Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Mini-Review Article

Deep Eutectic Solvents: Fundamental Aspect, Characterizations and Applications

Author(s): Pankaj V. Dangre*, Harshada P. Borase, Mahendra C. Gunde, Anil M. Pethe and Maheshkumar R. Borkar

Volume 17, Issue 1, 2023

Published on: 13 January, 2023

Page: [3 - 12] Pages: 10

DOI: 10.2174/2667387817666221228141746

Price: $65

Abstract

Deep eutectic solvents (DESs) containing bioactive have been explored as potential choices for therapeutic efficiency enhancement. DESs are regarded as superior compared to established solvents owing to accessibility, storage conditions, synthesis, and low cost. As such, intensive research has taken place in different disciplines, especially nutraceuticals, foods and pharmaceuticals. The applications of DESs, especially in nutraceuticals and pharmaceutical delivery, have shown great promise. Despite these different successes, the safety issues of these DESs need to be properly identified. A safe mixture of DESs must be developed to take its broad range of advantages to the nutraceutical industry, and, therefore, its nutraceutical applications can only be introduced if DESs are known to have profiles of negligible or minimal toxicity. This review emphasizes the fundamental aspects needed to have a better understanding of DESs. It covers the current prospects of DES, including types, properties, formulation components and characterization methods. The several characterization methods, viz., pH, density, refractive index, viscosity, surface tension, solubility, polarized optical microscopy, x-ray diffraction studies, Fourier transforms infrared spectroscopy, and nuclear magnetic resonance spectroscopy are also mentioned. Further, the promising applications of DESs in different nutraceutical and pharmaceutical domains are highlighted.

Graphical Abstract

[1]
Ding M, Eliashberg J, Stremersch S. Process of Drug Discovery & Development, Innovation and Marketing in the Pharmaceutical Industry. Springer 2014; Vol. 20: pp. 54-60.
[2]
Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B 2015; 5(5): 442-53.
[http://dx.doi.org/10.1016/j.apsb.2015.07.003] [PMID: 26579474]
[3]
Thakkar H, Patel B, Thakkar S. A review on techniques for oral bioavailability enhancement of drugs. Int J Pharm Sci Rev Res 2010; 4: 203-23.
[4]
Patil S, Mhaiskar A, Mundhada D. A review on novel drug delivery system   a recent trend. Curr Pharm Clin 2016; 6: 89-93.
[5]
Singh A, Worku ZA, Van den Mooter G. Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin Drug Deliv 2011; 8(10): 1361-78.
[http://dx.doi.org/10.1517/17425247.2011.606808] [PMID: 21810062]
[6]
Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: Nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm 2008; 364(1): 64-75.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.023] [PMID: 18721869]
[7]
Park K. Facing the truth about nanotechnology in drug delivery. ACS Nano 2013; 7(9): 7442-7.
[http://dx.doi.org/10.1021/nn404501g] [PMID: 24490875]
[8]
Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 2007; 59(7): 617-30.
[http://dx.doi.org/10.1016/j.addr.2007.05.011] [PMID: 17597252]
[9]
Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 2007; 59(7): 645-66.
[http://dx.doi.org/10.1016/j.addr.2007.05.012] [PMID: 17601630]
[10]
Lepek P, Sawicki W, Wlodarski K, Wojnarowska Z, Paluch M, Guzik L. Effect of amorphization method on telmisartan solubility and the tableting process. Eur J Pharm Biopharm 2013; 83(1): 114-21.
[http://dx.doi.org/10.1016/j.ejpb.2012.09.019] [PMID: 23085331]
[11]
Feeney OM, Crum MF, McEvoy CL, et al. 50 years of oral lipid-based formulations: Provenance, progress and future perspectives. Adv Drug Deliv Rev 2016; 101: 167-94.
[http://dx.doi.org/10.1016/j.addr.2016.04.007] [PMID: 27089810]
[12]
Shen Q, Li X, Yuan D, Jia W. Enhanced oral bioavailability of daidzein by self-microemulsifying drug delivery system. Chem Pharm Bull (Tokyo) 2010; 58(5): 639-43.
[http://dx.doi.org/10.1248/cpb.58.639] [PMID: 20460789]
[13]
Chalikwar SS, Surana SJ, Goyal SN, Chaturvedi KK, Dangre PV. Solid self-microemulsifying nutraceutical delivery system for hesperidin using quality by design: assessment of biopharmaceutical attributes and shelf-life. J Microencapsul 2021; 38(1): 61-79.
[http://dx.doi.org/10.1080/02652048.2020.1851788] [PMID: 33245007]
[14]
Lu C, Cao J, Wang N, Su E. Significantly improving the solubility of non-steroidal anti-inflammatory drugs in deep eutectic solvents for potential non-aqueous liquid administration. MedChemComm 2016; 7(5): 955-9.
[http://dx.doi.org/10.1039/C5MD00551E]
[15]
Pedro SN, Freire MG, Freire CSR, Silvestre AJD. Deep eutectic solvents comprising active pharmaceutical ingredients in the development of drug delivery systems. Expert Opin Drug Deliv 2019; 16(5): 497-506.
[http://dx.doi.org/10.1080/17425247.2019.1604680] [PMID: 30955386]
[16]
Sut S, Faggian M, Baldan V, et al. Natural Deep Eutectic Solvents (NADES) to enhance berberine absorption: An in vivo pharmacokinetic study. Molecules 2017; 22(11): 1921.
[http://dx.doi.org/10.3390/molecules22111921] [PMID: 29117131]
[17]
Basar AO, Prieto C, Durand E, Villeneuve P, Sasmazel HT, Lagaron J. Encapsulation of β-carotene by emulsion electrospraying using deep eutectic solvents. Molecules 2020; 25(4): 981.
[http://dx.doi.org/10.3390/molecules25040981] [PMID: 32098315]
[18]
Jeliński T, Przybyłek M, Cysewski P. Natural deep eutectic solvents as agents for improving solubility, stability and delivery of curcumin. Pharm Res 2019; 36(8): 116.
[http://dx.doi.org/10.1007/s11095-019-2643-2] [PMID: 31161340]
[19]
Cheng QB, Zhang L-W. Bin, Zhang LW.Highly efficient enzymatic preparation of daidzein in deep eutectic solvents. Molecules 2017; 22(1): 186.
[http://dx.doi.org/10.3390/molecules22010186]
[20]
Morrison HG, Sun CC, Neervannan S. Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. Int J Pharm 2009; 378(1-2): 136-9.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.039] [PMID: 19477257]
[21]
Cherukuvada S, Nangia A. Eutectics as improved pharmaceutical materials: design, properties and characterization. Chem Commun (Camb) 2014; 50(8): 906-23.
[http://dx.doi.org/10.1039/C3CC47521B] [PMID: 24322207]
[22]
Araya-Sibaja A, Vega-Baudrit J, Guillén-Girón T, Navarro-Hoyos M, Cuffini S. Drug solubility enhancement through the preparation of multicomponent organic materials: Eutectics of lovastatin with carboxylic acids. Pharmaceutics 2019; 11(3): 112.
[http://dx.doi.org/10.3390/pharmaceutics11030112] [PMID: 30857331]
[23]
Hyun SM, Lee BJ, Abuzar SM, et al. Preparation, characterization, and evaluation of celecoxib eutectic mixtures with adipic acid/saccharin for improvement of wettability and dissolution rate. Int J Pharm 2019; 554: 61-71.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.044] [PMID: 30347274]
[24]
Aroso IM, Silva JC, Mano F, et al. Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. Eur J Pharm Biopharm 2016; 98: 57-66.
[http://dx.doi.org/10.1016/j.ejpb.2015.11.002] [PMID: 26586342]
[25]
Tarate B, Bansal AK. Characterization of CoQ 10-lauric acid eutectic system. Thermochim Acta 2015; 605: 100-6.
[http://dx.doi.org/10.1016/j.tca.2015.01.018]
[26]
Moore MD, Wildfong PLD. Aqueous solubility enhancement through engineering of binary solid composites: Pharmaceutical applications. J Pharm Innov 2009; 4(1): 36-49.
[http://dx.doi.org/10.1007/s12247-009-9053-7]
[27]
Goldberg AH, Gibaldi M, Kanig JL. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures. I. Theoretical considerations and discussion of the literature. J Pharm Sci 1965; 54(8): 1145-8.
[http://dx.doi.org/10.1002/jps.2600540810] [PMID: 5882218]
[28]
Goldberg AH, Gibaldi M, Kanig JL. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures III: Experimental evaluation of griseofulvin—succinic acid solid solution. J Pharm Sci 1966; 55(5): 487-92.
[http://dx.doi.org/10.1002/jps.2600550508]
[29]
Serajuddin ATM. Solid dispersion of poorly water‐soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 1999; 88(10): 1058-66.
[http://dx.doi.org/10.1021/js980403l] [PMID: 10514356]
[30]
Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 2007; 12(23-24): 1068-75.
[http://dx.doi.org/10.1016/j.drudis.2007.09.005] [PMID: 18061887]
[31]
Kumar P, Singh C. A study on solubility enhancement methods for poorly water soluble drugs. Am J Pharmacol Sci 2013; 1(4): 67-73.
[http://dx.doi.org/10.12691/ajps-1-4-5]
[32]
Watterson S, Hudson S, Svärd M, Rasmuson ÅC. Thermodynamics of fenofibrate and solubility in pure organic solvents. Fluid Phase Equilib 2014; 367: 143-50.
[http://dx.doi.org/10.1016/j.fluid.2014.01.029]
[33]
Shamsuddin Fazil M, Ansari S, Ali J. Development and evaluation of solid dispersion of spironolactone using fusion method. Int J Pharm Investig 2016; 6(1): 63-8.
[http://dx.doi.org/10.4103/2230-973X.176490] [PMID: 27014621]
[34]
Borase HP, Borkar MR, Chaturvedi KK, Kar Mahapatra D, Chalikwar SS, Dangre PV. Design and evaluation of natural deep eutectic solvents system for chrysin to elicit its solubility, stability, and bioactivity. J Mol Liq 2022; 345: 118205.
[http://dx.doi.org/10.1016/j.molliq.2021.118205]
[35]
Liu Y, Friesen JB, McAlpine JB, Lankin DC, Chen SN, Pauli GF. Natural deep eutectic solvents: Properties, applications, and perspectives. J Nat Prod 2018; 81(3): 679-90.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00945] [PMID: 29513526]
[36]
Liu YT, Chen YA, Xing YJ. Synthesis and characterization of novel ternary deep eutectic solvents. Chin Chem Lett 2014; 25(1): 104-6.
[http://dx.doi.org/10.1016/j.cclet.2013.09.004]
[37]
Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 2004; 126(29): 9142-7.
[http://dx.doi.org/10.1021/ja048266j] [PMID: 15264850]
[38]
Tomé LIN, Baião V, da Silva W, Brett CMA. Deep eutectic solvents for the production and application of new materials. Appl Mater Today 2018; 10: 30-50.
[http://dx.doi.org/10.1016/j.apmt.2017.11.005]
[39]
Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH. Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta 2013; 766: 61-8.
[http://dx.doi.org/10.1016/j.aca.2012.12.019] [PMID: 23427801]
[40]
Mamajanov I, Engelhart AE, Bean HD, Hud NV. DNA and RNA in anhydrous media: duplex, triplex, and G-quadruplex secondary structures in a deep eutectic solvent. Angew Chem Int Ed 2010; 49(36): 6310-4.
[http://dx.doi.org/10.1002/anie.201001561] [PMID: 20623813]
[41]
Sharma M, Mukesh C, Mondal D, Prasad K. Dissolution of α-chitin in deep eutectic solvents. RSC Advances 2013; 3(39): 18149-55.
[http://dx.doi.org/10.1039/c3ra43404d]
[42]
Zeng Q, Wang Y, Huang Y, Ding X, Chen J, Xu K. Deep eutectic solvents as novel extraction media for protein partitioning. Analyst (Lond) 2014; 139(10): 2565-73.
[http://dx.doi.org/10.1039/c3an02235h] [PMID: 24699681]
[43]
Serrano MC, Gutiérrez MC, Jiménez R, Ferrer ML, Monte F. Synthesis of novel lidocaine-releasing poly(diol-co-citrate) elastomers by using deep eutectic solvents. Chem Commun (Camb) 2012; 48(4): 579-81.
[http://dx.doi.org/10.1039/C1CC15284J] [PMID: 22109350]
[44]
Sánchez-Leija RJ, Pojman JA, Luna-Bárcenas G, Mota-Morales JD. Controlled release of lidocaine hydrochloride from polymerized drug-based deep-eutectic solvents. J Mater Chem B Mater Biol Med 2014; 2(43): 7495-501.
[http://dx.doi.org/10.1039/C4TB01407C] [PMID: 32261888]
[45]
Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev 2014; 114(21): 11060-82.
[http://dx.doi.org/10.1021/cr300162p] [PMID: 25300631]
[46]
Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem Commun (Camb) 2001; 19(19): 2010-1.
[http://dx.doi.org/10.1039/b106357j] [PMID: 12240264]
[47]
Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V. Novel solvent properties of choline chloride/urea mixtures. Chem Commun (Camb) 2003; 1(1): 70-1.
[http://dx.doi.org/10.1039/b210714g] [PMID: 12610970]
[48]
Abbott AP, Capper G, Davies DL, Rasheed R. Ionic liquids based upon metal halide/substituted quaternary ammonium salt mixtures. Inorg Chem 2004; 43(11): 3447-52.
[http://dx.doi.org/10.1021/ic049931s] [PMID: 15154807]
[49]
Sitze MS, Schreiter ER, Patterson EV, Freeman RG. Ionic liquids based on FeCl3 and FeCl2. Raman scattering and ab initio calculations. Inorg Chem 2001; 40(10): 2298-304.
[http://dx.doi.org/10.1021/ic001042r] [PMID: 11327906]
[50]
Abbott AP, Capper G, Davies DL, McKenzie KJ, Obi SU. Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride. J Chem Eng Data 2006; 51(4): 1280-2.
[http://dx.doi.org/10.1021/je060038c]
[51]
Abbott AP, Barron JC, Ryder KS, Wilson D. Eutectic-based ionic liquids with metal-containing anions and cations. Chemistry 2007; 13(22): 6495-501.
[http://dx.doi.org/10.1002/chem.200601738] [PMID: 17477454]
[52]
Xu P, Zheng GW, Zong MH, Li N, Lou WY. Recent progress on deep eutectic solvents in biocatalysis. Bioresour Bioprocess 2017; 4(1): 34.
[http://dx.doi.org/10.1186/s40643-017-0165-5] [PMID: 28794956]
[53]
Radošević K, Cvjetko Bubalo M, Gaurina Srček V, Grgas D, Landeka Dragičević T, Radojčić Redovniković I. Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol Environ Saf 2015; 112: 46-53.
[http://dx.doi.org/10.1016/j.ecoenv.2014.09.034] [PMID: 25463852]
[54]
Paiva RA, Craveiro I, Aroso M, Martins RL, Reis AD. Natural deep eutectic solvents − solvents for the 21st century. Chem Eng 2014; 2(5): 1063-71.
[55]
Hou XD, Liu QP, Smith TJ, Li N, Zong MH. Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids. PLoS One 2013; 8(3): e59145.
[http://dx.doi.org/10.1371/journal.pone.0059145] [PMID: 23554985]
[56]
Wagle DV, Zhao H, Baker GA. ChemInform abstract: Deep eutectic solvents: Sustainable media for nanoscale and functional materials. ChemInform 2014; 45(41): 292.
[http://dx.doi.org/10.1002/chin.201441292]
[57]
Zhang Q, De Oliveira Vigier K, Royer S, Jérôme F. Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 2012; 41(21): 7108-46.
[http://dx.doi.org/10.1039/c2cs35178a] [PMID: 22806597]
[58]
García G, Aparicio S, Ullah R, Atilhan M. Deep eutectic solvents: Physicochemical properties and gas separation applications. Energy Fuels 2015; 29(4): 2616-44.
[http://dx.doi.org/10.1021/ef5028873]
[59]
Singh BS, Lobo HR, Shankarling GS. Choline chloride based eutectic solvents: Magical catalytic system for carbon–carbon bond formation in the rapid synthesis of β-hydroxy functionalized derivatives. Catal Commun 2012; 24: 70-4.
[http://dx.doi.org/10.1016/j.catcom.2012.03.021]
[60]
Aissaoui T, AlNashef IM, Qureshi UA, Benguerba Y. Potential applications of deep eutectic solvents in natural gas sweetening for CO2 capture. Rev Chem Eng 2017; 33(6): 523-50.
[http://dx.doi.org/10.1515/revce-2016-0013]
[61]
Khandelwal S, Tailor YK, Kumar M. Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J Mol Liq 2016; 215: 345-86.
[http://dx.doi.org/10.1016/j.molliq.2015.12.015]
[62]
Qin H, Hu X, Wang J, Cheng H, Chen L, Qi Z. Overview of acidic deep eutectic solvents on synthesis, properties and applications. Green Energy Environ 2019; 5(1): 8-21.
[63]
Wazeer I, Hayyan M, Hadj-Kali MK. Deep eutectic solvents: designer fluids for chemical processes. J Chem Technol Biotechnol 2018; 93(4): 945-58.
[http://dx.doi.org/10.1002/jctb.5491]
[64]
Abbott AP. Speciation, physical and electrolytic properties of eutectic mixtures based on CrCl3 Á 6H2O and urea. Phys Chem Chem Phys 2014; 16(19): 9047-55.
[65]
Emami S, Shayanfar A. Deep eutectic solvents for pharmaceutical formulation and drug delivery applications. Pharm Dev Technol 2020; 25(7): 779-96.
[http://dx.doi.org/10.1080/10837450.2020.1735414] [PMID: 32096665]
[66]
Degam G. Deep eutectic solvents synthesis, characterization and applications in pretreatment of lignocellulosic biomass Dissertion. South Dakota State University: SD, USA 2017.
[67]
Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C. From glycerol to value-added products. Angew Chem Int Ed 2007; 46(24): 4434-40.
[http://dx.doi.org/10.1002/anie.200604694] [PMID: 17471485]
[68]
Hayyan A, Mjalli FS, AlNashef IM, Al-Wahaibi YM, Al-Wahaibi T, Hashim MA. Glucose-based deep eutectic solvents: Physical properties. J Mol Liq 2013; 178: 137-41.
[http://dx.doi.org/10.1016/j.molliq.2012.11.025]
[69]
Faggian M, Sut S, Perissutti B, Baldan V, Grabnar I, Dall’Acqua S. Natural Deep Eutectic Solvents (NADES) as a tool for bioavailability improvement: Pharmacokinetics of rutin dissolved in proline/glycine after oral administration in rats: Possible application in nutraceuticals. Molecules 2016; 21(11): 1531.
[http://dx.doi.org/10.3390/molecules21111531] [PMID: 27854256]
[70]
Isaifan RJ, Amhamed A. Review on carbon dioxide absorption by choline chloride/urea deep eutectic solvents. Adv Chem 2018; 2018: 2675659.
[71]
Mokhtarpour M, Shekaari H, Zafarani-Moattar MT, Golgoun S. Solubility and solvation behavior of some drugs in choline based deep eutectic solvents at different temperatures. J Mol Liq 2020; 297: 111799.
[http://dx.doi.org/10.1016/j.molliq.2019.111799]
[72]
Ting YL. Synthesis and characterization of deep eutectic solvents with multifunctional building blocks PhD Thesis, University of Akron, OH, USA. 2019; pp. 55-65.
[73]
Craveiro R, Aroso I, Flammia V, et al. Properties and thermal behavior of natural deep eutectic solvents. J Mol Liq 2016; 215: 534-40.
[http://dx.doi.org/10.1016/j.molliq.2016.01.038]
[74]
Aissaoui T. Novel contribution to the chemical structure of choline chloride based deep eutectic solvents. Pharm Anal Acta 2015; 6(11): 11-4.
[http://dx.doi.org/10.4172/2153-2435.1000448]
[75]
Hadj-Kali MK, Al-khidir KE, Wazeer I, El-blidi L, Mulyono S, AlNashef IM. Application of deep eutectic solvents and their individual constituents as surfactants for enhanced oil recovery. Colloids Surf A Physicochem Eng Asp 2015; 487: 221-31.
[http://dx.doi.org/10.1016/j.colsurfa.2015.10.005]
[76]
D’Agostino C, Harris RC, Abbott AP, Gladden LF, Mantle MD. Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1H pulsed field gradient NMR spectroscopy. Phys Chem Chem Phys 2011; 13(48): 21383-91.
[http://dx.doi.org/10.1039/c1cp22554e] [PMID: 22033601]
[77]
Dai Y, Witkamp GJ, Verpoorte R, Choi YH. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem 2015; 187: 14-9.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.123] [PMID: 25976992]
[78]
Hikmawanti NPE, Ramadon D, Jantan I, Mun’im A. Natural Deep Eutectic Solvents (NADES): Phytochemical Extraction Performance Enhancer for Pharmaceutical and Nutraceutical Product Development. Plants 2021; 10(10): 2091.
[http://dx.doi.org/10.3390/plants10102091] [PMID: 34685899]
[79]
Li Z, Lee PI. Investigation on drug solubility enhancement using deep eutectic solvents and their derivatives. Int J Pharm 2016; 505(1-2): 283-8.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.018] [PMID: 27079143]
[80]
Trombino S, Siciliano C, Procopio D, et al. Deep eutectic solvents for improving the solubilization and delivery of dapsone. Pharmaceutics 2022; 14(2): 333.
[http://dx.doi.org/10.3390/pharmaceutics14020333] [PMID: 35214065]
[81]
González CG, Mustafa NR, Wilson EG, Verpoorte R, Choi YH. Application of natural deep eutectic solvents for the “green”extraction of vanillin from vanilla pods. Flavour Fragrance J 2018; 33(1): 91-6.
[http://dx.doi.org/10.1002/ffj.3425]
[82]
Kim J, Shi Y, Kwon CJ, Gao Y, Mitragotri S. A deep eutectic solvent‐based approach to intravenous formulation. Adv Healthc Mater 2021; 10(18): 2100585.
[http://dx.doi.org/10.1002/adhm.202100585] [PMID: 34351085]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy