Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Potential Targets in Constipation Research: A Review

Author(s): Priya Bisht, Neha Dagar, Nitesh Kumar, Ravichandiran Velayutham* and Somasundaram Arumugam*

Volume 24, Issue 3, 2023

Published on: 03 February, 2023

Page: [247 - 260] Pages: 14

DOI: 10.2174/1389450124666221209123541

Price: $65

Abstract

Background: Constipation is one of the most frequent abnormalities of the gastrointestinal system that affects the patient’s quality of life. Constipation is more common in women and affects them more frequently as they get older. Many constipated patients take over-the-counter drugs for treatment, but some do not respond to these medicines and need newer, more expensive drugs. Still, many patients are not completely satisfied with these medicines. Unlike other areas, constipation research is not given much importance.

Objective: This review discusses targets such as ClC-2, CFTR, opioid receptors, and 5HT-4 receptors, which are important in constipation therapy. The recent focus is also on the gut microbiome with the help of various randomized controlled trials. Pharmacological advances have also added novel targets such as IBAT, PAR-2, and intestinal NHE-3 for constipation treatment.

Methods: This review summarises the research on these targets collected from various databases. ClC-2 and CFTR are involved in intestinal chloride secretion followed by sodium or water, which increases stool passage. Non-cancer pain treatment with opioids targeting opiate receptors is considered in 40-90% of patients, which causes constipation as a side effect. On activation, 5HT-4 receptors increase gastrointestinal motility. IBAT is responsible for transporting bile acid into the liver. Bile acid will reach the colon by inhibiting IBAT, stimulating colonic motility, and providing a laxative effect. Activation of the ghrelin receptor results in prokinetic activity in both animals and humans. Intestinal NHE-3 mediates the absorption of Na+ and the secretion of hydrogen into the intestine. Many reports show that PAR-2 is involved in the pathogenesis of gastrointestinal diseases. The gut microbiota influences the peristaltic action of the intestine.

Conclusion: Drugs working on these targets positively impact the treatment of constipation, as do the drugs that are currently in clinical trials acting on these targets. The results from the ongoing clinical trials will also provide some valuable information regarding whether these medications will meet the patients’ needs in the future.

Graphical Abstract

[1]
Aziz I, Whitehead WE, Palsson OS, Törnblom H, Simrén M. An approach to the diagnosis and management of Rome IV functional disorders of chronic constipation. Expert Rev Gastroenterol Hepatol 2020; 14(1): 39-46.
[http://dx.doi.org/10.1080/17474124.2020.1708718] [PMID: 31893959]
[2]
Bharucha AE, Wald A. Chronic constipation. Mayo Clin Proc 2019; 94(11): 2340-57.
[http://dx.doi.org/10.1016/j.mayocp.2019.01.031] [PMID: 31054770]
[3]
Prichard DO, Bharucha AE. Recent advances in understanding and managing chronic constipation. F1000 Res 2018; 7: 1640.
[http://dx.doi.org/10.12688/f1000research.15900.1]
[4]
Zifarelli G, Pusch M. CLC chloride channels and transporters: a biophysical and physiological perspective. Rev Physiol Biochem Pharmacol 2007; 158: 23-76.
[http://dx.doi.org/10.1007/112_2006_0605] [PMID: 17729441]
[5]
Leppert W. The role of opioid receptor antagonists in the treatment of opioid-induced constipation: a review. Adv Ther 2010; 27(10): 714-30.
[http://dx.doi.org/10.1007/s12325-010-0063-0] [PMID: 20799006]
[6]
Manabe N, Wong BS, Camilleri M. New-generation 5-HT 4 receptor agonists: potential for treatment of gastrointestinal motility disorders. Expert Opin Investig Drugs 2010; 19(6): 765-75.
[http://dx.doi.org/10.1517/13543784.2010.482927] [PMID: 20408739]
[7]
Wong BS, Camilleri M, McKinzie S, Burton D, Graffner H, Zinsmeister AR. Effects of A3309, an ileal bile acid transporter inhibitor, on colonic transit and symptoms in females with functional constipation. Am J Gastroenterol 2011; 106(12): 2154-64.
[http://dx.doi.org/10.1038/ajg.2011.285] [PMID: 21876564]
[8]
Vestergaard ET, Hansen TK, Gormsen LC, et al. Constant intravenous ghrelin infusion in healthy young men: clinical pharmacokinetics and metabolic effects. Am J Physiol Endocrinol Metab 2007; 292(6): E1829-36.
[http://dx.doi.org/10.1152/ajpendo.00682.2006] [PMID: 17311892]
[9]
Dominguez Rieg JA, de la Mora Chavez S, Rieg T. Novel developments in differentiating the role of renal and intestinal sodium hydrogen exchanger 3. Am J Physiol Regul Integr Comp Physiol 2016; 311(6): R1186-91.
[http://dx.doi.org/10.1152/ajpregu.00372.2016] [PMID: 27733387]
[10]
Zhang Y, Ge T, Xiang P, et al. Therapeutic effect of protease-activated receptor 2 agonist SLIGRL-NH2 on loperamide-induced Sprague-Dawley rat constipation model and the related mechanism. Drug Des Devel Ther 2018; 12: 2403-11.
[http://dx.doi.org/10.2147/DDDT.S160628] [PMID: 30122898]
[11]
MacDonald RS, Wagner K. Influence of dietary phytochemicals and microbiota on colon cancer risk. J Agric Food Chem 2012; 60(27): 6728-35.
[http://dx.doi.org/10.1021/jf204230r] [PMID: 22632581]
[12]
Yang H, Ma T. Luminally acting agents for constipation treatment: a review based on literatures and patents. Front Pharmacol 2017; 8: 418.
[http://dx.doi.org/10.3389/fphar.2017.00418] [PMID: 28713271]
[13]
Swegle JM, Logemann C. Management of common opioid-induced adverse effects. Am Fam Physician 2006; 74(8): 1347-54.
[PMID: 17087429]
[14]
De Maeyer JH, Lefebvre RA, Schuurkes JAJ. 5-HT4 receptor agonists: similar but not the same. Neurogastroenterol Motil 2008; 20(2): 99-112.
[http://dx.doi.org/10.1111/j.1365-2982.2007.01059.x] [PMID: 18199093]
[15]
Al-Dury S, Marschall HU. Ileal bile acid transporter inhibition for the treatment of chronic constipation, cholestatic pruritus, and NASH. Front Pharmacol 2018; 9: 931.
[http://dx.doi.org/10.3389/fphar.2018.00931] [PMID: 30186169]
[16]
Venkova K, Fraser G, Hoveyda HR, Greenwood-Van Meerveld B. Prokinetic effects of a new ghrelin receptor agonist TZP-101 in a rat model of postoperative ileus. Dig Dis Sci 2007; 52(9): 2241-8.
[http://dx.doi.org/10.1007/s10620-007-9783-7] [PMID: 17436082]
[17]
Fraser GL, Venkova K, Hoveyda HR, Thomas H, Greenwood-Van Meerveld B. Effect of the ghrelin receptor agonist TZP-101 on colonic transit in a rat model of postoperative ileus. Eur J Pharmacol 2009; 604(1-3): 132-7.
[http://dx.doi.org/10.1016/j.ejphar.2008.12.011] [PMID: 19121631]
[18]
Suckow SK, Anderson EM, Caudle RM. Lesioning of TRPV1 expressing primary afferent neurons prevents PAR-2 induced motility, but not mechanical hypersensitivity in the rat colon. Neurogastroenterol Motil 2012; 24(3): e125-35.
[http://dx.doi.org/10.1111/j.1365-2982.2011.01848.x] [PMID: 22168801]
[19]
Suckow SK, Caudle RM. NMDA receptor subunit expression and PAR2 receptor activation in Colospinal Afferent Neurons (CANs) during inflammation induced visceral hypersensitivity. Mol Pain 2009; 5: 1744-8069-5-54.
[http://dx.doi.org/10.1186/1744-8069-5-54] [PMID: 19772634]
[20]
Verkman AS, Galietta LJV. Chloride channels as drug targets. Nat Rev Drug Discov 2009; 8(2): 153-71.
[http://dx.doi.org/10.1038/nrd2780] [PMID: 19153558]
[21]
Barrett KE, Keely SJ. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu Rev Physiol 2000; 62(1): 535-72.
[http://dx.doi.org/10.1146/annurev.physiol.62.1.535] [PMID: 10845102]
[22]
Jiang Y, Yu B, Wang X, et al. Stimulation effect of wide type CFTR chloride channel by the naturally occurring flavonoid tangeretin. Fitoterapia 2014; 99: 284-91.
[http://dx.doi.org/10.1016/j.fitote.2014.10.013] [PMID: 25451794]
[23]
Moon C, Zhang W, Sundaram N, et al. Drug-induced secretory diarrhea: A role for CFTR. Pharmacol Res 2015; 102: 107-12.
[http://dx.doi.org/10.1016/j.phrs.2015.08.024] [PMID: 26429773]
[24]
Hanrahan JW, Wioland MA. Revisiting cystic fibrosis transmembrane conductance regulator structure and function. Proc Am Thorac Soc 2004; 1(1): 17-21.
[http://dx.doi.org/10.1513/pats.2306009] [PMID: 16113406]
[25]
Cil O, Phuan PW, Lee S, et al. CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2016; 2(3): 317-27.
[http://dx.doi.org/10.1016/j.jcmgh.2015.12.010] [PMID: 27127798]
[26]
Saint-Criq V, Gray MA. Role of CFTR in epithelial physiology. Cell Mol Life Sci 2017; 74(1): 93-115.
[http://dx.doi.org/10.1007/s00018-016-2391-y] [PMID: 27714410]
[27]
Cada DJ, Levien TL, Baker DE. Linaclotide. Hosp Pharm 2013; 48(2): 143-52.
[http://dx.doi.org/10.1310/hpj4802-143] [PMID: 24421452]
[28]
Jiang C, Xu Q, Wen X, Sun H. Current developments in pharmacological therapeutics for chronic constipation. Acta Pharm Sin B 2015; 5(4): 300-9.
[http://dx.doi.org/10.1016/j.apsb.2015.05.006] [PMID: 26579459]
[29]
Al-Salama ZT, Syed YY. Plecanatide: First Global Approval. Drugs 2017; 77(5): 593-8.
[http://dx.doi.org/10.1007/s40265-017-0718-0] [PMID: 28255961]
[30]
Wang H, Xu M, Kong Q, et al. Research and progress on ClC-2. Mol Med Rep 2017; 16(1): 11-22.
[http://dx.doi.org/10.3892/mmr.2017.6600] [PMID: 28534947]
[31]
Jin Y, Blikslager AT. ClC-2 regulation of intestinal barrier function: Translation of basic science to therapeutic target. Tissue Barriers 2015; 3(4): e1105906.
[http://dx.doi.org/10.1080/21688370.2015.1105906] [PMID: 26716076]
[32]
Menees S, Saad R, Chey WD. Agents that act luminally to treat diarrhoea and constipation. Nat Rev Gastroenterol Hepatol 2012; 9(11): 661-74.
[http://dx.doi.org/10.1038/nrgastro.2012.162] [PMID: 22945441]
[33]
Wilson N, Schey R. Lubiprostone in constipation: clinical evidence and place in therapy. Ther Adv Chronic Dis 2015; 6(2): 40-50.
[http://dx.doi.org/10.1177/2040622314567678] [PMID: 25729555]
[34]
Zhou C, Zou QY, Jiang YZ, Zheng J. Role of oxygen in fetoplacental endothelial responses: Hypoxia, physiological normoxia, or hyperoxia? 2020; 318(5): C943-53.
[http://dx.doi.org/10.1152/ajpcell.00528.2019]
[35]
Norimatsu Y, Moran AR, MacDonald KD. Lubiprostone activates CFTR, but not ClC-2, via the prostaglandin receptor (EP4). Biochem Biophys Res Commun 2012; 426(3): 374-9.
[http://dx.doi.org/10.1016/j.bbrc.2012.08.097] [PMID: 22960173]
[36]
Jakab RL, Collaco AM, Ameen NA. Lubiprostone targets prostanoid signaling and promotes ion transporter trafficking, mucus exocytosis, and contractility. Dig Dis Sci 2012; 57(11): 2826-45.
[http://dx.doi.org/10.1007/s10620-012-2352-8] [PMID: 22923315]
[37]
Akiba Y, Kaunitz JD. May the truth be with you: lubiprostone as EP receptor agonist/ClC-2 internalizing “inhibitor”. Dig Dis Sci 2012; 57(11): 2740-2.
[http://dx.doi.org/10.1007/s10620-012-2410-2] [PMID: 23001408]
[38]
Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE. The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 1976; 197(3): 517-32.
[PMID: 945347]
[39]
McDonald J, Lambert DG. Opioid receptors. Contin Educ Anaesth Crit Care Pain 2005; 5(1): 22-5.
[http://dx.doi.org/10.1093/bjaceaccp/mki004]
[40]
McDonald J, Lambert DG. Opioid receptors. BJA Educ 2015; 15(5): 219-24.
[http://dx.doi.org/10.1093/bjaceaccp/mku041]
[41]
Mori T, Shibasaki Y, Matsumoto K, et al. Mechanisms that underlie μ-opioid receptor agonist-induced constipation: differential involvement of μ-opioid receptor sites and responsible regions. J Pharmacol Exp Ther 2013; 347(1): 91-9.
[http://dx.doi.org/10.1124/jpet.113.204313] [PMID: 23902939]
[42]
Floettmann E, Bui K, Sostek M, Payza K, Eldon M. Pharmacologic profile of naloxegol, a peripherally acting µ -opioid receptor antagonist, for the treatment of opioid-induced constipation. J Pharmacol Exp Ther 2017; 361(2): 280-91.
[http://dx.doi.org/10.1124/jpet.116.239061] [PMID: 28336575]
[43]
Pappagallo M. Incidence, prevalence, and management of opioid bowel dysfunction. Am J Surg 2001; 182(5): 11s-8s.
[http://dx.doi.org/10.1016/S0002-9610(01)00782-6]
[44]
Farmer AD, Holt CB, Downes TJ, Ruggeri E, Del Vecchio S, De Giorgio R. Pathophysiology, diagnosis, and management of opioid-induced constipation. Lancet Gastroenterol Hepatol 2018; 3(3): 203-12.
[http://dx.doi.org/10.1016/S2468-1253(18)30008-6] [PMID: 29870734]
[45]
Holzer P. Opioid receptors in the gastrointestinal tract. Regul Pept 2009; 155(1-3): 11-7.
[http://dx.doi.org/10.1016/j.regpep.2009.03.012] [PMID: 19345246]
[46]
Holzer P. Methylnaltrexone for the management of unwanted peripheral opioid effects. Therapy 2008; 5(4): 531-43.
[http://dx.doi.org/10.2217/14750708.5.4.531]
[47]
Kraft MD. Alvimopan for postoperative ileus: Only one piece of the puzzle. Am J Health Syst Pharm 2009; 66(14): 1309-10.
[http://dx.doi.org/10.2146/ajhp090158] [PMID: 19574607]
[48]
Vickery RG, Li YP, Schwertschlag U, Singla NK, Webster L, Canafax DM. 899 Td-1211 phase 2B study demonstrates increased bowel movement frequency and constipation-related symptom improvement in patients with Opioid Induced Constipation (OIC). Gastroenterology 2013; 144(5): S-159.
[http://dx.doi.org/10.1016/S0016-5085(13)60574-0]
[49]
Hale M, Wild J, Reddy J, Yamada T, Arjona Ferreira JC. Naldemedine versus placebo for opioid-induced constipation (COMPOSE-1 and COMPOSE-2): two multicentre, phase 3, double-blind, randomised, parallel-group trials. Lancet Gastroenterol Hepatol 2017; 2(8): 555-64.
[http://dx.doi.org/10.1016/S2468-1253(17)30105-X] [PMID: 28576452]
[50]
Prins NH, Akkermans LMA, Lefebvre RA, Schuurkes J A J. 5-HT4 receptors on cholinergic nerves involved in contractility of canine and human large intestine longitudinal muscle. Br J Pharmacol 2000; 131(5): 927-32.
[http://dx.doi.org/10.1038/sj.bjp.0703615] [PMID: 11053213]
[51]
Goldberg M, Li YP, Johanson JF, et al. Clinical trial: The efficacy and tolerability of velusetrag, a selective 5-HT4 agonist with high intrinsic activity, in chronic idiopathic constipation - a 4-week, randomized, double-blind, placebo-controlled, dose-response study. Aliment Pharmacol Ther 2010; 32(9): 1102-12.
[http://dx.doi.org/10.1111/j.1365-2036.2010.04456.x] [PMID: 21039672]
[52]
Tack J, Corsetti M. Prucalopride: evaluation of the pharmacokinetics, pharmacodynamics, efficacy and safety in the treatment of chronic constipation. Expert Opin Drug Metab Toxicol 2012; 8(10): 1327-35.
[http://dx.doi.org/10.1517/17425255.2012.719497] [PMID: 22985444]
[53]
Müller-lissner S, Rykx A, Kerstens R, Vandeplassche L. A double-blind, placebo-controlled study of prucalopride in elderly patients with chronic constipation. Neurogastroenterol Motil 2010; 22(9): 991-e255, e255.
[http://dx.doi.org/10.1111/j.1365-2982.2010.01533.x] [PMID: 20529205]
[54]
Tack J, Stanghellini V, Dubois D, Joseph A, Vandeplassche L, Kerstens R. Effect of prucalopride on symptoms of chronic constipation. Neurogastroenterol Motil 2014; 26(1): 21-7.
[http://dx.doi.org/10.1111/nmo.12217] [PMID: 24106924]
[55]
Pannemans J, Masuy I, Tack J. Functional constipation: Individualizing assessment and treatment. Drugs 2020; 80(10): 947-63.
[http://dx.doi.org/10.1007/s40265-020-01305-z] [PMID: 32451924]
[56]
Camilleri , vazquez-roque , burton , et al. Pharmacodynamic effects of a novel prokinetic 5-HT4 receptor agonist, ATI-7505, in humans. Neurogastroenterol Motil 2007; 19(1): 30-8.
[http://dx.doi.org/10.1111/j.1365-2982.2006.00865.x] [PMID: 17187586]
[57]
Dawson PA, Haywood J, Craddock AL, et al. Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice. J Biol Chem 2003; 278(36): 33920-7.
[http://dx.doi.org/10.1074/jbc.M306370200] [PMID: 12819193]
[58]
Shin A, Camilleri M, Vijayvargiya P, et al. Bowel functions, fecal unconjugated primary and secondary bile acids, and colonic transit in patients with irritable bowel syndrome. Clin Gastroenterol Hepatol 2013; 11(10): 1270-5.
[http://dx.doi.org/10.1016/j.cgh.2013.04.020]
[59]
Wong BS, Camilleri M, Carlson P, et al. Increased bile acid biosynthesis is associated with irritable bowel syndrome with diarrhea. Clin Gastroenterol Hepatol 2012; 10(9): 1009-15.
[http://dx.doi.org/10.1016/j.cgh.2012.05.006]
[60]
Chedid V, Vijayvargiya P, Camilleri M. Elobixibat for the treatment of constipation. Expert Rev Gastroenterol Hepatol 2018; 12(10): 951-60.
[http://dx.doi.org/10.1080/17474124.2018.1522248] [PMID: 30204504]
[61]
Chey WD, Camilleri M, Chang L, Rikner L, Graffner H. A randomized placebo-controlled phase IIb trial of a3309, a bile acid transporter inhibitor, for chronic idiopathic constipation. Am J Gastroenterol 2011; 106(10): 1803-12.
[http://dx.doi.org/10.1038/ajg.2011.162] [PMID: 21606974]
[62]
Nakajima A, Seki M, Taniguchi S, et al. Safety and efficacy of elobixibat for chronic constipation: results from a randomised, double-blind, placebo-controlled, phase 3 trial and an open-label, single-arm, phase 3 trial. Lancet Gastroenterol Hepatol 2018; 3(8): 537-47.
[http://dx.doi.org/10.1016/S2468-1253(18)30123-7] [PMID: 29805116]
[63]
Eissa N, Ghia JE. Immunomodulatory effect of ghrelin in the intestinal mucosa. Neurogastroenterol Motil 2015; 27(11): 1519-27.
[http://dx.doi.org/10.1111/nmo.12703] [PMID: 26503163]
[64]
Davenport AP, Bonner TI, Foord SM, et al. International Union of Pharmacology. LVI. Ghrelin receptor nomenclature, distribution, and function. Pharmacol Rev 2005; 57(4): 541-6.
[http://dx.doi.org/10.1124/pr.57.4.1] [PMID: 16382107]
[65]
Stasi C, Milani S. Functions of ghrelin in brain, gut and liver. CNS Neurol Disord Drug Targets 2016; 15(8): 956-63.
[http://dx.doi.org/10.2174/1871527315666160709203525]
[66]
Acosta A, Camilleri M, Kolar G, et al. Relamorelin relieves constipation and accelerates colonic transit in a phase 2, placebo-controlled, randomized trial. Clin Gastroenterol Hepatol 2015; 13(13): 2312-9.
[67]
Van der Ploeg L, Laken H, Sharma S, et al. Preclinical gastrointestinal prokinetic efficacy and endocrine effects of the ghrelin mimetic RM-131. Life Sci 2014; 109(1): 20-9.
[http://dx.doi.org/10.1016/j.lfs.2014.06.003] [PMID: 24931905]
[68]
Shin A, Camilleri M, Busciglio I, et al. The ghrelin agonist RM-131 accelerates gastric emptying of solids and reduces symptoms in patients with type 1 diabetes mellitus. Clin Gastroenterol Hepatol 2013; 11(11): 1453-9.
[69]
Mosińska P, Zatorski H, Storr M, Fichna J. Future treatment of constipation-associated disorders: role of relamorelin and other ghrelin receptor agonists. J Neurogastroenterol Motil 2017; 23(2): 171-9.
[http://dx.doi.org/10.5056/jnm16183] [PMID: 28238253]
[70]
Sinagra E, Rossi F, Raimondo D, et al. Tenapanor for the treatment of irritable bowel syndrome with constipation. Expert Rev Clin Pharmacol 2020; 13(5): 473-9.
[http://dx.doi.org/10.1080/17512433.2020.1762570] [PMID: 32478632]
[71]
Markham A. Tenapanor: First approval. Drugs 2019; 79(17): 1897-903.
[http://dx.doi.org/10.1007/s40265-019-01215-9] [PMID: 31677150]
[72]
Zielińska M, Wasilewski A, Fichna J. Tenapanor hydrochloride for the treatment of constipation-predominant irritable bowel syndrome. Expert Opin Investig Drugs 2015; 24(8): 1093-9.
[http://dx.doi.org/10.1517/13543784.2015.1054480] [PMID: 26065434]
[73]
Rosenbaum D. The efficacy of AZD1722 in constipation predominant Irritable Bowel Syndrome (IBS-C). ClinicalTrials gov Identifier: NCT01923428 2014.
[74]
Siddiqui S, Cash BD. Tenapanor for constipation-predominant irritable bowel syndrome. Drugs Today (Barc) 2020; 56(3): 203-10.
[http://dx.doi.org/10.1358/dot.2020.56.3.3115214] [PMID: 32282867]
[75]
Indrakusuma I, Romacho T, Eckel J. Protease-activated receptor 2 promotes pro-atherogenic effects through transactivation of the VEGF receptor 2 in human vascular smooth muscle cells. Front Pharmacol 2017; 7: 497.
[http://dx.doi.org/10.3389/fphar.2016.00497] [PMID: 28101054]
[76]
de Boer JD, van’t Veer C, Stroo I, et al. Protease-activated receptor-2 deficient mice have reduced house dust mite-evoked allergic lung inflammation. Innate Immun 2014; 20(6): 618-25.
[http://dx.doi.org/10.1177/1753425913503387] [PMID: 24048772]
[77]
Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 2017; 474(11): 1823-36.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[78]
Ohkusa T, Koido S, Nishikawa Y, Sato N. Gut microbiota and chronic constipation: A review and update. Front Med 2019; 6: 19.
[http://dx.doi.org/10.3389/fmed.2019.00019] [PMID: 30809523]
[79]
Liu J, Huang XE. Efficacy of Bifidobacterium tetragenous viable bacteria tablets for cancer patients with functional constipation. Asian Pac J Cancer Prev 2015; 15(23): 10241-4.
[http://dx.doi.org/10.7314/APJCP.2014.15.23.10241] [PMID: 25556454]
[80]
Ojetti V, Ianiro G, Tortora A, et al. The effect of Lactobacillus reuteri supplementation in adults with chronic functional constipation: A randomized, double-blind, placebo-controlled trial. J Gastrointestin Liver Dis 2014; 23(4): 387-91.
[http://dx.doi.org/10.15403/jgld.2014.1121.234.elr] [PMID: 25531996]
[81]
Kang DW, DiBaise JK, Ilhan ZE, et al. Gut microbial and short-chain fatty acid profiles in adults with chronic constipation before and after treatment with lubiprostone. Anaerobe 2015; 33: 33-41.
[http://dx.doi.org/10.1016/j.anaerobe.2015.01.005] [PMID: 25617726]
[82]
Zoppi G, Cinquetti M, Luciano A, Benini A, Muner A, Minelli EB. The intestinal ecosystem in chronic functional constipation. Acta Paediatr 1998; 87(8): 836-41.
[http://dx.doi.org/10.1111/j.1651-2227.1998.tb01547.x] [PMID: 9736230]
[83]
Wang L, Hu L, Xu Q, et al. Bifidobacterium adolescentis exerts strain-specific effects on constipation induced by loperamide in BALB/c mice. Int J Mol Sci 2017; 18(2): 318.
[http://dx.doi.org/10.3390/ijms18020318] [PMID: 28230723]
[84]
Quigley EMM. Probiotics in the management of functional bowel disorders: promise fulfilled? Gastroenterol Clin North Am 2012; 41(4): 805-19.
[http://dx.doi.org/10.1016/j.gtc.2012.08.005] [PMID: 23101688]
[85]
Bijle MN, Ekambaram M, Lo ECM, Yiu CKY. Synbiotics in caries prevention: A scoping review. PLoS One 2020; 15(8): e0237547.
[http://dx.doi.org/10.1371/journal.pone.0237547] [PMID: 32785270]
[86]
Waitzberg LD, Alves Pereira CC, Logullo L, et al. Microbiota benefits after inulin and partially hydrolized guar gum supplementation: a randomized clinical trial in constipated women. Nutr Hosp 2012; 27(1): 123-9.
[PMID: 22566311]
[87]
Koebnick C, Wagner I, Leitzmann P, Stern U, Zunft HJF. Probiotic beverage containing Lactobacillus casei Shirota improves gastrointestinal symptoms in patients with chronic constipation. Can J Gastroenterol 2003; 17(11): 655-9.
[http://dx.doi.org/10.1155/2003/654907] [PMID: 14631461]
[88]
Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med 2019; 25(5): 716-29.
[http://dx.doi.org/10.1038/s41591-019-0439-x] [PMID: 31061539]
[89]
Dimidi E, Christodoulides S, Fragkos KC, Scott SM, Whelan K. The effect of probiotics on functional constipation in adults: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2014; 100(4): 1075-84.
[http://dx.doi.org/10.3945/ajcn.114.089151] [PMID: 25099542]
[90]
Miller LE, Ouwehand AC, Ibarra A. Effects of probiotic-containing products on stool frequency and intestinal transit in constipated adults: systematic review and meta-analysis of randomized controlled trials. Ann Gastroenterol 2017; 30(6): 629-39.
[http://dx.doi.org/10.20524/aog.2017.0192] [PMID: 29118557]
[91]
Zhang C, Jiang J, Tian F, et al. Meta-analysis of randomized controlled trials of the effects of probiotics on functional constipation in adults. Clin Nutr 2020; 39(10): 2960-9.
[http://dx.doi.org/10.1016/j.clnu.2020.01.005] [PMID: 32005532]
[92]
Korterink JJ, Ockeloen L, Benninga MA, Tabbers MM, Hilbink M, Deckers-Kocken JM. Probiotics for childhood functional gastrointestinal disorders: a systematic review and meta-analysis. Acta Paediatr 2014; 103(4): 365-72.
[http://dx.doi.org/10.1111/apa.12513] [PMID: 24236577]
[93]
Koppen IJ, Benninga MA, Tabbers MM. Is there a role for pre-, pro-and synbiotics in the treatment of functional constipation in children? A systematic review. J Pediatr Gastroenterol Nutr 2016; 63(S1): S27-35.
[PMID: 27380596]
[94]
Kim SE, Choi SC, Park KS, et al. Change of fecal flora and effectiveness of the short-term VSL# 3 probiotic treatment in patients with functional constipation. J Neurogastroenterol Motil 2015; 21(1): 111-20.
[http://dx.doi.org/10.5056/jnm14048] [PMID: 25537674]
[95]
Wang L, Hu L, Xu Q, et al. Bifidobacteria exert species-specific effects on constipation in BALB/c mice. Food Funct 2017; 8(10): 3587-600.
[http://dx.doi.org/10.1039/C6FO01641C] [PMID: 28884754]
[96]
Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 1995; 125(6): 1401-12.
[http://dx.doi.org/10.1093/jn/125.6.1401] [PMID: 7782892]
[97]
Chu JR, Kang SY, Kim SE, Lee SJ, Lee YC, Sung MK. Prebiotic UG1601 mitigates constipation-related events in association with gut microbiota: A randomized placebo-controlled intervention study. World J Gastroenterol 2019; 25(40): 6129-44.
[http://dx.doi.org/10.3748/wjg.v25.i40.6129] [PMID: 31686768]
[98]
Liang Y-X, Wen P, Wang Y, et al. The constipation-relieving property of D-tagatose by modulating the composition of gut microbiota. Int J Mol Sci 2019; 20(22): 5721.
[http://dx.doi.org/10.3390/ijms20225721] [PMID: 31739640]
[99]
Fu X, Li R, Zhang T, Li M, Mou H. Study on the ability of partially hydrolyzed guar gum to modulate the gut microbiota and relieve constipation. J Food Biochem 2019; 43(2): e12715.
[http://dx.doi.org/10.1111/jfbc.12715] [PMID: 31353659]
[100]
Chen Z, Lin S, Jiang Y, et al. Effects of bread yeast cell wall beta-glucans on mice with loperamide-induced constipation. J Med Food 2019; 22(10): 1009-21.
[http://dx.doi.org/10.1089/jmf.2019.4407] [PMID: 31536448]
[101]
Cencic A, Chingwaru W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2010; 2(6): 611-25.
[http://dx.doi.org/10.3390/nu2060611] [PMID: 22254045]
[102]
Bazzocchi G, Giovannini T, Giussani C, Brigidi P, Turroni S. Effect of a new synbiotic supplement on symptoms, stool consistency, intestinal transit time and gut microbiota in patients with severe functional constipation: a pilot randomized double-blind, controlled trial. Tech Coloproctol 2014; 18(10): 945-53.
[http://dx.doi.org/10.1007/s10151-014-1201-5] [PMID: 25091346]
[103]
Lim YJ, Jamaluddin R. Effects of synbiotics among constipated adults in serdang, selangor, malaysia-a randomised, double-blind, placebo-controlled trial. Nutrients 2018; 10(7): 824.
[104]
Bahrudin MF, Abdul Rani R, Tamil AM, Mokhtar NM, Raja Ali RA. Effectiveness of sterilized symbiotic drink containing Lactobacillus helveticus comparable to probiotic alone in patients with constipation-predominant irritable bowel syndrome. Dig Dis Sci 2020; 65(2): 541-9.
[http://dx.doi.org/10.1007/s10620-019-05695-3] [PMID: 31209720]
[105]
Bouhnik Y, Neut C, Raskine L, et al. Prospective, randomized, parallel-group trial to evaluate the effects of lactulose and polyethylene glycol-4000 on colonic flora in chronic idiopathic constipation. Aliment Pharmacol Ther 2004; 19(8): 889-99.
[http://dx.doi.org/10.1111/j.1365-2036.2004.01918.x] [PMID: 15080850]
[106]
Tabbers MM, Chmielewska A, Roseboom MG, et al. Fermented milk containing Bifidobacterium lactis DN-173 010 in childhood constipation: a randomized, double-blind, controlled trial. Pediatrics 2011; 127(6): e1392-9.
[http://dx.doi.org/10.1542/peds.2010-2590] [PMID: 21606153]
[107]
Banaszkiewicz A, Szajewska H. Ineffectiveness of Lactobacillus GG as an adjunct to lactulose for the treatment of constipation in children: A double-blind, placebo-controlled randomized trial. J Pediatr 2005; 146(3): 364-9.
[http://dx.doi.org/10.1016/j.jpeds.2004.10.022] [PMID: 15756221]
[108]
Yang YX, He M, Hu G, et al. Effect of a fermented milk containing Bifidobacterium lactis DN-173010 on Chinese constipated women. World J Gastroenterol 2008; 14(40): 6237-43.
[http://dx.doi.org/10.3748/wjg.14.6237] [PMID: 18985817]
[109]
Waller PA, Gopal PK, Leyer GJ, et al. Dose-response effect of Bifidobacterium lactis HN019 on whole gut transit time and functional gastrointestinal symptoms in adults. Scand J Gastroenterol 2011; 46(9): 1057-64.
[http://dx.doi.org/10.3109/00365521.2011.584895] [PMID: 21663486]
[110]
Ishizuka A, Tomizuka K, Aoki R, et al. Effects of administration of Bifidobacterium animalis subsp. lactis GCL2505 on defecation frequency and Bifidobacterial microbiota composition in humans. J Biosci Bioeng 2012; 113(5): 587-91.
[http://dx.doi.org/10.1016/j.jbiosc.2011.12.016] [PMID: 22284965]
[111]
Favretto DC, Pontin B, Moreira TR. Effect of the consumption of a cheese enriched with probiotic organisms (Bifidobacterium lactis bi-07) in improving symptoms of constipation. Arq Gastroenterol 2013; 50(3): 196-201.
[http://dx.doi.org/10.1590/S0004-28032013000200035] [PMID: 24322191]
[112]
Mezzasalma V, Manfrini E, Ferri E, et al. A randomized, double-blind, placebo-controlled trial: the efficacy of multispecies probiotic supplementation in alleviating symptoms of irritable bowel syndrome associated with constipation. BioMed Res Int 2016; 2016: 1-10.
[http://dx.doi.org/10.1155/2016/4740907]
[113]
Lim JH, Yoon SM, Tan PL. Probiotic properties of Lactobacillus plantarum LRCC5193, a plant-origin lactic acid bacterium isolated from kimchi and its use in chocolates. J Food Sci 2018; 83(11): 2802-11.
[114]
Khodadad A, Sabbaghian M. Role of synbiotics in the treatment of childhood constipation: a double-blind randomized placebo controlled trial. Iran J Pediatr 2010; 20(4): 387-92.
[PMID: 23056736]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy