Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

HIF-1α/Malat1/miR-141 Axis Activates Autophagy to Increase Proliferation, Migration, and Invasion in Triple-negative Breast Cancer

Author(s): Fangyuan Xu, Yue Hu, Jie Gao, Jianxiong Wang, Yujie Xie, Fuhua Sun, Li Wang, Akira Miyamoto, Ou Xia and Chi Zhang*

Volume 23, Issue 5, 2023

Published on: 02 February, 2023

Page: [363 - 378] Pages: 16

DOI: 10.2174/1568009623666221228104833

Price: $65

Abstract

Background: The mechanism of metastasis-associated lung adenocarcinoma transcript 1 (Malat1) in triple-negative breast cancer (TNBC) is still unclear.

Objective: This study aimed to investigate the role of miR-141-3p and Malat1 in autophagy in TNBC under hypoxia.

Methods: The expression levels of Malat1 and miR-141-3p were detected via quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression levels of hypoxia-inducible factor 1α (HIF-1α), HIF-2α, MMP9, p62 and LC3 were determined via western blotting. A Cell Counting Kit-8 assay was used to detect cell viability, while a Transwell assay to detect cell proliferation and invasion. A luciferase assay was used to confirm the relationship between Malat1 and miR-141-3p.

Results: A significant increase was observed in the expression level of Malat1 and the autophagic activity in TNBC tissues and cells. The expression level of Malat1 was higher in a hypoxic environment, which can significantly promote the proliferation, migration, and invasion of TNBC cells by activating autophagy. HIF-1α, but not HIF-2α, was identified to induce the upregulation of Malat1 in TNBC cells. The dual-luciferase assay results identified a miR-141-binding site in Malat1. Malat1 knockdown and miR-141-3p overexpression were demonstrated to significantly inhibit autophagy, thereby inhibiting cell proliferation, invasion, and migration. Moreover, hypoxia can inhibit the effect of miR-141-3p on TNBC cells.

Conclusion: miR-141-3p could suppress autophagy and inhibit proliferation, migration, and invasion by targeting Malat1 in TNBC cells under hypoxia. The existence of the HIF-1α/Malat1/miR-141 axis plays a vital role in the development of TNBC and may be a target for the diagnosis and treatment of TNBC.

Graphical Abstract

[1]
Wu, Z.; Wu, J.; Zhao, Q.; Fu, S.; Jin, J. Emerging roles of aerobic glycolysis in breast cancer. Clin. Transl. Oncol., 2020, 22(5), 631-646.
[http://dx.doi.org/10.1007/s12094-019-02187-8] [PMID: 31359335]
[2]
Liang, Y.; Zhang, H.; Song, X.; Yang, Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin. Cancer Biol., 2020, 60, 14-27.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.012] [PMID: 31421262]
[3]
Goldhirsch, A.; Wood, W.C.; Coates, A.S.; Gelber, R.D.; Thürlimann, B.; Senn, H.J. Strategies for subtypes—dealing with the diversity of breast cancer: Highlights of the st gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann. Oncol., 2011, 22(8), 1736-1747.
[http://dx.doi.org/10.1093/annonc/mdr304] [PMID: 21709140]
[4]
Papadimitriou, M.; Mountzios, G.; Papadimitriou, C.A. The role of PARP inhibition in triple-negative breast cancer: Unraveling the wide spectrum of synthetic lethality. Cancer Treat. Rev., 2018, 67, 34-44.
[http://dx.doi.org/10.1016/j.ctrv.2018.04.010] [PMID: 29753961]
[5]
Vagia, E.; Mahalingam, D.; Cristofanilli, M. The landscape of targeted therapies in TNBC. Cancers, 2020, 12(4), 916.
[http://dx.doi.org/10.3390/cancers12040916] [PMID: 32276534]
[6]
Chen, J.; Yu, Y.; Li, H.; Hu, Q.; Chen, X.; He, Y.; Xue, C.; Ren, F.; Ren, Z.; Li, J.; Liu, L.; Duan, Z.; Cui, G.; Sun, R. Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer. Mol. Cancer, 2019, 18(1), 33.
[http://dx.doi.org/10.1186/s12943-019-0947-9] [PMID: 30825877]
[7]
Gooding, A.J.; Parker, K.A.; Valadkhan, S.; Schiemann, W.P. The IncRNA BORG: A novel inducer of TNBC metastasis, chemoresistance, and disease recurrence. J. Cancer Metastasis Treat., 2019, 5, 41.
[PMID: 31435529]
[8]
Liu, F.; Xiao, X.; Ou, X.; Gao, G.; Bazhabayi, M.; Zhang, K. MALAT1 and BACH1 are prognostic biomarkers for triple-negative breast cancer. J. Cancer Res. Ther., 2019, 15(7), 1597-1602.
[http://dx.doi.org/10.4103/jcrt.JCRT_282_19] [PMID: 31939443]
[9]
Müller-Tidow, C.; Diederichs, S.; Thomas, M.; Serve, H. Genome-wide screening for prognosis-predicting genes in early-stage non-small-cell lung cancer. Lung Cancer, 2004, 45(Suppl. 2), S145-S150.
[http://dx.doi.org/10.1016/j.lungcan.2004.07.979] [PMID: 15552795]
[10]
Zuo, Y.; Li, Y.; Zhou, Z.; Ma, M.; Fu, K. Long non-coding RNA MALAT1 promotes proliferation and invasion via targeting miR-129-5p in triple-negative breast cancer. Biomed. Pharmacother., 2017, 95, 922-928.
[http://dx.doi.org/10.1016/j.biopha.2017.09.005] [PMID: 28915533]
[11]
Shao, G.; Zhao, Z.; Zhao, W.; Hu, G.; Zhang, L.; Li, W.; Xing, C.; Zhang, X. Long non-coding RNA MALAT1 activates autophagy and promotes cell proliferation by downregulating microRNA-204 expression in gastric cancer. Oncol. Lett., 2020, 19(1), 805-812.
[PMID: 31897197]
[12]
Si, Y.; Yang, Z.; Ge, Q.; Yu, L.; Yao, M.; Sun, X.; Ren, Z.; Ding, C. Long non-coding RNA Malat1 activated autophagy, hence promoting cell proliferation and inhibiting apoptosis by sponging miR-101 in colorectal cancer. Cell. Mol. Biol. Lett., 2019, 24(1), 50.
[http://dx.doi.org/10.1186/s11658-019-0175-8] [PMID: 31372165]
[13]
Yang, X.; Yin, H.; Zhang, Y.; Li, X.; Tong, H.; Zeng, Y.; Wang, Q.; He, W. Hypoxia-induced autophagy promotes gemcitabine resistance in human bladder cancer cells through hypoxia-inducible factor 1α activation. Int. J. Oncol., 2018, 53(1), 215-224.
[http://dx.doi.org/10.3892/ijo.2018.4376] [PMID: 29693166]
[14]
Jing, X.; Yang, F.; Shao, C.; Wei, K.; Xie, M.; Shen, H.; Shu, Y. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer, 2019, 18(1), 157.
[http://dx.doi.org/10.1186/s12943-019-1089-9] [PMID: 31711497]
[15]
Dalby, K.; Tekedereli, I.; Lopez-Berestein, G.; Ozpolat, B. Targeting the pro-death and pro-survival functions of autophagy as novel therapeutic strategies in cancer. Autophagy, 2010, 6(3), 322-329.
[http://dx.doi.org/10.4161/auto.6.3.11625] [PMID: 20224296]
[16]
Chen, W.; Bai, Y.; Patel, C.; Geng, F. Autophagy promotes triple negative breast cancer metastasis via YAP nuclear localization. Biochem. Biophys. Res. Commun., 2019, 520(2), 263-268.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.133] [PMID: 31590917]
[17]
Hamurcu, Z.; Delibaşı, N.; Geçene, S.; Şener, E.F.; Dönmez-Altuntaş, H.; Özkul, Y.; Canatan, H.; Ozpolat, B. Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin β1/Src signaling in triple negative breast cancer cells. J. Cancer Res. Clin. Oncol., 2018, 144(3), 415-430.
[http://dx.doi.org/10.1007/s00432-017-2557-5] [PMID: 29288363]
[18]
Zou, J.; Liu, L.; Wang, Q.; Yin, F.; Yang, Z.; Zhang, W.; Li, L. Downregulation of miR-429 contributes to the development of drug resistance in epithelial ovarian cancer by targeting ZEB1. Am. J. Transl. Res., 2017, 9(3), 1357-1368.
[PMID: 28386361]
[19]
Ma, Z.; Zhang, J.; Xu, X.; Qu, Y.; Dong, H.; Dang, J.; Huo, Z.; Xu, G. LncRNA expression profile during autophagy and Malat1 function in macrophages. PLoS One, 2019, 14(8), e0221104.
[http://dx.doi.org/10.1371/journal.pone.0221104] [PMID: 31425535]
[20]
Zhang, Y.; Li, J.; Jia, S.; Wang, Y.; Kang, Y.; Zhang, W. Down-regulation of lncRNA-ATB inhibits epithelial–mesenchymal transition of breast cancer cells by increasing miR-141-3p expression. Biochem. Cell Biol., 2019, 97(2), 193-200.
[http://dx.doi.org/10.1139/bcb-2018-0168] [PMID: 30352165]
[21]
Rosenfeld, N.; Aharonov, R.; Meiri, E.; Rosenwald, S.; Spector, Y.; Zepeniuk, M.; Benjamin, H.; Shabes, N.; Tabak, S.; Levy, A.; Lebanony, D.; Goren, Y.; Silberschein, E.; Targan, N.; Ben-Ari, A.; Gilad, S.; Sion-Vardy, N.; Tobar, A.; Feinmesser, M.; Kharenko, O.; Nativ, O.; Nass, D.; Perelman, M.; Yosepovich, A.; Shalmon, B.; Polak-Charcon, S.; Fridman, E.; Avniel, A.; Bentwich, I.; Bentwich, Z.; Cohen, D.; Chajut, A.; Barshack, I. MicroRNAs accurately identify cancer tissue origin. Nat. Biotechnol., 2008, 26(4), 462-469.
[http://dx.doi.org/10.1038/nbt1392] [PMID: 18362881]
[22]
Imanaka, Y.; Tsuchiya, S.; Sato, F.; Shimada, Y.; Shimizu, K.; Tsujimoto, G. MicroRNA-141 confers resistance to cisplatin-induced apoptosis by targeting YAP1 in human esophageal squamous cell carcinoma. J. Hum. Genet., 2011, 56(4), 270-276.
[http://dx.doi.org/10.1038/jhg.2011.1] [PMID: 21289630]
[23]
Xu, H.; Mei, Q.; Xiong, C.; Zhao, J. Tumor-suppressing effects of miR-141 in human osteosarcoma. Cell Biochem. Biophys., 2014, 69(2), 319-325.
[http://dx.doi.org/10.1007/s12013-013-9801-7] [PMID: 24307282]
[24]
Xu, S.; Ge, J.; Zhang, Z.; Zhou, W. miR-141 inhibits prostatic cancer cell proliferation and migration, and induces cell apoptosis via targeting of RUNX1. Oncol. Rep., 2018, 39(3), 1454-1460.
[http://dx.doi.org/10.3892/or.2018.6209] [PMID: 29328406]
[25]
Hayes, J.; Peruzzi, P.P.; Lawler, S. MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol. Med., 2014, 20(8), 460-469.
[http://dx.doi.org/10.1016/j.molmed.2014.06.005] [PMID: 25027972]
[26]
Choi, S.K.; Kim, H.S.; Jin, T.; Hwang, E.H.; Jung, M.; Moon, W.K. Overexpression of the miR-141/200c cluster promotes the migratory and invasive ability of triple-negative breast cancer cells through the activation of the FAK and PI3K/AKT signaling pathways by secreting VEGF-A. BMC Cancer, 2016, 16(1), 570.
[http://dx.doi.org/10.1186/s12885-016-2620-7] [PMID: 27484639]
[27]
Sun, S.; Ma, J.; Xie, P.; Wu, Z.; Tian, X. Hypoxia‐responsive miR‐141–3p is involved in the progression of breast cancer via mediating the HMGB1/HIF‐1α signaling pathway. J. Gene Med., 2020, 22(10), e3230.
[http://dx.doi.org/10.1002/jgm.3230] [PMID: 32436353]
[28]
Schwab, L.P.; Peacock, D.L.; Majumdar, D.; Ingels, J.F.; Jensen, L.C.; Smith, K.D.; Cushing, R.C.; Seagroves, T.N. Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res., 2012, 14(1), R6.
[http://dx.doi.org/10.1186/bcr3087] [PMID: 22225988]
[29]
Liu, Z.; Semenza, G.L.; Zhang, H. Hypoxia-inducible factor 1 and breast cancer metastasis. J. Zhejiang Univ. Sci. B, 2015, 16(1), 32-43.
[http://dx.doi.org/10.1631/jzus.B1400221] [PMID: 25559953]
[30]
Imbalzano, K.M.; Tatarkova, I.; Imbalzano, A.N.; Nickerson, J.A. Increasingly transformed MCF-10A cells have a progressively tumor-like phenotype in three-dimensional basement membrane culture. Cancer Cell Int., 2009, 9(1), 7.
[http://dx.doi.org/10.1186/1475-2867-9-7] [PMID: 19291318]
[31]
Underwood, J.M.; Imbalzano, K.M.; Weaver, V.M.; Fischer, A.H.; Imbalzano, A.N.; Nickerson, J.A. The ultrastructure of MCF-10A acini. J. Cell. Physiol., 2006, 208(1), 141-148.
[http://dx.doi.org/10.1002/jcp.20639] [PMID: 16607610]
[32]
Xiao, H.; Tang, K.; Liu, P.; Chen, K.; Hu, J.; Zeng, J.; Xiao, W.; Yu, G.; Yao, W.; Zhou, H.; Li, H.; Pan, Y.; Li, A.; Ye, Z.; Wang, J.; Xu, H.; Huang, Q. LncRNA MALAT1 functions as a competing endogenous RNA to regulate ZEB2 expression by sponging miR-200s in clear cell kidney carcinoma. Oncotarget, 2015, 6(35), 38005-38015.
[http://dx.doi.org/10.18632/oncotarget.5357] [PMID: 26461224]
[33]
Sharaf, H.; Matou-Nasri, S.; Wang, Q.; Rabhan, Z.; Al-Eidi, H.; Al Abdulrahman, A.; Ahmed, N. Advanced glycation endproducts increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(3), 429-441.
[http://dx.doi.org/10.1016/j.bbadis.2014.12.009] [PMID: 25514746]
[34]
Kim, S.; Jung, W.H.; Koo, J.S. Differences in autophagy-related activity by molecular subtype in triple-negative breast cancer. Tumour Biol., 2012, 33(5), 1681-1694.
[http://dx.doi.org/10.1007/s13277-012-0424-1] [PMID: 22638807]
[35]
Luo, R.Z.; Yuan, Z.Y.; Li, M.; Xi, S.Y.; Fu, J.; He, J. Accumulation of p62 is associated with poor prognosis in patients with triple-negative breast cancer. OncoTargets Ther., 2013, 6, 883-888.
[PMID: 23888115]
[36]
Sallé-Lefort, S.; Miard, S.; Nolin, M.A.; Boivin, L.; Paré, M.È.; Debigaré, R.; Picard, F. Hypoxia upregulates Malat1 expression through a CaMKK/AMPK/HIF-1α axis. Int. J. Oncol., 2016, 49(4), 1731-1736.
[http://dx.doi.org/10.3892/ijo.2016.3630] [PMID: 27499160]
[37]
Yuan, P.; Cao, W.; Zang, Q.; Li, G.; Guo, X.; Fan, J. The HIF-2α-MALAT1-miR-216b axis regulates multi-drug resistance of hepatocellular carcinoma cells via modulating autophagy. Biochem. Biophys. Res. Commun., 2016, 478(3), 1067-1073.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.065] [PMID: 27524242]
[38]
Maxwell, P.H.; Dachs, G.U.; Gleadle, J.M.; Nicholls, L.G.; Harris, A.L.; Stratford, I.J.; Hankinson, O.; Pugh, C.W.; Ratcliffe, P.J. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc. Natl. Acad. Sci. USA, 1997, 94(15), 8104-8109.
[http://dx.doi.org/10.1073/pnas.94.15.8104] [PMID: 9223322]
[39]
Liu, H.; Shi, C.; Deng, Y. MALAT1 affects hypoxia-induced vascular endothelial cell injury and autophagy by regulating miR-19b-3p/HIF-1α axis. Mol. Cell. Biochem., 2020, 466(1-2), 25-34.
[http://dx.doi.org/10.1007/s11010-020-03684-z] [PMID: 31933110]
[40]
Folkerts, H.; Hilgendorf, S.; Vellenga, E.; Bremer, E.; Wiersma, V.R. The multifaceted role of autophagy in cancer and the microenvironment. Med. Res. Rev., 2019, 39(2), 517-560.
[http://dx.doi.org/10.1002/med.21531] [PMID: 30302772]
[41]
Tian, Y.; Xu, H.; Farooq, A.A.; Nie, B.; Chen, X.; Su, S.; Yuan, R.; Qiao, G.; Li, C.; Li, X.; Liu, X.; Lin, X. Maslinic acid induces autophagy by down-regulating HSPA8 in pancreatic cancer cells. Phytother. Res., 2018, 32(7), 1320-1331.
[http://dx.doi.org/10.1002/ptr.6064] [PMID: 29516568]
[42]
Li, L.; Chen, H.; Gao, Y.; Wang, Y.W.; Zhang, G.Q.; Pan, S.H.; Ji, L.; Kong, R.; Wang, G.; Jia, Y.H.; Bai, X.W.; Sun, B. Long noncoding RNA MALAT1 promotes aggressive pancreatic cancer proliferation and metastasis via the stimulation of autophagy. Mol. Cancer Ther., 2016, 15(9), 2232-2243.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0008] [PMID: 27371730]
[43]
YiRen, H.; YingCong, Y.; Sunwu, Y.; Keqin, L.; Xiaochun, T.; Senrui, C.; Ende, C.; XiZhou, L.; Yanfan, C. Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer. Mol. Cancer, 2017, 16(1), 174.
[http://dx.doi.org/10.1186/s12943-017-0743-3] [PMID: 29162158]
[44]
Hamurcu, Z.; Delibaşı, N.; Nalbantoglu, U.; Sener, E.F.; Nurdinov, N.; Tascı, B.; Taheri, S.; Özkul, Y.; Donmez-Altuntas, H.; Canatan, H.; Ozpolat, B. FOXM1 plays a role in autophagy by transcriptionally regulating Beclin-1 and LC3 genes in human triple-negative breast cancer cells. J. Mol. Med. (Berl.), 2019, 97(4), 491-508.
[http://dx.doi.org/10.1007/s00109-019-01750-8] [PMID: 30729279]
[45]
Moscat, J.; Diaz-Meco, M.T. p62: A versatile multitasker takes on cancer. Trends Biochem. Sci., 2012, 37(6), 230-236.
[http://dx.doi.org/10.1016/j.tibs.2012.02.008] [PMID: 22424619]
[46]
Qiao, Z.; Li, X.; Kang, N.; Yang, Y.; Chen, C.; Wu, T.; Zhao, M.; Liu, Y.; Ji, X. A novel specific Anti-CD73 antibody inhibits triple-negative breast cancer cell motility by regulating autophagy. Int. J. Mol. Sci., 2019, 20(5), 1057.
[http://dx.doi.org/10.3390/ijms20051057] [PMID: 30823477]
[47]
Abdullah, M.L.; Hafez, M.M.; Al-Hoshani, A.; Al-Shabanah, O. Anti-metastatic and anti-proliferative activity of eugenol against triple negative and HER2 positive breast cancer cells. BMC Complement. Altern. Med., 2018, 18(1), 321.
[http://dx.doi.org/10.1186/s12906-018-2392-5] [PMID: 30518369]
[48]
Barangi, S.; Hayes, A.W.; Reiter, R.; Karimi, G. The therapeutic role of long non-coding RNAs in human diseases: A focus on the recent insights into autophagy. Pharmacol. Res., 2019, 142, 22-29.
[http://dx.doi.org/10.1016/j.phrs.2019.02.010] [PMID: 30742900]
[49]
Huang, J.; Yang, Y.; Fang, F.; Liu, K. MALAT1 modulates the autophagy of retinoblastoma cell through miR‐124‐mediated stx17 regulation. J. Cell. Biochem., 2018, 119(5), 3853-3863.
[http://dx.doi.org/10.1002/jcb.26464] [PMID: 29073720]
[50]
Wu, A.; Sun, W.; Mou, F. lncRNA-MALAT1 promotes high glucose-induced H9C2 cardiomyocyte pyroptosis by downregulating miR-141-3p expression. Mol. Med. Rep., 2021, 23(4), 259.
[http://dx.doi.org/10.3892/mmr.2021.11898] [PMID: 33576445]
[51]
Liang, Z.H.; Pan, Y.C.; Lin, S.S.; Qiu, Z.Y.; Zhang, Z. LncRNA MALAT1 promotes wound healing via regulating miR-141-3p/ZNF217 axis. Regen. Ther., 2020, 15, 202-209.
[http://dx.doi.org/10.1016/j.reth.2020.09.006] [PMID: 33426220]
[52]
Gong, D.; Zhao, Z.W.; Zhang, Q.; Yu, X.; Wang, G.; Zou, J.; Zheng, X.; Zhang, D.; Yin, W.; Tang, C. The long non-coding RNA metastasis-associated lung adenocarcinoma transcript-1 regulates CCDC80 expression by targeting miR-141-3p/miR-200a-3p in vascular smooth muscle cells. J. Cardiovasc. Pharmacol., 2020, 75(4), 336-343.
[http://dx.doi.org/10.1097/FJC.0000000000000798] [PMID: 31934911]
[53]
Che, H.; Wang, Y.; Li, H.; Li, Y.; Sahil, A.; Lv, J.; Liu, Y.; Yang, Z.; Dong, R.; Xue, H.; Wang, L. Melatonin alleviates cardiac fibrosis via inhibiting lncRNA MALAT1/miR‐141‐mediated NLRP3 inflammasome and TGF‐β1/Smads signaling in diabetic cardiomyopathy. FASEB J., 2020, 34(4), 5282-5298.
[http://dx.doi.org/10.1096/fj.201902692R] [PMID: 32067273]
[54]
Pan, H.; Zhou, Y.; Sieling, F.; Shi, J.; Cui, J.; Deng, C. Sonoporation of cells for drug and gene delivery. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2004, 2004, 3531-3534.
[http://dx.doi.org/10.1109/IEMBS.2004.1403993] [PMID: 17271052]
[55]
Lai, P.; Tarapacki, C.; Tran, W.T.; Kaffas, A.E.; Lee, J.; Hupple, C.; Iradji, S.; Giles, A.; Al-Mahrouki, A.; Czarnota, G.J. Breast tumor response to ultrasound mediated excitation of microbubbles and radiation therapy in vivo. Oncoscience, 2016, 3(3-4), 98-108.
[http://dx.doi.org/10.18632/oncoscience.299] [PMID: 27226983]
[56]
Zhao, R.; Liang, X.; Zhao, B.; Chen, M.; Liu, R.; Sun, S.; Yue, X.; Wang, S. Ultrasound assisted gene and photodynamic synergistic therapy with multifunctional FOXA1-siRNA loaded porphyrin microbubbles for enhancing therapeutic efficacy for breast cancer. Biomaterials, 2018, 173, 58-70.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.054] [PMID: 29758547]
[57]
Du, J.; Zhao, X.; Li, B.; Mou, Y.; Wang, Y. DNA-loaded microbubbles with crosslinked bovine serum albumin shells for ultrasound-promoted gene delivery and transfection. Colloids Surf. B Biointerfaces, 2018, 161, 279-287.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.036] [PMID: 29096372]
[58]
Zhang, Y.; Chang, S.; Sun, J.; Zhu, S.; Pu, C.; Li, Y.; Zhu, Y.; Wang, Z.; Xu, R.X. Targeted microbubbles for ultrasound mediated short hairpin RNA plasmid transfection to inhibit survivin gene expression and induce apoptosis of ovarian cancer A2780/DDP cells. Mol. Pharm., 2015, 12(9), 3137-3145.
[http://dx.doi.org/10.1021/mp500835z] [PMID: 26212628]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy