Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis and Molecular Docking of New N-Acyl Hydrazones- Benzimidazole as hCA I and II Inhibitors

Author(s): Kaan Küçükoğlu, Ulviye Acar Çevik*, Hayrunnisa Nadaroglu, Ismail Celik, Ayşen Işık, Hayrani Eren Bostancı, Yusuf Özkay and Zafer Asım Kaplancıklı

Volume 19, Issue 5, 2023

Published on: 20 January, 2023

Page: [485 - 494] Pages: 10

DOI: 10.2174/1573406419666221222143530

Price: $65

Abstract

Background: The carbonic anhydrases (CAs) which are found in most living organisms is a member of the zinc-containing metalloenzyme family. The abnormal levels and activities are frequently associated with various diseases therefore CAs have become an attractive target for the design of inhibitors or activators that can be used in the treatment of those diseases.

Methods: Herein, we have designed and synthesized new benzimidazole-hydrazone derivatives to investigate the effects of these synthesized compounds on CA isoenzymes. Chemical structures of synthesized compounds were confirmed by 1H NMR, 13C NMR, and HRMS. The synthetic derivatives were screened for their inhibitory potential against carbonic anhydrase I and II by in vitro assay.

Results: These compounds have IC50 values of 5.156-1.684 μM (hCA I) and 4.334-2.188 μM (hCA II). Inhibition types and Ki values of the compounds were determined. The Ki values of the compounds were 5.44 ± 0.14 μM-0.299 ± 0.01 μM (hCA I) and 3.699 ± 0.041 μM-1.507 ± 0.01 μM (hCA II). The synthetic compounds displayed inhibitory action comparable to that of the clinically utilized reference substance, acetazolamide. According to this, compound 3p was the most effective molecule with an IC50 value of 1.684 μM. Accordingly, the type of inhibition was noncompetitive and the Ki value was 0.299 ± 0.01 μM.

Conclusion: According to the in vitro test results, detailed protein-ligand interactions of the compound 3p, which is more active against hCA I than standard azithromycin (AZM), were analyzed. In addition, the cytotoxic effects of the compounds on the L929 healthy cell line were evaluated.

Graphical Abstract

[1]
Tahlan, S.; Kumar, S.; Narasimhan, B. Pharmacological significance of heterocyclic 1H-benzimidazole scaffolds: A review. BMC Chem., 2019, 13(1), 101.
[http://dx.doi.org/10.1186/s13065-019-0625-4] [PMID: 31410412]
[2]
Kamanna, K. Synthesis and pharmacological profile of benzimidazoles. Chemistry and applications of benzimidazole and its derivatives; IntechOpen: London, UK, 2019, pp. 51-69.
[3]
Alaqeel, S.I. Synthetic approaches to benzimidazoles from o-phenylenediamine: A literature review. J. Saudi Chem. Soc., 2017, 21(2), 229-237.
[http://dx.doi.org/10.1016/j.jscs.2016.08.001]
[4]
Kamal, A.; Praveen Kumar, P.; Sreekanth, K.; Seshadri, B.N.; Ramulu, P. Synthesis of new benzimidazole linked pyrrolo[2,1- c][1,4]benzodiazepine conjugates with efficient DNA-binding affinity and potent cytotoxicity. Bioorg. Med. Chem. Lett., 2008, 18(8), 2594-2598.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.039] [PMID: 18378445]
[5]
Garuti, L.; Roberti, M.; Malagoli, M.; Rossi, T.; Castelli, M. Synthesis and antiproliferative activity of some benzimidazole-4,7-dione derivatives. Bioorg. Med. Chem. Lett., 2000, 10(19), 2193-2195.
[http://dx.doi.org/10.1016/S0960-894X(00)00429-7] [PMID: 11012027]
[6]
Rajiv, D.; Sonwane, S.K.; Srivastava, S.K.; Srivastava, S.D. Conventional and greener approach for the synthesis of some novel substituted-4-oxothiazolidine and their 5-arylidene derivatives of 2-methylbenzimidazole: Antimicrobial activities. J. Chem. Pharm. Res., 2010, 2(1), 415-423.
[7]
Hosamani, K.M.; Seetharamareddy, H.R.; Keri, R.S.; Hanamanthagouda, M.S.; Moloney, M.G. Microwave assisted, one-pot synthesis of 5-nitro- 2-aryl substituted-1H-benzimidazole libraries: Screening in vitro for antimicrobial activity. J. Enzyme Inhib. Med. Chem., 2009, 24(5), 1095-1100.
[http://dx.doi.org/10.1080/14756360802632716] [PMID: 19772484]
[8]
Patil, A.; Ganguly, S.; Surana, S. Synthesis and antiulcer activity of 2-[5-substituted-1-H-benzo(d) imidazol-2-yl sulfinyl]methyl-3-substituted quinazoline-4-(3H) ones. J. Chem. Sci., 2010, 122(3), 443-450.
[http://dx.doi.org/10.1007/s12039-010-0052-5]
[9]
Bariwal, J.B.; Shah, A.K.; Kathiravan, M.K.; Somani, R.S.; Jagtap, J.R.; Jain, K.S. Synthesis and antiulcer activity of novel pyrimidylthiomethyl- and pyrimidylsulfinylmethyl benzimidazoles as potential reversible proton pump inhibitors. Indian J. Pharm. Educ. Res., 2008, 42(3), 225-231.
[10]
Radha, Y.; Manjula, K.M.; Reddy, B.M.; Rao, B.V. Synthesis and biological activity of novel benzimidazoles. Indian J. Chem., 2011, 50B, 1762-1773.
[11]
Demirayak, S.; Karaburun, A.C.; Kayagil, I.; Uçucu, U.; Beis, R. Synthesis and analgesic activities of some 2-(benzazolylacetyl) amino-3-ethoxycarbonylthiophene derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2005, 180(8), 1841-1848.
[http://dx.doi.org/10.1080/104265090889503]
[12]
Law, C.S.W.; Yeong, K.Y. Benzimidazoles in drug discovery: A patent review. ChemMedChem, 2021, 16(12), 1861-1877.
[http://dx.doi.org/10.1002/cmdc.202100004] [PMID: 33646618]
[13]
Acar Cevik, U.; Saglik, B.; Levent, S.; Osmaniye, D. Kaya Cavuşoglu, B.; Ozkay, Y.; Kaplancikli, Z. Synthesis and AChE-inhibitory activity of new benzimidazole derivatives. Molecules, 2019, 24(5), 861.
[http://dx.doi.org/10.3390/molecules24050861] [PMID: 30823470]
[14]
Blagosklonny, M.V. Analysis of FDA approved anticancer drugs reveals the future of cancer therapy. Cell Cycle, 2004, 3(8), 1033-1040.
[http://dx.doi.org/10.4161/cc.3.8.1023] [PMID: 15254418]
[15]
Maia, R.C.; Tesch, R.; Fraga, C.A.M. Acylhydrazone derivatives: A patent review. Expert Opin. Ther. Pat., 2014, 24(11), 1161-1170.
[http://dx.doi.org/10.1517/13543776.2014.959491] [PMID: 25213630]
[16]
Carvalho, S.A.; Feitosa, L.O.; Soares, M.; Costa, T.E.M.M.; Henriques, M.G.; Salomão, K.; de Castro, S.L.; Kaiser, M.; Brun, R.; Wardell, J.L.; Wardell, S.M.S.V.; Trossini, G.H.G.; Andricopulo, A.D.; da Silva, E.F.; Fraga, C.A.M. Design and synthesis of new (E)-cinnamic N-acylhydrazones as potent antitrypanosomal agents. Eur. J. Med. Chem., 2012, 54, 512-521.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.041] [PMID: 22727447]
[17]
Gorantla, V.; Gundla, R.; Jadav, S.S.; Anugu, S.R.; Chimakurthy, J.; Rao, N.S.K.; Korupolu, R. New anti-inflammatory Hybrid N-acyl hydrazone-linked isoxazole derivatives as COX-2 inhibitors: rational design, synthesis and biological evaluation. Chem. Select., 2017, 2(26), 8091-8100.
[18]
Osmaniye, D. Sağlık, B.N.; Levent, S.; Özkay, Y.; Kaplancıklı, Z.A. Design, synthesis and biological evaluation of new N -acyl hydrazones with a methyl sulfonyl moiety as selective COX-2 inhibitors. Chem. Biodivers., 2021, 18(11), e2100521.
[http://dx.doi.org/10.1002/cbdv.202100521] [PMID: 34411436]
[19]
Hernandes, M.Z.; Rabello, M.M.; Leite, A.C.L.; Cardoso, M.V.O.; Moreira, D.R.M.; Brondani, D.J.; Simone, C.A.; Reis, L.C.; Souza, M.A.; Pereira, V.R.A.; Ferreira, R.S.; McKerrow, J.H. Studies toward the structural optimization of novel thiazolylhydrazone-based potent antitrypanosomal agents. Bioorg. Med. Chem., 2010, 18(22), 7826-7835.
[http://dx.doi.org/10.1016/j.bmc.2010.09.056] [PMID: 20961766]
[20]
Ali, O.; Abdel-Rahman, A.; Amer, H. Synthesis and antiviral valuation of sugar uracil-1-ylmethylhydrazones and their oxadiazoline derivatives. Synthesis, 2007, 2007(18), 2823-2828.
[http://dx.doi.org/10.1055/s-2007-983878]
[21]
Ferreira, M.L.; Gonçalves, R.S.B.; Cardoso, L.N.F.; Kaiser, C.R.; Candéa, A.L.P.; Henriques, M.G.M.O.; Lourenço, M.C.S.; Bezerra, F.A.F.M.; de Souza, M.V.N. Synthesis and antitubercular activity of heteroaromatic isonicotinoyl and 7-chloro-4-quinolinyl hydrazone derivatives. ScientificWorldJournal, 2010, 10, 1347-1355.
[http://dx.doi.org/10.1100/tsw.2010.124] [PMID: 20623095]
[22]
Zhang, D.; Ma, Y.; Liu, Y.; Liu, Z.P. Synthesis of sulfonylhydrazone- and acylhydrazone-substituted 8-ethoxy-3-nitro-2H-chromenes as potent antiproliferative and apoptosis inducing agents. Arch. Pharm., 2014, 347(8), 576-588.
[http://dx.doi.org/10.1002/ardp.201400082] [PMID: 24866448]
[23]
Coimbra, E.S.; Nora de Souza, M.V.; Terror, M.S.; Pinheiro, A.C.; da Trindade Granato, J. Synthesis, biological activity, and mechanism of action of new 2-pyrimidinyl hydrazone and N-acylhydrazone derivatives, a potent and new classes of antileishmanial agents. Eur. J. Med. Chem., 2019, 184, 111742.
[http://dx.doi.org/10.1016/j.ejmech.2019.111742] [PMID: 31605866]
[24]
Alencar, A.K.N.; Pereira, S.L.; Montagnoli, T.L.; Maia, R.C.; Kümmerle, A.E.; Landgraf, S.S.; Caruso-Neves, C.; Ferraz, E.B.; Tesch, R.; Nascimento, J.H.M.; de Sant’Anna, C.M.R.; Fraga, C.A.M.; Barreiro, E.J.; Sudo, R.T.; Zapata-Sudo, G. Beneficial effects of a novel agonist of the adenosine A 2A receptor on monocrotaline-induced pulmonary hypertension in rats. Br. J. Pharmacol., 2013, 169(5), 953-962.
[http://dx.doi.org/10.1111/bph.12193] [PMID: 23530610]
[25]
Supuran, C.T.; Scozzafava, A. Carbonic anhydrases as targets for medicinal chemistry. Bioorg. Med. Chem., 2007, 15(13), 4336-4350.
[http://dx.doi.org/10.1016/j.bmc.2007.04.020] [PMID: 17475500]
[26]
Scozzafava, A.; Passaponti, M.; Supuran, C.T. Gülçin, İ Carbonic anhydrase inhibitors: Guaiacol and catechol derivatives effectively inhibit certain human carbonic anhydrase isoenzymes (hCA I, II, IX and XII). J. Enzyme Inhib. Med. Chem., 2015, 30(4), 586-591.
[http://dx.doi.org/10.3109/14756366.2014.956310] [PMID: 25373500]
[27]
Supuran, C.T. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov., 2008, 7(2), 168-181.
[http://dx.doi.org/10.1038/nrd2467] [PMID: 18167490]
[28]
Thiry, A.; Dogné, J.M.; Supuran, C.; Masereel, B. Carbonic anhydrase inhibitors as anticonvulsant agents. Curr. Top. Med. Chem., 2007, 7(9), 855-864.
[http://dx.doi.org/10.2174/156802607780636726] [PMID: 17504130]
[29]
Supuran, C.T.; Capasso, C. Biomedical applications of prokaryotic carbonic anhydrases. Expert Opin. Ther. Pat., 2018, 28(10), 745-754.
[http://dx.doi.org/10.1080/13543776.2018.1497161] [PMID: 29973089]
[30]
Bozdag, M.; Altamimi, A.S.A.; Vullo, D.; Supuran, C.T.; Carta, F. State of the art on carbonic anhydrase modulators for biomedical purposes. Curr. Med. Chem., 2019, 26(15), 2558-2573.
[http://dx.doi.org/10.2174/0929867325666180622120625] [PMID: 29932025]
[31]
Angeli, A.; Vaiano, F.; Mari, F.; Bertol, E.; Supuran, C.T. Psychoactive substances belonging to the amphetamine class potently activate brain carbonic anhydrase isoforms VA, VB, VII, and XII. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1253-1259.
[http://dx.doi.org/10.1080/14756366.2017.1375485] [PMID: 28936885]
[32]
Di Fiore, A.; De Simone, G.; Alterio, V.; Riccio, V.; Winum, J.Y.; Carta, F.; Supuran, C.T. The anticonvulsant sulfamide JNJ-26990990 and its S,S-dioxide analog strongly inhibit carbonic anhydrases: Solution and X-ray crystallographic studies. Org. Biomol. Chem., 2016, 14(21), 4853-4858.
[http://dx.doi.org/10.1039/C6OB00803H] [PMID: 27151329]
[33]
Carta, F.; Supuran, C.T. Diuretics with carbonic anhydrase inhibitory action: A patent and literature review (2005 – 2013). Expert Opin. Ther. Pat., 2013, 23(6), 681-691.
[http://dx.doi.org/10.1517/13543776.2013.780598] [PMID: 23488823]
[34]
Supuran, C.T.; Altamimi, A.S.A.; Carta, F. Carbonic anhydrase inhibition and the management of glaucoma: A literature and patent review 2013-2019. Expert Opin. Ther. Pat., 2019, 29(10), 781-792.
[http://dx.doi.org/10.1080/13543776.2019.1679117] [PMID: 31596641]
[35]
Scozzafava, A.; Supuran, C.T.; Carta, F. Antiobesity carbonic anhydrase inhibitors: A literature and patent review. Expert Opin. Ther. Pat., 2013, 23(6), 725-735.
[http://dx.doi.org/10.1517/13543776.2013.790957] [PMID: 23607332]
[36]
Alp, C.; Maresca, A.; Alp, N.A.; Gültekin, M.S.; Ekinci, D.; Scozzafava, A.; Supuran, C.T. Secondary/tertiary benzenesulfonamides with inhibitory action against the cytosolic human carbonic anhydrase isoforms I and II. J. Enzyme Inhib. Med. Chem., 2013, 28(2), 294-298.
[http://dx.doi.org/10.3109/14756366.2012.658788] [PMID: 22380772]
[37]
Masini, E.; Carta, F.; Scozzafava, A.; Supuran, C.T. Antiglaucoma carbonic anhydrase inhibitors: A patent review. Expert Opin. Ther. Pat., 2013, 23(6), 705-716.
[http://dx.doi.org/10.1517/13543776.2013.794788] [PMID: 23627893]
[38]
Kolko, M.; Horwitz, A.; Thygesen, J.; Jeppesen, J.; Torp-Pedersen, C. The prevalence and incidence of glaucoma in Denmark in a fifteen year period: A nationwide study. PLOS One, 2015, 10(7), e0132048.
[http://dx.doi.org/10.1371/journal.pone.0132048] [PMID: 26182236]
[39]
Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology, 2014, 121(11), 2081-2090.
[http://dx.doi.org/10.1016/j.ophtha.2014.05.013] [PMID: 24974815]
[40]
Storgaard, L.; Tran, T.L.; Freiberg, J.C.; Hauser, A.S.; Kolko, M. Glaucoma clinical research: Trends in treatment strategies and drug development. Front. Med., 2021, 8, 733080.
[http://dx.doi.org/10.3389/fmed.2021.733080] [PMID: 34589504]
[41]
John, M.E.C.f.C.D. Communications, S; Agency for Healthcare Research and Quality: Rockville, MD. US, 2007.
[42]
Arbabi, A.; Bao, X.; Shalaby, W.S.; Razeghinejad, R. Systemic side effects of glaucoma medications. Clin. Exp. Optom., 2022, 105(2), 157-165.
[http://dx.doi.org/10.1080/08164622.2021.1964331] [PMID: 34402741]
[43]
Arslan, O.; Nalbantoglu, B.; Demir, N.; Ozdemir, H.; Kufrevioglu, O.I. A new method for the purification of carbonic anhydrase isozymes by affinity chromatography. Turk. J. Med. Sci., 1996, 26(2), 163-166.
[44]
Özkay, Y. Tunalı, Y.; Karaca, H.; Işıkdağ, İ. Antimicrobial activity and a SAR study of some novel benzimidazole derivatives bearing hydrazone moiety. Eur. J. Med. Chem., 2010, 45(8), 3293-3298.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.012] [PMID: 20451306]
[45]
Demir, N.; Demir, Y.; Nadaroglu, H. Carbonic anhydrase from bovine bone. Prep. Biochem. Biotechnol., 2001, 31(1), 33-47.
[http://dx.doi.org/10.1081/PB-100103370] [PMID: 11321162]
[46]
Demir, Y.; Demir, N.; Yildirim, S. Nadaroğlu, H.; Karaosmanoğlu, M.; Bakan, E. The activities of carbonic anhydrase and alkaline phosphatase in ancient human bones. Purification and characterization of outer peripheral, cytosolic, inner peripheral, and integral CA. Prep. Biochem. Biotechnol., 2001, 31(3), 291-304.
[http://dx.doi.org/10.1081/PB-100104910] [PMID: 11513093]
[47]
Wilbur, K.M.; Anderson, N.G. Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem., 1948, 176(1), 147-154.
[http://dx.doi.org/10.1016/S0021-9258(18)51011-5] [PMID: 18886152]
[48]
Rickli, E.E.; Ghazanfar, S.A.S.; Gibbons, B.H.; Edsall, J.T. Carbonic anhydrases from human erythrocytes. Preparation and properties of two enzymes. J. Biol. Chem., 1964, 239(4), 1065-1078.
[http://dx.doi.org/10.1016/S0021-9258(18)91392-X] [PMID: 14165909]
[49]
Altintop, M.D.; Ozdemir, A.; Kucukoglu, K.; Turan-Zitouni, G.; Nadaroglu, H.; Kaplancikli, Z.A. Synthesis and evaluation of new thiadiazole derivatives as potential inhibitors of human carbonic anhydrase isozymes (hCA-I and hCA-II). J. Enzyme Inhib. Med. Chem., 2015, 30(1), 32-37.
[http://dx.doi.org/10.3109/14756366.2013.873038] [PMID: 24666301]
[50]
Borras, J.; Scozzafava, A.; Menabuoni, L.; Mincione, F.; Briganti, F.; Mincione, G.; Supuran, C.T. Carbonic anhydrase inhibitors. Bioorg. Med. Chem., 1999, 7(11), 2397-2406.
[http://dx.doi.org/10.1016/S0968-0896(99)00190-X] [PMID: 10632049]
[51]
Akocak, S.; Lolak, N.; Vullo, D.; Durgun, M.; Supuran, C.T. Synthesis and biological evaluation of histamine Schiff bases as carbonic anhydrase I, II, IV, VII, and IX activators. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1305-1312.
[http://dx.doi.org/10.1080/14756366.2017.1386660] [PMID: 29072105]
[52]
Küçükbay, H. Buğday, N.; Küçükbay, F.Z.; Berrino, E.; Bartolucci, G.; Del Prete, S.; Capasso, C.; Supuran, C.T. Synthesis and carbonic anhydrase inhibitory properties of novel 4-(2-aminoethyl) benzenesulfonamide-dipeptide conjugates. Bioorg. Chem., 2019, 83, 414-423.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.003] [PMID: 30419497]
[53]
Takaoka, Y.; Kioi, Y.; Morito, A.; Otani, J.; Arita, K.; Ashihara, E.; Ariyoshi, M.; Tochio, H.; Shirakawa, M.; Hamachi, I. Quantitative comparison of protein dynamics in live cells and in vitro by in-cell 19F-NMR. Chem. Commun., 2013, 49(27), 2801-2803.
[http://dx.doi.org/10.1039/c3cc39205h] [PMID: 23440262]
[54]
Fisher, S.Z.; Aggarwal, M.; Kovalevsky, A.Y.; Silverman, D.N.; McKenna, R. Neutron diffraction of acetazolamide-bound human carbonic anhydrase II reveals atomic details of drug binding. J. Am. Chem. Soc., 2012, 134(36), 14726-14729.
[http://dx.doi.org/10.1021/ja3068098] [PMID: 22928733]
[55]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[56]
Küçükoğlu, K.; Acar Çevik, U.; Nadaroglu, H.; Celik, I.; Işık, A.; Bostancı, H.E.; Özkay, Y.; Kaplancıklı, Z.A. Design, synthesis and molecular docking studies of novel benzimidazole-1,3,4-oxadiazole hybrids for their carbonic anhydrase inhibitory and antioxidant effects. Med. Chem. Res., 2022, 31(10), 1771-1782.
[http://dx.doi.org/10.1007/s00044-022-02943-6]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy