Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Time- and Concentration-Dependent Stimulation of Oxidative Stress in Chondrocytes by Intracellular Soluble Urate

Author(s): Bingqing Zhang, Hong Di, Yun Zhang, Xinxin Han, Yue Yin, Yingdong Han, Yu Cao and Xuejun Zeng*

Volume 24, Issue 2, 2024

Published on: 06 March, 2023

Page: [233 - 243] Pages: 11

DOI: 10.2174/1566524023666221227102157

Price: $65

Abstract

Background: Gout could result in irreversible bone erosion, and chondrocyte might be involved in the process. Increased soluble urate is the early stage of gout and is strongly oxidative.

Objective: To explore the effect of intracellular urate on the oxidative status of chondrocytes.

Methods: A chondrocyte model was used. Serial concentrations of exogenous urate were incubated with chondrocytes for increasing amounts of time. Reactive oxygen species (ROS), oxidant, and anti-oxidant molecules were measured with biochemical assays, rt-PCR, and western blot. A urate transport inhibitor and oxidative inhibitors were used to confirm the effect of exogenous urate.

Results: All concentrations of exogenous urate stimulated the production of ROS in a time- and concentration-dependent manner, as well as oxidant molecules, including hydrogen peroxide (H2O2), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, nitric oxide (NO) inducible nitric oxide synthase (iNOS), and these effects, could be inhibited by oxidant inhibitors. However, anti-oxidant molecules, including acidic leucine-rich nuclear phosphoprotein-32A (ANP32A), ataxia-telangiectasia mutated (ATM), heme oxygenase-1 (HO-1), and the transcription factor nuclear factor erythroid 2 (NF-E2)-related (Nrf2), was decreased by high concentrations of exogenous urate after prolonged incubation, but not by low to medium concentrations of exogenous urate. By inhibiting soluble urate trafficking, benzbromarone significantly suppressed the effect of urate stimulus on the oxidant and anti-oxidant molecules.

Conclusion: Intracellular soluble urate could regulate chondrocyte redox balance in a time and concentration-dependent manner, and would be a target for regulating and protecting chondrocyte function in the early gout stage.

[1]
FitzGerald JD, Dalbeth N, Mikuls T, et al. 2020 American College of Rheumatology guideline for the management of gout. Arthritis Rheumatol 2020; 72(6): 879-95.
[http://dx.doi.org/10.1002/art.41247] [PMID: 32390306]
[2]
Chen-Xu M, Yokose C, Rai SK, Pillinger MH, Choi HK. Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: The National health and nutrition examination survey, 2007–2016. Arthritis Rheumatol 2019; 71(6): 991-9.
[http://dx.doi.org/10.1002/art.40807] [PMID: 30618180]
[3]
McQueen FM, Chhana A, Dalbeth N. Mechanisms of joint damage in gout: Evidence from cellular and imaging studies. Nat Rev Rheumatol 2012; 8(3): 173-81.
[http://dx.doi.org/10.1038/nrrheum.2011.207] [PMID: 22231231]
[4]
Khanna PP, Nuki G, Bardin T, et al. Tophi and frequent gout flares are associated with impairments to quality of life, productivity, and increased healthcare resource use: Results from a cross-sectional survey. Health Qual Life Outcomes 2012; 10(1): 117.
[http://dx.doi.org/10.1186/1477-7525-10-117] [PMID: 22999027]
[5]
Schlesinger N, Thiele RG. The pathogenesis of bone erosions in gouty arthritis. Ann Rheum Dis 2010; 69(11): 1907-12.
[http://dx.doi.org/10.1136/ard.2010.128454] [PMID: 20705636]
[6]
Fang Q, Zhou C, Nandakumar KS. Molecular and cellular pathways contributing to joint damage in rheumatoid Arthritis. Mediators Inflamm 2020; 2020: 1-20.
[http://dx.doi.org/10.1155/2020/3830212] [PMID: 32256192]
[7]
Zhang B, Duan M, Long B, et al. Urate transport capacity of glucose transporter 9 and urate transporter 1 in cartilage chondro-cytes. Mol Med Rep 2019; 20(2): 1645-54.
[http://dx.doi.org/10.3892/mmr.2019.10426] [PMID: 31257523]
[8]
Sánchez-Lozada LG. The pathophysiology of uric acid on renal diseases. Contrib Nephrol 2018; 192: 17-24.
[http://dx.doi.org/10.1159/000484274] [PMID: 29393088]
[9]
Verzola D, Ratto E, Villaggio B, et al. Uric acid promotes apoptosis in human proximal tubule cells by oxidative stress and the activation of NADPH oxidase NOX 4. PLoS One 2014; 9(12): e115210.
[http://dx.doi.org/10.1371/journal.pone.0115210] [PMID: 25514209]
[10]
Lanaspa MA, Sanchez-Lozada LG, Choi YJ, et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J Biol Chem 2012; 287(48): 40732-44.
[http://dx.doi.org/10.1074/jbc.M112.399899] [PMID: 23035112]
[11]
Choi YJ, Shin HS, Choi HS, et al. Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes. Lab Invest 2014; 94(10): 1114-25.
[http://dx.doi.org/10.1038/labinvest.2014.98] [PMID: 25111690]
[12]
Zhang Y, Yamamoto T, Hisatome I, et al. Uric acid induces oxidative stress and growth inhibition by activating adenosine monophosphate-activated protein kinase and extracellular signal-regulated kinase signal pathways in pancreatic β cells. Mol Cell Endocrinol 2013; 375(1-2): 89-96.
[http://dx.doi.org/10.1016/j.mce.2013.04.027] [PMID: 23707617]
[13]
Jia L, Xing J, Ding Y, et al. Hyperuricemia causes pancreatic β-cell death and dysfunction through NF-κB signaling pathway. PLoS One 2013; 8(10): e78284.
[http://dx.doi.org/10.1371/journal.pone.0078284] [PMID: 24205181]
[14]
Ghasemi A. Uric acid‐induced pancreatic β-cell dysfunction. BMC Endocr Disord 2021; 21(1): 24.
[http://dx.doi.org/10.1186/s12902-021-00698-6] [PMID: 33593356]
[15]
Trachootham D, Lu W, Ogasawara MA, Valle NR-D, Huang P. Redox regulation of cell survival. Antioxid Redox Signal 2008; 10(8): 1343-74.
[http://dx.doi.org/10.1089/ars.2007.1957] [PMID: 18522489]
[16]
Tudorachi NB, Totu EE, Fifere A, et al. The implication of reactive oxygen species and antioxidants in knee Osteoarthritis. Antioxidants 2021; 10(6): 985.
[http://dx.doi.org/10.3390/antiox10060985] [PMID: 34205576]
[17]
Rellmann Y, Eidhof E, Dreier R. Review: ER stress-induced cell death in osteoarthritic cartilage. Cell Signal 2021; 78: 109880.
[http://dx.doi.org/10.1016/j.cellsig.2020.109880] [PMID: 33307190]
[18]
Hwang H, Yang C, Park S, Kim H. Monosodium urate crystal-induced chondrocyte death via autophagic process. Int J Mol Sci 2015; 16(12): 29265-77.
[http://dx.doi.org/10.3390/ijms161226164] [PMID: 26670233]
[19]
Lai JH, Luo SF, Hung LF, et al. Physiological concentrations of soluble uric acid are chondroprotective and anti-inflammatory. Sci Rep 2017; 7(1): 2359.
[http://dx.doi.org/10.1038/s41598-017-02640-0] [PMID: 28539647]
[20]
Keenan RT. The biology of urate. Semin Arthritis Rheum 2020; 50(3): S2-S10.
[http://dx.doi.org/10.1016/j.semarthrit.2020.04.007] [PMID: 32620198]
[21]
Álvarez-Lario B, Macarrón-Vicente J. Uric acid and evolution. Rheumatology 2010; 49(11): 2010-5.
[http://dx.doi.org/10.1093/rheumatology/keq204] [PMID: 20627967]
[22]
Ahmad N, Ansari MY, Haqqi TM. Role of iNOS in osteoarthritis: Pathological and therapeutic aspects. J Cell Physiol 2020; 235(10): 6366-76.
[http://dx.doi.org/10.1002/jcp.29607] [PMID: 32017079]
[23]
Zahan OM, Serban O, Gherman C, Fodor D. The evaluation of oxidative stress in osteoarthritis. Med Pharm Rep 2020; 93(1): 12-22.
[http://dx.doi.org/10.15386/mpr-1422] [PMID: 32133442]
[24]
Ansari MY, Ahmad N, Haqqi TM. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols. Biomed Pharmacother 2020; 129: 110452.
[http://dx.doi.org/10.1016/j.biopha.2020.110452] [PMID: 32768946]
[25]
Bolduc JA, Collins JA, Loeser RF. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med 2019; 132: 73-82.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.038] [PMID: 30176344]
[26]
Johnson K, Jung A, Murphy A, Andreyev A, Dykens J, Terkeltaub R. Mitochondrial oxidative phosphorylation is a downstream regulator of nitric oxide effects on chondrocyte matrix synthesis and mineralization. Arthritis Rheum 2000; 43(7): 1560-70.
[http://dx.doi.org/10.1002/1529-0131(200007)43:7<1560:AID-ANR21>3.0.CO;2-S] [PMID: 10902761]
[27]
Pelletier JP, Mineau F, Ranger P, Tardif G, Martel-Pelletier J. The increased synthesis of inducible nitric oxide inhibits IL-1ra synthesis by human articular chondrocytes: possible role in osteoarthritic cartilage degradation. Osteoarthritis Cartilage 1996; 4(1): 77-84.
[http://dx.doi.org/10.1016/S1063-4584(96)80009-4] [PMID: 8731398]
[28]
Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol Cell Physiol 1996; 271(5): C1424-37.
[http://dx.doi.org/10.1152/ajpcell.1996.271.5.C1424] [PMID: 8944624]
[29]
Kim PKM, Zamora R, Petrosko P, Billiar TR. The regulatory role of nitric oxide in apoptosis. Int Immunopharmacol 2001; 1(8): 1421-41.
[http://dx.doi.org/10.1016/S1567-5769(01)00088-1] [PMID: 11515809]
[30]
Cornelis FMF, Monteagudo S, Guns LAKA, et al. ANP32A regulates ATM expression and prevents oxidative stress in cartilage, brain, and bone. Sci Transl Med 2018; 10(458): eaar8426.
[http://dx.doi.org/10.1126/scitranslmed.aar8426] [PMID: 30209244]
[31]
Sanada Y, Tan SJO, Adachi N, Miyaki S. Pharmacological targeting of heme oxygenase-1 in osteoarthritis. Antioxidants 2021; 10(3): 419.
[http://dx.doi.org/10.3390/antiox10030419] [PMID: 33803317]
[32]
Khan NM, Ahmad I, Haqqi TM. Nrf2/ARE pathway attenuates oxidative and apoptotic response in human osteoarthritis chon-drocytes by activating ERK1/2/ELK1-P70S6K-P90RSK signaling axis. Free Radic Biol Med 2018; 116: 159-71.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.01.013] [PMID: 29339024]
[33]
Zhang FJ, Luo W, Lei GH. Role of HIF-1α and HIF-2α in osteoarthritis. Joint Bone Spine 2015; 82(3): 144-7.
[http://dx.doi.org/10.1016/j.jbspin.2014.10.003] [PMID: 25553838]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy