/fgene.2018.00380] [PMID: 30356729]
[http://dx.doi.org/10.3389/fgene.2022.864564] [PMID: 35386279]
[http://dx.doi.org/10.3389/fgene.2021.708162] [PMID: 34267785]
[http://dx.doi.org/10.1186/s40246-020-00263-7] [PMID: 32252824]
[http://dx.doi.org/10.1016/j.csbj.2022.05.043] [PMID: 35685362]
[http://dx.doi.org/10.1093/nar/gkn858] [PMID: 18974178]
[http://dx.doi.org/10.1016/j.csbj.2022.04.021] [PMID: 35832629]