Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Editor's Perspective

Apolipoprotein-ε4 allele (APOE-ε4) as a Mediator of Cognitive Loss and Dementia in Long COVID-19

Author(s): Kenneth Maiese

Volume 19, Issue 5, 2022

Published on: 27 December, 2022

Page: [435 - 439] Pages: 5

DOI: 10.2174/156720261905221227114624

Price: $65

Next »
[1]
Amanollahi M, Jameie M, Heidari A, Rezaei N. The Dialogue Between Neuroinflammation and Adult Neurogenesis: Mechanisms Involved and Alterations in Neurological Diseases. Mol Neurobiol 2022.
[2]
Ding MR, Qu YJ, Hu B, An HM. Signal pathways in the treatment of Alzheimer's disease with traditional Chinese medicine. Biomed Pharmacother 2022; 152: 113208.
[3]
Jayaraman A, Reynolds R. Diverse pathways to neuronal necroptosis in Alzheimer's disease. Eur J Neurosci 2022.
[4]
Mavroidi B, Kaminari A, Matiadis D, et al. The prophylactic and multimodal activity of two isatin thiosemicarbazones against Alzheimer's disease in vitro. Brain Sci 2022; 12(6)
[5]
Rapaka D, Bitra VR, Challa SR, Adiukwu PC. mTOR signaling as a molecular target for the alleviation of Alzheimer's disease pathogenesis. Neurochem Int 2022; 155: 105311.
[6]
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: Innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13(1): 23-34.
[7]
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. Int Rev Neurobiol 2020; 155: 1-35.
[8]
Maiese K. Addressing Alzheimer's Disease and cognitive loss through autophagy. Curr Neurovasc Res 2020; 17(4): 339-41.
[9]
Caberlotto L, Nguyen TP, Lauria M, et al. Cross-disease analysis of Alzheimer's disease and type-2 Diabetes highlights the role of autophagy in the pathophysiology of two highly comorbid diseases. Scientif Reports 2019; 9(1): 3965.
[10]
Cacabelos R, Carril JC, Cacabelos N, et al. Sirtuins in Alzheimer's Disease: SIRT2-Related GenoPhenotypes and Implications for PharmacoEpiGenetics. Int J Mol Sci 2019; 20(5): 1249.
[11]
Lee G, Pollard HB, Arispe N. Annexin 5 and apolipoprotein E2 protect against Alzheimer's amyloid-beta-peptide cytotoxicity by competitive inhibition at a common phosphatidylserine interaction site. Peptides 2002; 23(7): 1249-63.
[12]
Margrett JA, Schofield T, Martin P, et al. Novel Functional, Health, and Genetic determinants of cognitive terminal decline: Kuakini Honolulu heart program/Honolulu-Asia aging study. J Gerontol A Biol Sci Med Sci 2021.
[13]
Morris G, Berk M, Maes M, Puri BK. Could Alzheimer's disease originate in the periphery and if so how so? Mol Neurobiol 2019; 56(1): 406-34.
[14]
Zheng H, Jia L, Liu CC, et al. TREM2 promotes microglial survival by activating Wnt/beta-catenin pathway. J Neurosci 2017; 37(7): 1771-84.
[15]
Chong ZZ, Shang YC, Hou J, Maiese K. Wnt1 neuroprotection translates into improved neurological function during oxidant stress and cerebral ischemia through AKT1 and mitochondrial apoptotic pathways. Oxid Med Cell Longev 2010; 3(2): 153-65.
[16]
Maiese K, Chong ZZ. Nicotinamide: Necessary nutrient emerges as a novel cytoprotectant for the brain. Trends Pharmacol Sci 2003; 24(5): 228-32.
[17]
Maiese K, Chong ZZ, Hou J, Shang YC. The vitamin nicotinamide: Translating nutrition into clinical care. Molecules 2009; 14(9): 3446-85.
[18]
Maiese K, Vincent AM. Membrane asymmetry and DNA degradation: functionally distinct determinants of neuronal programmed cell death. J Neurosci Res 2000; 59(4): 568-80.
[19]
Kurki SN, Kantonen J, Kaivola K, et al. APOE ε4 associates with increased risk of severe COVID-19, cerebral microhaemorrhages and post-COVID mental fatigue: A Finnish biobank, autopsy and clinical study. Acta Neuropathol Communicat 2021; 9(1): 199.
[20]
Al-Kuraishy HM, Al-Buhadily AK, Al-Gareeb AI, et al. Citicoline and COVID-19: vis-à-vis conjectured. Naunyn Schmiedebergs Arch Pharmacol 2022; 1-13.
[21]
Al-Kuraishy HM, Al-Gareeb AI, Al-Maiahy TJ, Alexiou A, Mukerjee N, Batiha GE. Prostaglandins and non-steroidal anti-inflammatory drugs in Covid-19. Biotechnol Genet Eng Rev 2022; 1-21.
[22]
Alves HR, Lomba GSB, Gonçalves-de-Albuquerque CF, Burth P. Irisin, Exercise, and COVID-19. Front Endocrinol 2022; 13: 879066.
[23]
He W, Gao Y, Zhou J, Shi Y, Xia D, Shen HM. Friend or Foe? Implication of the autophagy-lysosome pathway in SARS-CoV-2 infection and COVID-19. Int J Biol Sci 2022; 18(12): 4690-703.
[24]
Mahmud N, Anik MI, Hossain MK, et al. Advances in nanomaterial-based platforms to combat COVID-19: Diagnostics, Preventions, Therapeutics, and Vaccine developments. ACS Appl Bio Mater 2022; 5(6): 2431-60.
[25]
Pinchera B, Scotto R, Buonomo AR, et al. Diabetes and COVID-19: The potential role of mTOR. Diabetes Res Clin Pract 2022; 186: 109813.
[26]
Shirzad M, Nourigorji M, Sajedi A, et al. Targeted therapy in Coronavirus disease 2019 (COVID-19): Implication from cell and gene therapy to immunotherapy and vaccine. Int Immunopharmacol 2022; 111: 109161.
[27]
Theoharides TC. Could SARS-CoV-2 Spike protein be responsible for Long-COVID syndrome? Mol Neurobiol 2022; 59(3): 1850-61.
[28]
You H, Zhao Q, Dong M. The key genes underlying pathophysiology correlation between the acute myocardial infarction and COVID-19. Int J Gen Med 2022; 15: 2479-90.
[29]
Maiese K. The Mechanistic Target of Rapamycin (mTOR): Novel considerations as an antiviral treatment. Curr Neurovasc Res 2020; 17(3): 332-7.
[30]
Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res 2020; 17(5)
[31]
Maiese K. Circadian clock genes: Targeting innate immunity for antiviral strategies against COVID-19. Curr Neurovasc Res 2020.
[32]
Maiese K. The oversight of circadian clock genes for the Detection, Prevention, and Treatment of COVID-19 Infection. Curr Neurovasc Res 2021; 18(5): 471-3.
[33]
Lally MA, Tsoukas P, Halladay CW, O’Neill E, Gravenstein S, Rudolph JL. Metformin is associated with decreased 30-day mortality among nursing home residents infected with SARS-CoV2. J Am Med Dir Assoc 2021; 22(1): 193-8.
[34]
Benotmane I, Perrin P, Vargas GG, et al. Biomarkers of cytokine release syndrome predict disease severity and mortality from COVID-19 in kidney transplant recipients. Transplantation 2021; 105(1): 158-69.
[35]
Cheema PS, Nandi D, Nag A. Exploring the therapeutic potential of forkhead box O for outfoxing COVID-19. Open Biol 2021; 11(6): 210069.
[36]
Farahani M, Niknam Z, Mohammadi Amirabad L, et al. Molecular pathways involved in COVID-19 and potential pathway-based therapeutic targets. Biomed Pharmacother 2021; 145: 112420.
[37]
Fernandez-Ruiz R, Paredes JL, Niewold TB. COVID-19 in patients with systemic lupus erythematosus: Lessons learned from the inflammatory disease. Transl Res 2021; 232: 13-36.
[38]
Maity S, Saha A. Therapeutic potential of exploiting autophagy cascade against coronavirus infection. Front Microbiol 2021; 12: 675419.
[39]
Jansen van Vuren E, Steyn SF, Brink CB, Möller M, Viljoen FP, Harvey BH. The neuropsychiatric manifestations of COVID-19: Interactions with psychiatric illness and pharmacological treatment. Biomed Pharmacother 2021; 135: 111200.
[40]
Sungnak W, Huang N, Becavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020 (April 23);
[41]
Swain O, Romano SK, Miryala R, Tsai J, Parikh V, Umanah GKE. SARS-CoV-2 neuronal invasion and complications: Potential mechanisms and therapeutic approaches. J Neurosci 2021; 41(25): 5338-49.
[42]
Abu-Eid R, Ward FJ. Targeting the PI3K/Akt/mTOR pathway: A therapeutic strategy in COVID-19 patients. Immunol Lett 2021; 240: 1-8.
[43]
Diallo AB, Gay L, Coiffard B, Leone M, Mezouar S, Mege JL. Daytime variation in SARS-CoV-2 infection and cytokine production. Microb Pathog 2021; 158: 105067.
[44]
Furtado GE, Letieri RV, Caldo-Silva A, et al. Sustaining efficient immune functions with regular physical exercise in the COVID-19 era and beyond. Eur J Clin Invest 2021; 51(5): e13485.
[45]
Ghasemnejad-Berenji M. mTOR inhibition: A double-edged sword in patients with COVID-19? Hum Cell 2021; 34(2): 698-9.
[46]
Shi G, Chiramel AI, Majdoul S, et al. Rapalogs downmodulate intrinsic immunity and promote cell entry of SARS-CoV-2. Biorxiv 2021.
[47]
Blagosklonny MV. From causes of aging to death from COVID-19. Aging (Albany NY) 2020; 12(11): 10004-21.
[48]
Borges do Nascimento IJ, Cacic N, Abdulazeem HM, et al. Novel Coronavirus Infection (COVID-19) in humans: A scoping review and Meta-analysis. J Clin Med 2020; 9(4)
[49]
Gusev E, Sarapultsev A, Hu D, Chereshnev V. Problems of pathogenesis and pathogenetic therapy of COVID-19 from the perspective of the general theory of pathological systems (General Pathological Processes). Intl J Mol Sci 2021; 22(14)
[50]
Maiese K. Impacting dementia and cognitive loss with innovative strategies: Mechanistic target of rapamycin, clock genes, circular non-coding ribonucleic acids, and Rho/Rock. Neural Regenerat Res 2019; 14(5): 773-4.
[51]
Maiese K. New Insights for nicotinamide: Metabolic disease, autophagy, and mTOR. Front Biosci(Landmark edition) 2020; 25: 1925-73.
[52]
Maiese K. Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1. Neural Regenerat Res 2021; 16(3): 448-55.
[53]
Maiese K. Cognitive impairment and dementia: Gaining insight through circadian clock gene pathways. Biomolecules 2021; 11(7): 1-18.
[54]
Maiese K. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. Front Biosci(Landmark edition) 2021; 26(9): 614-27.
[55]
Maiese K. A common link in neurovascular regenerative pathways: Protein Kinase B (Akt). Curr Neurovasc Res 2022.
[56]
Maiese K. Biomarkers for Parkinson’s Disease and neurodegenerative disorders: A role for non-coding RNAs. Curr Neurovasc Res 2022.
[57]
Maiese K. Pyroptosis, Apoptosis, and Autophagy: Critical players of inflammation and cell demise in the nervous system. Curr Neurovasc Res 2022.
[58]
Casciano F, Zauli E, Rimondi E, Mura M, et al. The role of the mTOR pathway in diabetic retinopathy. Front Med (Lausanne) 2022; 9: 973856.
[59]
Gao J, Xu H, Rong Z, Chen L. Wnt family member 1 (Wnt1) overexpression-induced M2 polarization of microglia alleviates inflammation-sensitized neonatal brain injuries. Bioengineered 2022; 13(5): 12409-20.
[60]
Hardeland R. Redox biology of Melatonin: Discriminating between circadian and non-circadian functions. Antioxid Redox Signal 2022.
[61]
Mishra P, Davies DA, Albensi BC. The interaction between NF-κB and estrogen in Alzheimer's disease. Mol Neurobiol 2022.
[62]
Pouresmaeil V, Al Abudi AH, Mahimid AH, Sarafraz Yazdi M, Es-Haghi A. Evaluation of serum selenium and copper levels with inflammatory cytokines and indices of oxidative stress in Type 2 diabetes. Biol Trace Element Res 2022.
[63]
Sergio CM, Rolando CA. Erythropoietin regulates signaling pathways associated with neuroprotective events. Exp Brain Res 2022.
[64]
He C, Xu Y, Sun J, Li L, Zhang JH, Wang Y. Autophagy and apoptosis in acute CNS injuries: From mechanism to treatment. Antioxid Redox Signal 2022.
[65]
Kirchenwitz M, Stahnke S, Grunau K, et al. The autophagy inducer SMER28 attenuates microtubule dynamics mediating neuroprotection. Scientific Reports 2022; 12(1): 17805.
[66]
Puri D, Kelkar A, Gaurishankar B, Subramanyam D. Balance between autophagy and cell death is maintained by Polycomb-mediated regulation during stem cell differentiation. FEBS J 2022.
[67]
Senousy MA, Hanafy ME, Shehata N, Rizk SM. Erythropoietin and bacillus calmette-guérin vaccination mitigate 3-Nitropropionic Acid-Induced Huntington-like disease in rats by modulating the PI3K/Akt/mTOR/P70S6K pathway and enhancing the autophagy. ACS Chem Neurosci 2022.
[68]
Hu G, Wang T, Ma C. EPO activates PI3K-IKKα-CDK1 signaling pathway to promote the proliferation of Glial Cells under hypoxia environment. Genet Mol Biol 2022; 45(1): e20210249.
[69]
Jalgaonkar MP, Parmar UM, Kulkarni YA, Oza MJ. SIRT1-FOXOs activity regulates diabetic complications. Pharmacol Res 2022; 175: 106014.
[70]
Temiz-Resitoglu M, Guden DS, Senol SP, et al. Pharmacological inhibition of mammalian target of rapamycin attenuates deoxycorticosterone acetate Salt-Induced hypertension and related pathophysiology: Regulation of oxidative stress, inflammation, and cardiovascular hypertrophy in male rats. J Cardiovasc Pharmacol 2022; 79(3): 355-67.
[71]
Xiong J, Bonney S, Gonçalves RV, Esposito D. Brassinosteroids control the inflammation, oxidative stress and cell migration through the control of mitochondrial function on skin regeneration. Life Sci 2022; 307: 120887.
[72]
Zhuang X, Ma J, Xu G, Sun Z. SHP-1 knockdown suppresses mitochondrial biogenesis and aggravates mitochondria-dependent apoptosis induced by all trans retinal through the STING/AMPK pathways. Mol Med 2022; 28(1): 125.
[73]
Zuo J, Zhang Z, Luo M, et al. Redox signaling at the crossroads of human health and disease. MedComm (2020) 2022; 3(2): e127.
[74]
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. (4th edition.). Autophagy 2021; pp. 1-382.
[75]
Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through novel pathways of apoptosis and autophagy. Expert opinion on therapeutic targets 2012; 16(12): 1203-14.
[76]
Zhou Y, Xu J, Hou Y, et al. Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment. Alzheimers Res Ther 2021; 13(1): 110.
[77]
Safdari Lord J, Soltani Rezaiezadeh J, Yekaninejad MS, Izadi P. The association of APOE genotype with COVID-19 disease severity. Scientif Reports 2022; 12(1): 13483.
[78]
Maiese K. Picking a bone with WISP1 (CCN4): New strategies against degenerative joint disease. J Transl Sci 2016; 1(3): 83-5.
[79]
Maiese K. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer. Curr Neurovasc Res 2017; 14(3): 299-304.
[80]
Maiese K. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): Oversight for neurodegenerative disorders. Biochem Soc Trans 2018; 46(2): 351-60.
[81]
Maiese K. Prospects and perspectives for WISP1 (CCN4) in Diabetes Mellitus. Curr Neurovasc Res 2020; 17(3): 327-31.
[82]
Maiese K. Wnt Signaling and WISP1 (CCN4): Critical components in neurovascular disease, blood brain barrier regulation, and cerebral hemorrhage. Curr Neurovasc Res 2022.
[83]
Maiese K, Li F, Chong ZZ, Shang YC. The Wnt signaling pathway: Aging gracefully as a protectionist? Pharmacol Ther 2008; 118(1): 58-81.
[84]
González-Fernández C, González P, González-Pérez F, Rodríguez F. Characterization of ex vivo and in vitro Wnt transcriptome induced by spinal cord injury in rat microglial cells. Brain sciences 2022; 12(708)
[85]
Liu D, Zhang M, Tian J, et al. WNT1-inducible signalling pathway protein 1 stabilizes atherosclerotic plaques in apolipoprotein-E-deficient mice via the focal adhesion kinase/mitogen-activated extracellular signal-regulated kinase/extracellular signal-regulated kinase pathway. J Hypertens 2022; 40(9): 1666-81.
[86]
Liu L, Xu S, Li P, Li L. A novel adipokine WISP1 attenuates lipopolysaccharide-induced cell injury in 3T3-L1 adipocytes by regulating the PI3K/Akt pathway. Obes Res Clin Pract 2022; 16(2): 122-9.
[87]
Ren LL, Zhou JY, Liang SJ, Wang XQ. Impaired intestinal stem cell activity in ETEC infection: Enterotoxins, cyclic nucleotides, and Wnt signaling. Arch Toxicol 2022.
[88]
Tang Y, Chen Y, Liu R, Li W, Hua B, Bao Y. Wnt signaling pathways: A role in pain processing. Neuromol Med 2022.
[89]
Li F, Chong ZZ, Maiese K. Winding through the WNT pathway during cellular development and demise. Histol Histopathol 2006; 21(1): 103-24.
[90]
Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regenerat Res 2016; 11(3): 372-85.
[91]
Ma NX, Puls B, Chen G. Transcriptomic analyses of NeuroD1-mediated astrocyte-to-neuron conversion. Dev Neurobiol 2022; 82(5): 375-91.
[92]
Han XR, Wen X, Wang YJ, et al. MicroRNA-140-5p elevates cerebral protection of dexmedetomidine against hypoxic-ischaemic brain damage via the Wnt/beta-catenin signalling pathway. J Cell Mol Med 2018; 22(6): 3167-82.
[93]
Maiese K. Forkhead transcription factors: New considerations for Alzheimer's disease and dementia. J Transl Sci 2016; 2(4): 241-7.
[94]
Maiese K. Sirtuins: Developing innovative treatments for aged-related memory loss and Alzheimer's Disease. Curr Neurovasc Res 2018; 15(4)
[95]
Tanioka M, Park WK, Shim I, et al. Neuroprotection from excitotoxic injury by local administration of lipid emulsion into the brain of rats. Int J Mol Sci 2020; 21(8)
[96]
Sedighi M, Baluchnejadmojarad T, Afshin-Majd S, Amiri M, Aminzade M, Roghani M. Anti-aging Klotho protects SH-SY5Y cells against amyloid β1-42 neurotoxicity: Involvement of Wnt1/pCREB/Nrf2/HO-1 signaling. J Mol Neurosci 2020.
[97]
Engin AB, Engin A. Alzheimer's disease and protein kinases. Adv Exp Med Biol 2021; 1275: 285-321.
[98]
Jarero-Basulto J, Rivera-Cervantes M, Gasca-Martínez D, García-Sierra F, Gasca-Martínez Y, Beas-Zárate C. Current evidence on the protective effects of recombinant human erythropoietin and its molecular variants against pathological hallmarks of Alzheimer's Disease. Pharmaceuticals (Basel, Switzerland) 2020; 13(424): 1-22.
[99]
Maiese K. Regeneration in the nervous system with erythropoietin. Front Biosci (Landmark edition) 2016; 21: 561-96.
[100]
Olsen JJ, Pohl SO, Deshmukh A, et al. The role of Wnt signalling in angiogenesis. Clin Biochem Rev 2017; 38(3): 131-42.
[101]
Tsai HC, Tzeng HE, Huang CY, et al. WISP-1 positively regulates angiogenesis by controlling VEGF-A expression in human osteosarcoma. Cell Death Disease 2017; 8(4): e2750.
[102]
Wright LH, Herr DJ, Brown SS, Kasiganesan H, Menick DR. Angiokine Wisp-1 is increased in myocardial infarction and regulates cardiac endothelial signaling. JCI Insight 2018; 3(4)
[103]
Chen Y, Huang C, Zhu SY, Zou HC, Xu CY, Chen YX. Overexpression of HOTAIR attenuates Pi-induced vascular calcification by inhibiting Wnt/β-catenin through regulating miR-126/Klotho/SIRT1 axis. Mol Cell Biochem 2021.
[104]
Klimontov VV, Bulumbaeva DM, Fazullina ON, et al. Circulating Wnt1-inducible signaling pathway protein-1 (WISP-1/CCN4) is a novel biomarker of adiposity in subjects with type 2 diabetes. J Cell Commun Signal 2020; 14(1): 101-9.
[105]
Liu JJ, Shentu LM, Ma N, et al. Inhibition of NF-kappaB and Wnt/beta-catenin/GSK3beta signaling pathways ameliorates cardiomyocyte hypertrophy and fibrosis in Streptozotocin (STZ)-induced Type 1 diabetic rats. Curr Med Sci 2020; 40(1): 35-47.
[106]
Liu L, Hu J, Yang L, et al. Association of WISP1/CCN4 with risk of overweight and gestational diabetes mellitus in chinese pregnant women. Dis Markers 2020; 2020: 4934206.
[107]
Maiese K. New insights for oxidative stress and diabetes mellitus. Oxid Med Cell Longev 2015; 2015: 875961.
[108]
Maiese K. Heightened attention for Wnt signaling in diabetes mellitus. Curr Neurovasc Res 2020; 17(3): 215-7.
[109]
Nie X, Wei X, Ma H, Fan L, Chen WD. The complex role of Wnt ligands in type 2 diabetes mellitus and related complications. J Cell Mol Med 2021.
[110]
Xu JX, Fang K, Gao XR, Liu S, Ge JF. Resveratrol protects SH-SY5Y cells against oleic acid-induced glucolipid metabolic dysfunction and cell injuries via the Wnt/β-Catenin signalling pathway. Neurochem Res 2021.
[111]
Shang YC, Chong ZZ, Hou J, Maiese K. Wnt1, FoxO3a, and NF-kappaB oversee microglial integrity and activation during oxidant stress. Cell Signal 2010; 22(9): 1317-29.
[112]
Shang YC, Chong ZZ, Wang S, Maiese K. Erythropoietin and Wnt1 Govern pathways of mTOR, Apaf-1, and XIAP in inflammatory microglia. Curr Neurovasc Res 2011; 8(4): 270-85.
[113]
Shang YC, Chong ZZ, Wang S, Maiese K. WNT1 inducible signaling pathway protein 1 (WISP1) Targets PRAS40 to Govern beta-Amyloid apoptotic injury of microglia. Curr Neurovasc Res 2012; 9(4): 239-49.
[114]
Shang YC, Chong ZZ, Wang S, Maiese K. Prevention of beta-amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3-K/mTOR pathway, Bad, and Bcl-xL. Aging (Albany NY) 2012; 4(3): 187-201.
[115]
Shang YC, Chong ZZ, Wang S, Maiese K. Tuberous sclerosis protein 2 (TSC2) modulates CCN4 cytoprotection during apoptotic amyloid toxicity in microglia. Curr Neurovasc Res 2013; 10(1): 29-38.
[116]
Fernandez-Ruiz R, García-Alamán A, Esteban Y, et al. Wisp1 is a circulating factor that stimulates proliferation of adult mouse and human beta cells. Nat Communicat 2020; 11(1): 5982.
[117]
Maiese K. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease. Neural Regenerat Res 2015; 10(4): 518-28.
[118]
Sahin Ersoy G, Altun Ensari T, Subas S, Giray B, Simsek EE, Cevik O. WISP1 is a novel adipokine linked to metabolic parameters in gestational diabetes mellitus. J Matern Fetal Neonatal Med 2016; 1-5.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy