Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Strategies for Improving the Photocatalytic Methane to Methanol Conversion Efficiency

Author(s): Dan Yu, Hongwen Zhang*, Hengshan Liu, Ye Ma, Bin Han, Wenhui Feng* and Bo Weng*

Volume 27, Issue 5, 2023

Published on: 29 December, 2022

Page: [399 - 410] Pages: 12

DOI: 10.2174/1385272827666221219112052

Price: $65

Abstract

The photocatalytic conversion of methane (CH4) into methanol (CH3OH) has evoked great interest recently. In this minireview, we summarize the recent advances and current status on how to construct efficient semiconductor-based photocatalysts for enhancing the CH4 conversion efficiency and selectivity to CH3OH. This minireview firstly introduces the different radicals induced photocatalytic CH4 conversion mechanisms. Then, different strategies proposed for improving the CH4-to-CH3OH performance are highlighted with some selected typical examples, including engineering surface defects, tuning size and morphology, doping with different ions, designing heterojunctions, decorating with cocatalysts, and assisting with oxidants. Finally, we give a concise perspective on the existing challenges and specifically propose further research opportunities on maximizing the photocatalytic performance for CH4 conversion. It is anticipated that this minireview could bring more fundamental insights into the design of advanced photocatalysts toward CH4 to CH3OH conversion under solar light irradiation.

Graphical Abstract

[1]
Yuliati, L.; Yoshida, H. Photocatalytic conversion of methane. Chem. Soc. Rev., 2008, 37(8), 1592-1602.
[http://dx.doi.org/10.1039/b710575b]
[2]
Qi, G.; Davies, T.E.; Nasrallah, A.; Sainna, M.A.; Howe, A.G.R.; Lewis, R.J.; Quesne, M.; Catlow, C.R.A.; Willock, D.J.; He, Q.; Bethell, D.; Howard, M.J.; Murrer, B.A.; Harrison, B.; Kiely, C.J.; Zhao, X.; Deng, F.; Xu, J.; Hutchings, G.J. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nat. Catal., 2022, 5(1), 45-54.
[http://dx.doi.org/10.1038/s41929-021-00725-8]
[3]
Tian, Y.; Piao, L.; Chen, X. Research progress on the photocatalytic activation of methane to methanol. Green Chem., 2021, 23(10), 3526-3541.
[http://dx.doi.org/10.1039/D1GC00658D]
[4]
Villa, K.; Galán-Mascarós, J.R. Nanostructured photocatalysts for the production of methanol from methane and water. ChemSusChem, 2021, 14(9), 2023-2033.
[http://dx.doi.org/10.1002/cssc.202100192]
[5]
Xie, S.; Ma, W.; Wu, X.; Zhang, H.; Zhang, Q.; Wang, Y.; Wang, Y. Photocatalytic and electrocatalytic transformations of C1 molecules involving C–C coupling. Energy Environ. Sci., 2021, 14(1), 37-89.
[http://dx.doi.org/10.1039/D0EE01860K]
[6]
Chen, G.; Waterhouse, G.I.N.; Shi, R.; Zhao, J.; Li, Z.; Wu, L.Z.; Tung, C.H.; Zhang, T. From solar energy to fuels: Recent advances in light-driven C1 chemistry. Angew. Chem. Int. Ed., 2019, 58(49), 17528-17551.
[http://dx.doi.org/10.1002/anie.201814313]
[7]
Feng, N.; Lin, H.; Song, H.; Yang, L.; Tang, D.; Deng, F.; Ye, J. Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2. Nat. Commun., 2021, 12(1), 4652.
[http://dx.doi.org/10.1038/s41467-021-24912-0]
[8]
An, B.; Li, Z.; Wang, Z.; Zeng, X.; Han, X.; Cheng, Y.; Sheveleva, A.M.; Zhang, Z.; Tuna, F.; McInnes, E.J. Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site. Nat. Mater., 2022, 21(8), 932-938. https://www.nature.com/articles/s41563-022-01279-1
[9]
Qu, R.; Zhang, W.; Liu, N.; Zhang, Q.; Liu, Y.; Li, X.; Wei, Y.; Feng, L. Antioil Ag3PO4 nanoparticle/polydopamine/Al2O3 sandwich structure for complex wastewater treatment: Dynamic catalysis under natural light. ACS Sustain. Chem. Eng., 2018, 6(6), 8019-8028.
[http://dx.doi.org/10.1021/acssuschemeng.8b01469]
[10]
Chen, Y.; deGlee, B.; Tang, Y.; Wang, Z.; Zhao, B.; Wei, Y.; Zhang, L.; Yoo, S.; Pei, K.; Kim, J.H.; Ding, Y.; Hu, P.; Tao, F.F.; Liu, M. A robust fuel cell operated on nearly dry methane at 500 °C enabled by synergistic thermal catalysis and electrocatalysis. Nat. Energy, 2018, 3(12), 1042-1050.
[http://dx.doi.org/10.1038/s41560-018-0262-5]
[11]
Huang, H.; Zhao, J.; Weng, B.; Lai, F.; Zhang, M.; Hofkens, J.; Roeffaers, M.B.; Steele, J.A.; Long, J. Site-sensitive selective CO2 photoreduction to CO over gold nanoparticles. Angew. Chem. Int. Ed., 2022, e202204563.
[12]
Lu, S.; Weng, B.; Chen, A.; Li, X.; Huang, H.; Sun, X.; Feng, W.; Lei, Y.; Qian, Q.; Yang, M.Q. Facet engineering of Pd nanocrystals for enhancing photocatalytic hydrogenation: Modulation of the schottky barrier height and enrichment of surface reactants. ACS Appl. Mater. Interfaces, 2021, 13(11), 13044-13054.
[http://dx.doi.org/10.1021/acsami.0c19260]
[13]
Weng, B.; Jiang, Y.; Liao, H.G.; Roeffaers, M.B.J.; Lai, F.; Huang, H.; Tang, Z. Visualizing light-induced dynamic structural transformations of Au clusters-based photocatalyst via in situ TEM. Nano Res., 2021, 14(8), 2805-2809.
[http://dx.doi.org/10.1007/s12274-021-3289-z]
[14]
Weng, B.; Lu, K.Q.; Tang, Z.; Chen, H.M.; Xu, Y.J. Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nat. Commun., 2018, 9(1), 1543.
[http://dx.doi.org/10.1038/s41467-018-04020-2]
[15]
Huang, H.; Verhaeghe, D.; Weng, B.; Ghosh, B.; Zhang, H.; Hofkens, J.; Steele, J.A.; Roeffaers, M.B. Metal halide perovskite based heterojunction photocatalysts. Angew. Chem. Int. Ed., 2022, 61(24), e202203261.
[16]
Shang, W.; Li, Y.; Huang, H.; Lai, F.; Roeffaers, M.B.J.; Weng, B. Synergistic redox reaction for value-added organic transformation via dual-functional photocatalytic systems. ACS Catal., 2021, 11(8), 4613-4632.
[http://dx.doi.org/10.1021/acscatal.0c04815]
[17]
Chen, T.; Weng, B.; Lu, S.; Zhu, H.; Chen, Z.; Shen, L.; Roeffaers, M.B.J.; Yang, M.Q. Photocatalytic anaerobic dehydrogenation of alcohols over metal halide perovskites: A new acid-free scheme for H 2 production. J. Phys. Chem. Lett., 2022, 13(28), 6559-6565.
[http://dx.doi.org/10.1021/acs.jpclett.2c01501]
[18]
Liu, S.; Qi, W.; Adimi, S.; Guo, H.; Weng, B.; Attfield, J.P.; Yang, M. Titanium nitride-supported platinum with metal–support interaction for boosting photocatalytic H2 evolution of indium sulfide. ACS Appl. Mater. Interfaces, 2021, 13(6), 7238-7247.
[http://dx.doi.org/10.1021/acsami.0c20919]
[19]
Qin, J.; Chu, K.; Huang, Y.; Zhu, X.; Hofkens, J.; He, G.; Parkin, I.P.; Lai, F.; Liu, T. The bionic sunflower: A bio-inspired autonomous light tracking photocatalytic system. Energy Environ. Sci., 2021, 14(7), 3931-3937.
[http://dx.doi.org/10.1039/D1EE00587A]
[20]
Ward, M.D.; Brazdil, J.F.; Mehandru, S.P.; Anderson, A.B. Methane photoactivation on copper molybdate: An experimental and theoretical study. J. Phys. Chem., 1987, 91(26), 6515-6521.
[http://dx.doi.org/10.1021/j100310a019]
[21]
Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B, 2019, 243, 556-565.
[http://dx.doi.org/10.1016/j.apcatb.2018.11.011]
[22]
Villa, K.; Murcia-López, S.; Morante, J.R.; Andreu, T. An insight on the role of La in mesoporous WO 3 for the photocatalytic conversion of methane into methanol. Appl. Catal. B, 2016, 187, 30-36.
[http://dx.doi.org/10.1016/j.apcatb.2016.01.032]
[23]
Villa, K.; Murcia-López, S.; Andreu, T.; Morante, J.R. On the role of WO3 surface hydroxyl groups for the photocatalytic partial oxidation of methane to methanol. Nat. Commun., 2015, 58, 200-203.
[24]
Murcia-López, S.; Villa, K.; Andreu, T.; Morante, J.R. Improved selectivity for partial oxidation of methane to methanol in the presence of nitrite ions and BiVO 4 photocatalyst. Chem. Commun. (Camb.), 2015, 51(33), 7249-7252.
[http://dx.doi.org/10.1039/C5CC00978B]
[25]
Fan, Y.; Zhou, W.; Qiu, X.; Li, H.; Jiang, Y.; Sun, Z.; Han, D.; Niu, L.; Tang, Z. Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate. Nat. Sustain., 2021, 4(6), 509-515.
[http://dx.doi.org/10.1038/s41893-021-00682-x]
[26]
Du, X.; Yang, Z.; Yang, X.; Zhang, Q.; Liu, L.; Ye, J. Efficient photocatalytic conversion of methane into ethanol over P-Doped g-C3N4 under ambient conditions. Energy Fuels, 2022, 36(7), 3929-3937.
[http://dx.doi.org/10.1021/acs.energyfuels.2c00138]
[27]
Roy, C.; Sebok, B.; Scott, S.B.; Fiordaliso, E.M.; Sørensen, J.E.; Bodin, A.; Trimarco, D.B.; Damsgaard, C.D.; Vesborg, P.C.K.; Hansen, O.; Stephens, I.E.L.; Kibsgaard, J.; Chorkendorff, I. Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. Nat. Catal., 2018, 1(11), 820-829.
[http://dx.doi.org/10.1038/s41929-018-0162-x]
[28]
Cai, X.; Fang, S.; Hu, Y.H. Unprecedentedly high efficiency for photocatalytic conversion of methane to methanol over Au–Pd/TiO 2 – what is the role of each component in the system? J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(17), 10796-10802.
[http://dx.doi.org/10.1039/D1TA00420D]
[29]
Luo, L.; Gong, Z.; Xu, Y.; Ma, J.; Liu, H.; Xing, J.; Tang, J. Binary Au–Cu reaction sites decorated ZnO for selective methane oxidation to C1 oxygenates with nearly 100% selectivity at room temperature. J. Am. Chem. Soc., 2022, 144(2), 740-750.
[http://dx.doi.org/10.1021/jacs.1c09141]
[30]
Zhou, W.; Qiu, X.; Jiang, Y.; Fan, Y.; Wei, S.; Han, D.; Niu, L.; Tang, Z. Highly selective aerobic oxidation of methane to methanol over gold decorated zinc oxide via photocatalysis. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(26), 13277-13284.
[http://dx.doi.org/10.1039/D0TA02793F]
[31]
Song, S.; Song, H.; Li, L.; Wang, S.; Chu, W.; Peng, K.; Meng, X.; Wang, Q.; Deng, B.; Liu, Q.; Wang, Z.; Weng, Y.; Hu, H.; Lin, H.; Kako, T.; Ye, J. A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen. Nat. Catal., 2021, 4(12), 1032-1042.
[http://dx.doi.org/10.1038/s41929-021-00708-9]
[32]
Meng, X.; Cui, X.; Rajan, N.P.; Yu, L.; Deng, D.; Bao, X. Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis. Chem, 2019, 5(9), 2296-2325.
[http://dx.doi.org/10.1016/j.chempr.2019.05.008]
[33]
Kumar, P.; Al-Attas, T.A.; Hu, J.; Kibria, M.G. Single atom catalysts for selective methane oxidation to oxygenates. ACS Nano, 2022, 16(6), 8557-8618.
[http://dx.doi.org/10.1021/acsnano.2c02464]
[34]
Kumar, P.; Hu, J.; Kibria, M.G. Edge-confined under-coordinated Cu atoms on Ru nanosheets enable efficient CH4 activation. Chem. Catalysis, 2022, 2(9), 2118-2120.
[http://dx.doi.org/10.1016/j.checat.2022.08.007]
[35]
Fan, J.; Liang, S.; Zhu, K.; Mao, J.; Cui, X.; Ma, C.; Yu, L.; Deng, D. Boosting room-temperature conversion of methane via confining Cu atoms in ultrathin Ru nanosheets. Chem. Catalysis, 2022, 2(9), 2253-2261.
[http://dx.doi.org/10.1016/j.checat.2022.07.025]
[36]
Taylor, C.E.; Noceti, R.P. New developments in the photocatalytic conversion of methane to methanol. Catal. Today, 2000, 55(3), 259-267.
[http://dx.doi.org/10.1016/S0920-5861(99)00244-8]
[37]
Ogura, K.; Kataoka, M. Photochemical conversion of methane. J. Mol. Catal., 1988, 43(3), 371-379.
[http://dx.doi.org/10.1016/0304-5102(88)85148-4]
[38]
Zhang, D.; Sun, Y.; Tian, X.; Liu, X.T.; Wang, X.; Zhao, J.; Li, Y.; Li, F. Promoting photocatalytic CO2 reduction to CH4via a combined strategy of defects and tunable hydroxyl radicals. J. Colloid Interface Sci., 2022, 606, 1477-1487.
[http://dx.doi.org/10.1016/j.jcis.2021.08.163]
[39]
Song, H.; Meng, X.; Wang, S.; Zhou, W.; Wang, X.; Kako, T.; Ye, J. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water. J. Am. Chem. Soc., 2019, 141(51), 20507-20515.
[http://dx.doi.org/10.1021/jacs.9b11440]
[40]
Shi, S.; Sun, Z.; Bao, C.; Gao, T.; Hu, Y.H. The special route toward conversion of methane to methanol on a fluffy metal-free carbon nitride photocatalyst in the presence of H 2 O 2. Int. J. Energy Res., 2020, 44(4), 2740-2753.
[http://dx.doi.org/10.1002/er.5088]
[41]
Xiong, J.; Di, J.; Xia, J.; Zhu, W.; Li, H. Surface defect engineering in 2D nanomaterials for photocatalysis. Adv. Funct. Mater., 2018, 28(39), 1801983.
[http://dx.doi.org/10.1002/adfm.201801983]
[42]
Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. Defect engineering in photocatalytic materials. Nano Energy, 2018, 53, 296-336.
[http://dx.doi.org/10.1016/j.nanoen.2018.08.058]
[43]
Yang, J.; Chen, P.; Dai, J.; Chen, Y.; Rong, L.; Wang, D. Solar-energy-driven conversion of oxygen-bearing low-concentration coal mine methane into methanol on full-spectrum-responsive WO3−x catalysts. Energy Convers. Manage., 2021, 247, 114767.
[http://dx.doi.org/10.1016/j.enconman.2021.114767]
[44]
Chen, Y.; Wang, F.; Huang, Z.; Chen, J.; Han, C.; Li, Q.; Cao, Y.; Zhou, Y. Dual-function reaction center for simultaneous activation of CH 4 and O 2via oxygen vacancies during direct selective oxidation of CH 4 into CH 3 OH. ACS Appl. Mater. Interfaces, 2021, 13(39), 46694-46702.
[http://dx.doi.org/10.1021/acsami.1c13661]
[45]
Weng, B.; Zhang, X.; Zhang, N.; Tang, Z.R.; Xu, Y.J. Two-dimensional MoS2 nanosheet-coated Bi2S3 discoids: Synthesis, formation mechanism, and photocatalytic application. Langmuir, 2015, 31(14), 4314-4322.
[http://dx.doi.org/10.1021/la504549y]
[46]
Wang, H.; Hu, P.; Zhou, J.; Roeffaers, M.B.J.; Weng, B.; Wang, Y.; Ji, H. Ultrathin 2D/2D Ti 3 C 2 Tx/semiconductor dual-functional photocatalysts for simultaneous imine production and H 2 evolution. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(35), 19984-19993.
[http://dx.doi.org/10.1039/D1TA03573H]
[47]
Zhang, H.; Ming, J.; Zhao, J.; Gu, Q.; Xu, C.; Ding, Z.; Yuan, R.; Zhang, Z.; Lin, H.; Wang, X.; Long, J. High-Rate, tunable syngas production with artificial photosynthetic cells. Angew. Chem. Int. Ed., 2019, 58(23), 7718-7722.
[http://dx.doi.org/10.1002/anie.201902361]
[48]
Zhang, H.; Ma, L.; Ming, J.; Liu, B.; Zhao, Y.; Hou, Y.; Ding, Z.; Xu, C.; Zhang, Z.; Long, J. Amorphous Ta2OxNy-enwrapped TiO2 rutile nanorods for enhanced solar photoelectrochemical water splitting. Appl. Catal. B, 2019, 243, 481-489.
[http://dx.doi.org/10.1016/j.apcatb.2018.10.024]
[49]
Becker, J.; Raghupathi, K.R.; St. Pierre, J.; Zhao, D.; Koodali, R.T. Tuning of the crystallite and particle sizes of ZnO nanocrystalline materials in solvothermal synthesis and their photocatalytic activity for dye degradation. J. Phys. Chem. C, 2011, 115(28), 13844-13850.
[http://dx.doi.org/10.1021/jp2038653]
[50]
Liu, J.; Zhang, Y.H.; Bai, Z.M.; Huang, Z.A.; Gao, Y.K. Photoelectrocatalytic oxidation of methane into methanol and formic acid over ZnO/graphene/polyaniline catalyst. Chin. Phys. B, 2019, 28(4), 048101.
[http://dx.doi.org/10.1088/1674-1056/28/4/048101]
[51]
Sarkar, A.; Ghosh, A.B.; Saha, N.; Srivastava, D.N.; Paul, P.; Adhikary, B. Enhanced photocatalytic performance of morphologically tuned Bi 2 S 3 NPs in the degradation of organic pollutants under visible light irradiation. J. Colloid Interface Sci., 2016, 483, 49-59.
[http://dx.doi.org/10.1016/j.jcis.2016.08.023]
[52]
Villa, K.; Murcia-López, S.; Andreu, T.; Morante, J.R. Mesoporous WO3 photocatalyst for the partial oxidation of methane to methanol using electron scavengers. Appl. Catal. B, 2015, 163, 150-155.
[http://dx.doi.org/10.1016/j.apcatb.2014.07.055]
[53]
Zhu, W.; Shen, M.; Fan, G.; Yang, A.; Meyer, J.R.; Ou, Y.; Yin, B.; Fortner, J.; Foston, M.; Li, Z.; Zou, Z.; Sadtler, B. Facet-dependent enhancement in the activity of bismuth vanadate microcrystals for the photocatalytic conversion of methane to methanol. ACS Appl. Nano Mater., 2018, 1(12), 6683-6691.
[http://dx.doi.org/10.1021/acsanm.8b01490]
[54]
Zalfani, M.; van der Schueren, B.; Mahdouani, M.; Bourguiga, R.; Yu, W.B.; Wu, M.; Deparis, O.; Li, Y.; Su, B.L. ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants. Appl. Catal. B, 2016, 199, 187-198.
[http://dx.doi.org/10.1016/j.apcatb.2016.06.016]
[55]
Feng, W.; Lei, Y.; Wu, X.; Yuan, J.; Chen, J.; Xu, D.; Zhang, X.; Zhang, S.; Liu, P.; Zhang, L.; Weng, B. Tuning the interfacial electronic structure via Au clusters for boosting photocatalytic H 2 evolution. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(3), 1759-1769.
[http://dx.doi.org/10.1039/D0TA09217G]
[56]
Guo, Q.; Liang, F.; Li, X.B.; Gao, Y.J.; Huang, M.Y.; Wang, Y.; Xia, S.G.; Gao, X.Y.; Gan, Q.C.; Lin, Z.S.; Tung, C-H.; Wu, L-Z. Efficient and selective CO2 reduction integrated with organic synthesis by solar energy. Chem, 2019, 5(10), 2605-2616.
[http://dx.doi.org/10.1016/j.chempr.2019.06.019]
[57]
Li, M.; Ma, L.; Luo, L.; Liu, Y.; Xu, M.; Zhou, H.; Wang, Y.; Li, Z.; Kong, X.; Duan, H. Efficient photocatalytic epoxidation of styrene over a quantum-sized SnO2 on carbon nitride as a heterostructured catalyst. Appl. Catal. B, 2022, 309, 121268.
[http://dx.doi.org/10.1016/j.apcatb.2022.121268]
[58]
Sambandam, B.; Surenjan, A.; Philip, L.; Pradeep, T. Rapid synthesis of C-TiO2: tuning the shape from spherical to rice grain morphology for visible light photocatalytic application. ACS Sustain. Chem. Eng., 2015, 3(7), 1321-1329.
[http://dx.doi.org/10.1021/acssuschemeng.5b00044]
[59]
Khlyustova, A.; Sirotkin, N.; Kusova, T.; Kraev, A.; Titov, V.; Agafonov, A. Doped TiO2: the effect of doping elements on photocatalytic activity. Mater. Res., 2020, 1(5), 1193-1201.
[60]
Wang, Y.; Wang, F.; Chen, Y.; Zhang, D.; Li, B.; Kang, S.; Li, X.; Cui, L. Enhanced photocatalytic performance of ordered mesoporous Fe-doped CeO2 catalysts for the reduction of CO2 with H2O under simulated solar irradiation. Appl. Catal. B, 2014, 147, 602-609.
[http://dx.doi.org/10.1016/j.apcatb.2013.09.036]
[61]
Li, T.; Abdelhaleem, A.; Chu, W.; Pu, S.; Qi, F.; Zou, J. S-doped TiO2 photocatalyst for visible LED mediated oxone activation: Kinetics and mechanism study for the photocatalytic degradation of pyrimethanil fungicide. Chem. Eng. J., 2021, 411, 128450.
[http://dx.doi.org/10.1016/j.cej.2021.128450]
[62]
Khaki, M.R.D.; Shafeeyan, M.S.; Raman, A.A.A.; Daud, W.M.A.W. Application of doped photocatalysts for organic pollutant degradation - A review. J. Environ. Manage., 2017, 198, 78-94.
[http://dx.doi.org/10.1016/j.jenvman.2017.04.099]
[63]
Bhattacharyya, K.; Mane, G.P.; Rane, V.; Tripathi, A.K.; Tyagi, A.K. Selective CO2 photoreduction with Cu-doped TiO2 photocatalyst: delineating the crucial role of Cu-oxidation state and oxygen vacancies. J. Phys. Chem. C, 2021, 125(3), 1793-1810.
[http://dx.doi.org/10.1021/acs.jpcc.0c08441]
[64]
Liu, L.; Liu, J.; Sun, K.; Wan, J.; Fu, F.; Fan, J. Novel phosphorus-doped Bi2WO6 monolayer with oxygen vacancies for superior photocatalytic water detoxication and nitrogen fixation performance. Chem. Eng. J., 2021, 411, 128629.
[http://dx.doi.org/10.1016/j.cej.2021.128629]
[65]
Li, L.; Li, G.D.; Yan, C.; Mu, X.Y.; Pan, X.L.; Zou, X.X.; Wang, K.X.; Chen, J.S. Efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn+-modified zeolite. Angew. Chem. Int. Ed., 2011, 50(36), 8299-8303.
[http://dx.doi.org/10.1002/anie.201102320]
[66]
Fotiou, T.; Triantis, T.M.; Kaloudis, T.; O’Shea, K.E.; Dionysiou, D.D.; Hiskia, A. Assessment of the roles of reactive oxygen species in the UV and visible light photocatalytic degradation of cyanotoxins and water taste and odor compounds using C–TiO2. Water Res., 2016, 90, 52-61.
[http://dx.doi.org/10.1016/j.watres.2015.12.006]
[67]
Fu, Z.; Yang, Q.; Liu, Z.; Chen, F.; Yao, F.; Xie, T.; Zhong, Y.; Wang, D.; Li, J.; Li, X.; Zeng, G. Photocatalytic conversion of carbon dioxide: From products to design the catalysts. J. CO2 Util., 2019, 34, 63-73.
[68]
Huang, D.; Yan, X.; Yan, M.; Zeng, G.; Zhou, C.; Wan, J.; Cheng, M.; Xue, W. Graphitic carbon nitride-based heterojunction photoactive nanocomposites: Applications and mechanism insight. ACS Appl. Mater. Interfaces, 2018, 10(25), 21035-21055.
[http://dx.doi.org/10.1021/acsami.8b03620]
[69]
Zhang, L.; Zhang, H.; Wang, B.; Huang, X.; Ye, Y.; Lei, R.; Feng, W.; Liu, P. A facile method for regulating the charge transfer route of WO3/CdS in high-efficiency hydrogen production. Appl. Catal. B, 2019, 244, 529-535.
[http://dx.doi.org/10.1016/j.apcatb.2018.11.055]
[70]
Zhang, L.; Zhang, H.; Jiang, C.; Yuan, J.; Huang, X.; Liu, P.; Feng, W. Z-scheme system of WO3@MoS2/CdS for photocatalytic evolution H2: MoS2 as the charge transfer mode switcher, electron-hole mediator and cocatalyst. Appl. Catal. B, 2019, 259, 118073.
[http://dx.doi.org/10.1016/j.apcatb.2019.118073]
[71]
Zhang, L.; Zhang, H.; Wang, B.; Huang, X.; Gao, F.; Zhao, Y.; Weng, S.; Liu, P. Construction of a dual-channel mode for wide spectrum-driven photocatalytic H 2 production. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(3), 1076-1082.
[http://dx.doi.org/10.1039/C8TA08914K]
[72]
Zhuang, H.; Chen, W.; Xu, W.; Liu, X. Facile synthesis of MoS 2 QDs/TiO 2 nanosheets via a self-assembly strategy for enhanced photocatalytic hydrogen production. Int. J. Energy Res., 2020, 44(4), 3224-3230.
[http://dx.doi.org/10.1002/er.5153]
[73]
Zhuang, H.; Zhang, S.; Lin, M.; Lin, L.; Cai, Z.; Xu, W. Controlling interface properties for enhanced photocatalytic performance: A case-study of CuO/TiO2 nanobelts. Mater. Res., 2020, 1(4), 767-773.
[74]
Chen, T.; Li, M.; Shen, L.; Roeffaers, M.B.J.; Weng, B.; Zhu, H.; Chen, Z.; Yu, D.; Pan, X.; Yang, M.Q.; Qian, Q. Photocatalytic anaerobic oxidation of aromatic alcohols coupled with H2 production over CsPbBr3/GO-Pt catalysts. Front Chem., 2022, 10, 833784.
[http://dx.doi.org/10.3389/fchem.2022.833784]
[75]
Wang, Z.; Lin, Z.; Shen, S.; Zhong, W.; Cao, S. Advances in designing heterojunction photocatalytic materials. Chin. J. Catal., 2021, 42(5), 710-730.
[http://dx.doi.org/10.1016/S1872-2067(20)63698-1]
[76]
Murcia-López, S.; Villa, K.; Andreu, T.; Morante, J.R. Partial oxidation of methane to methanol using bismuth-based photocatalysts. ACS Catal., 2014, 4(9), 3013-3019.
[http://dx.doi.org/10.1021/cs500821r]
[77]
Murcia-López, S.; Bacariza, M.C.; Villa, K.; Lopes, J.M.; Henriques, C.; Morante, J.R.; Andreu, T. Controlled photocatalytic oxidation of methane to methanol through surface modification of beta zeolites. ACS Catal., 2017, 7(4), 2878-2885.
[http://dx.doi.org/10.1021/acscatal.6b03535]
[78]
Yu, D.; Jia, Y.; Yang, Z.; Zhang, H.; Zhao, J.; Zhao, Y.; Weng, B.; Dai, W.; Li, Z.; Wang, P.; Steele, J.A.; Roeffaers, M.B.J.; Dai, S.; Huang, H.; Long, J. Solar photocatalytic oxidation of methane to methanol with water over RuOx/ZnO/CeO 2 nanorods. ACS Sustain. Chem.& Eng., 2022, 10(1), 16-22.
[http://dx.doi.org/10.1021/acssuschemeng.1c07162]
[79]
Weng, B.; Qi, M.Y.; Han, C.; Tang, Z.R.; Xu, Y.J. Photocorrosion inhibition of semiconductor-based photocatalysts: Basic principle, current development, and future perspective. ACS Catal., 2019, 9(5), 4642-4687.
[http://dx.doi.org/10.1021/acscatal.9b00313]
[80]
Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S.Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev., 2014, 43(22), 7787-7812.
[http://dx.doi.org/10.1039/C3CS60425J]
[81]
Zhang, H.; Li, Q.; Weng, B.; Xiao, L.; Tian, Z.; Yang, J.; Liu, T.; Lai, F. Edge engineering of platinum nanoparticles via porphyrin-based ultrathin 2D metal–organic frameworks for enhanced photocatalytic hydrogen generation. Chem. Eng. J., 2022, 442, 136144.
[http://dx.doi.org/10.1016/j.cej.2022.136144]
[82]
Yan, T.; Li, N.; Wang, L.; Ran, W.; Duchesne, P.N.; Wan, L.; Nguyen, N.T.; Wang, L.; Xia, M.; Ozin, G.A. Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation. Nat. Commun., 2020, 11(1), 6095.
[http://dx.doi.org/10.1038/s41467-020-19997-y]
[83]
Wang, L.; Dong, Y.; Yan, T.; Hu, Z.; Jelle, A.A.; Meira, D.M.; Duchesne, P.N.; Loh, J.Y.Y.; Qiu, C.; Storey, E.E.; Xu, Y.; Sun, W.; Ghoussoub, M.; Kherani, N.P.; Helmy, A.S.; Ozin, G.A. Black indium oxide a photothermal CO2 hydrogenation catalyst. Nat. Commun., 2020, 11(1), 2432.
[http://dx.doi.org/10.1038/s41467-020-16336-z]
[84]
Zhang, L.; Zhang, H.; He, J.; Li, N.; Zhang, Y.; Sun, Y.; Deng, X.; Zhao, M.; Ran, W.; Yuan, J.; Liu, P.; Yan, T. NaFeSi 2 O 6 nanocrystals as a catalyst for heterogeneous photo-Fenton degradation of organic wastewater. CrystEngComm, 2022, 24(34), 6087-6092.
[http://dx.doi.org/10.1039/D2CE00930G]
[85]
Liu, X.; Zhuang, H. Recent progresses in photocatalytic hydrogen production: Design and construction of Ni-based cocatalysts. Int. J. Energy Res., 2021, 45(2), 1480-1495.
[http://dx.doi.org/10.1002/er.5970]
[86]
Liu, X.; Zhuang, H.; Huang, J.; Xu, W.; Lin, L.; Zheng, Y.; Li, Q. Engineering TiO2 nanosheets with exposed (001) facets via the incorporation of Au clusters for boosted photocatalytic hydrogen production. Mater. Res., 2020, 1(6), 1608-1612.
[87]
Wang, C.; Weng, B.; Liao, Y.; Liu, B.; Keshavarz, M.; Ding, Y.; Huang, H.; Verhaeghe, D.; Steele, J.A.; Feng, W.; Su, B.L.; Hofkens, J.; Roeffaers, M.B.J. Simultaneous photocatalytic H2 generation and organic synthesis over crystalline–amorphous Pd nanocube decorated Cs3Bi2Br9. Chem. Commun. (Camb.), 2022, 58(76), 10691-10694.
[http://dx.doi.org/10.1039/D2CC02453E]
[88]
Wang, C.; Weng, B.; Keshavarz, M.; Yang, M.Q.; Huang, H.; Ding, Y.; Lai, F.; Aslam, I.; Jin, H.; Romolini, G.; Su, B.L.; Steele, J.A.; Hofkens, J.; Roeffaers, M.B.J. Photothermal suzuki coupling over a metal halide perovskite/Pd nanocube composite catalyst. ACS Appl. Mater. Interfaces, 2022, 14(15), 17185-17194.
[http://dx.doi.org/10.1021/acsami.1c24710]
[89]
Wu, X.; Zhang, Q.; Li, W.; Qiao, B.; Ma, D.; Wang, S.L. Atomic-scale Pd on 2D titania sheets for selective oxidation of methane to methanol. ACS Catal., 2021, 11(22), 14038-14046.
[http://dx.doi.org/10.1021/acscatal.1c03985]
[90]
Zeng, Y.; Tang, Z.; Wu, X.; Huang, A.; Luo, X.; Xu, G.Q.; Zhu, Y.; Wang, S.L. Photocatalytic oxidation of methane to methanol by tungsten trioxide-supported atomic gold at room temperature. Appl. Catal. B, 2022, 306, 120919.
[http://dx.doi.org/10.1016/j.apcatb.2021.120919]
[91]
Luo, L.; Luo, J.; Li, H.; Ren, F.; Zhang, Y.; Liu, A.; Li, W.X.; Zeng, J. Water enables mild oxidation of methane to methanol on gold single-atom catalysts. Nat. Commun., 2021, 12(1), 1218.
[http://dx.doi.org/10.1038/s41467-021-21482-z]
[92]
Liu, Y.; Sun, Z.; Hu, Y.H. Bimetallic cocatalysts for photocatalytic hydrogen production from water. Chem. Eng. J., 2021, 409, 128250.
[http://dx.doi.org/10.1016/j.cej.2020.128250]
[93]
Sankar, M.; Dimitratos, N.; Miedziak, P.J.; Wells, P.P.; Kiely, C.J.; Hutchings, G.J. Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev., 2012, 41(24), 8099-8139.
[http://dx.doi.org/10.1039/c2cs35296f]
[94]
Lustemberg, P.G.; Senanayake, S.D.; Rodriguez, J.A.; Ganduglia-Pirovano, M.V. Tuning selectivity in the direct conversion of methane to methanol: Bimetallic synergistic effects on the cleavage of C–H and O–H bonds over NiCu/CeO2 catalysts. J. Phys. Chem. Lett., 2022, 13(24), 5589-5596.
[http://dx.doi.org/10.1021/acs.jpclett.2c00885]
[95]
Long, J.; Zhao, Y.; Luo, J.; Hu, H.; Shen, J.; Zhang, Z.; Yuan, R.; Huang, H. AuPd nanoparticles decorated ultrathin Bi2TiO4F2 sheets for photocatalytic methane oxidation. New J. Chem., 2022, 46(22), 10545-10549. https://pubs.rsc.org/en/content/articlelanding/2022/nj/d2nj00958g/unauth
[96]
Song, H.; Meng, X.; Wang, S.; Zhou, W.; Song, S.; Kako, T.; Ye, J. Selective photo-oxidation of methane to methanol with oxygen over dual-cocatalyst-modified titanium dioxide. ACS Catal., 2020, 10(23), 14318-14326.
[http://dx.doi.org/10.1021/acscatal.0c04329]
[97]
Xie, J.; Jin, R.; Li, A.; Bi, Y.; Ruan, Q.; Deng, Y.; Zhang, Y.; Yao, S.; Sankar, G.; Ma, D.; Tang, J. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat. Catal., 2018, 1(11), 889-896.
[http://dx.doi.org/10.1038/s41929-018-0170-x]
[98]
López-Martín, Á.; Caballero, A.; Colón, G. Photochemical methane partial oxidation to methanol assisted by H2O2. J. Photochem. Photobiol. Chem., 2017, 349, 216-223.
[http://dx.doi.org/10.1016/j.jphotochem.2017.09.039]
[99]
Battula, V.R.; Jaryal, A.; Kailasam, K. Visible light-driven simultaneous H 2 production by water splitting coupled with selective oxidation of HMF to DFF catalyzed by porous carbon nitride. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(10), 5643-5649.
[http://dx.doi.org/10.1039/C8TA10926E]
[100]
Hu, Y.; Zhang, P.; Du, J.; Kim, C.; Han, S.; Choi, W. Bifunctional carbon nitride exhibiting both enhanced photoactivity and residual catalytic activity in the post-irradiation dark period. ACS Catal., 2021, 11(24), 14941-14955.
[http://dx.doi.org/10.1021/acscatal.1c04564]
[101]
Zeng, Y.; Liu, H.C.; Wang, J.S.; Wu, X.Y.; Wang, S.L. Synergistic photocatalysis–Fenton reaction for selective conversion of methane to methanol at room temperature. Catal. Sci. Technol., 2020, 10(8), 2329-2332.
[http://dx.doi.org/10.1039/D0CY00028K]
[102]
Zhang, Z.; Zhang, J.; Zhu, Y.; An, Z.; Shu, X.; Song, H.; Wang, W.; Chai, Z.; Shang, C.; Jiang, S.; Jing, Y.; Zheng, L.; He, J. Photo-splitting of water toward hydrogen production and active oxygen species for methane activation to methanol on Co-SrTiO. Chem Catalysis, 2022, 2(6), 1440-1449.
[http://dx.doi.org/10.1016/j.checat.2022.04.008]
[103]
Wei, T.; Ding, P.; Wang, T.; Liu, L.M.; An, X.; Yu, X. Facet-regulating local coordination of dual-atom cocatalyzed TiO2 for photocatalytic water splitting. ACS Catal., 2021, 11(23), 14669-14676.
[http://dx.doi.org/10.1021/acscatal.1c03703]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy