Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Heterocyclic Moieties as Prospective Nematicides: An Overview

Author(s): Komalpreet kaur, Divya Utreja*, Narpinderjeet Kaur Dhillon, Anupam and Harwinder Singh Buttar

Volume 26, Issue 18, 2022

Published on: 26 December, 2022

Page: [1703 - 1724] Pages: 22

DOI: 10.2174/1385272827666221209094444

Price: $65

Abstract

Plant parasitic nematodes are destructive endoparasites having deleterious effect on about 5000 agricultural crops notably vegetables, fruits, field crops, ornamental plants, and even human health. The immense damage caused by nematodes has been estimated as US $150 billion per annum (21.3%) despite of the availability of commercialized nematicides. Nevertheless, crop protection is still dependent on the development of novel chemicals due to development of pesticide resistance line by diverse pathogens. The utilization of heterocyclic moieties in agricultural industry is considered as an effectual practice to manage plant diseases either as systemic or non-systemic. These scaffolds consist of heteroatoms in their ring structure such as N, S, O, which give a boost to their biological activity as reported. The principal heterocyclic scaffolds are the benzimidazole, pyridine, nicotinic acid, pyrrole, indole, isatin, triazine, triazole, pyrazole, amides, imidazole, cinnamic acid, oxadiazole, coumarin, thiadiazole, etc. derivatives which owing to their marvelous structural diversity are widely exploited. The prime purpose of the review is to provide information to researchers around the globe about varied heterocyclic scaffold decorations that have been employed for the synthesis of potential nematicidal candidates from 2000 onwards and their utilization to combat complex destructive biotic stress. Therefore, this review assembled the considerable synthetic chemistry and nematicidal investigation of moieties against various plant parasitic pathogens along with structure-activity relationship studies. The scientific details provided in the article will highlight the importance of heterocyclic compounds in the agricultural industry and may pave a pathway for the development of novel nematicides.

Graphical Abstract

[1]
Tsygankova, V.; Andrusevich, Y.; Shtompel, O.; Pilyo, S.; Prokopenko, V.; Kornienko, A.; Brovarets, V. Study of growth regulating activity derivatives of [1,3] Oxazolo [5,4- d] pyrimidine and N-sulfonyl substituted of 1,3-Oxazole on soybean, wheat, flax and pumpkin plants. Int. J. Chem. Stud., 2016, 4(5), 106-120.
[2]
Chakraborty, S.; Newton, A.C. Climate change, plant diseases and food security: an overview. Plant Pathol., 2011, 60(1), 2-14.
[http://dx.doi.org/10.1111/j.1365-3059.2010.02411.x]
[3]
Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and biotic stress combinations. New Phytol., 2014, 203(1), 32-43.
[http://dx.doi.org/10.1111/nph.12797] [PMID: 24720847]
[4]
Madani, N.; Kimball, J.S.; Ballantyne, A.P.; Affleck, D.L.R.; van Bodegom, P.M.; Reich, P.B.; Kattge, J.; Sala, A.; Nazeri, M.; Jones, M.O.; Zhao, M.; Running, S.W. Future global productivity will be affected by plant trait response to climate. Sci. Rep., 2018, 8(1), 2870.
[http://dx.doi.org/10.1038/s41598-018-21172-9] [PMID: 29434266]
[5]
Atkinson, N.J.; Lilley, C.J.; Urwin, P.E. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol., 2013, 162(4), 2028-2041.
[http://dx.doi.org/10.1104/pp.113.222372] [PMID: 23800991]
[6]
Narsai, R.; Wang, C.; Chen, J.; Wu, J.; Shou, H.; Whelan, J. Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress. BMC Genomics, 2013, 14(1), 93.
[http://dx.doi.org/10.1186/1471-2164-14-93] [PMID: 23398910]
[7]
Dresselhaus, T.; Hückelhoven, R. Biotic and abiotic stress response in crop plants. Agronomy (Basel), 2018, 8(11), 267-272.
[http://dx.doi.org/10.3390/agronomy8110267]
[8]
Pandey, P.; Irulappan, V.; Bagavathiannan, M.V.; Senthil-Kumar, M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physiomorphological traits. Front. Plant Sci., 2017, 8, 537.
[http://dx.doi.org/10.3389/fpls.2017.00537] [PMID: 28458674]
[9]
Gull, A.; Lone, A.A.; Wani, N.I. Biotic and abiotic stresses in plants. Abiotic and Biotic stress in Plants; Intech Open, 2019.
[http://dx.doi.org/10.5772/intechopen.85832]
[10]
Sharma, A.; Singh, S.; Utreja, D. Recent advances in synthesis and antifungal activity of 1,3,5-triazines. Curr. Org. Synth., 2016, 13(4), 484-503.
[http://dx.doi.org/10.2174/1570179412666150905002356]
[11]
Anamika; Utreja, D.; Ekta; Jain, N.; Sharma, S. Advances in synthesis and potentially bioactive of coumarin derivatives. Curr. Org. Synth., 2018, 22(26), 2509-2536.
[http://dx.doi.org/10.2174/13852728222666181029102140]
[12]
Seesao, Y.; Gay, M.; Merlin, S.; Viscogliosi, E.; Aliouat-Denis, C.M.; Audebert, C. A review of methods for nematode identification. J. Microbiol. Methods, 2017, 138, 37-49.
[http://dx.doi.org/10.1016/j.mimet.2016.05.030] [PMID: 27262374]
[13]
Cal de, A.; Larena, I.; Guijarro, B.; Melgarejo, P. Use of biofungicides for controlling plant diseases to improve food availability. Agriculture, 2012, 2(2), 109-124.
[http://dx.doi.org/10.3390/agriculture20200109]
[14]
Wang, H.; Gao, X.; Zhang, X.; Jin, H.; Tao, K.; Hou, T. Design, synthesis and antifungal activity of novel fenfuram-diarylamine hybrids. Bioorg. Med. Chem. Lett., 2017, 27(1), 90-93.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.026] [PMID: 27884696]
[15]
Singla, J.; Krattinger, S.G. Biotic stress resistance genes in wheat. Encycl. Food Grains, 2016, 4, 388-392.
[http://dx.doi.org/10.1016/B978-0-12-394437-5.00229-1]
[16]
Curtis, R.H.C. Plant parasitic nematode proteins and the host parasite interaction. Brief. Funct. Genom. Proteom., 2007, 6(1), 50-58.
[http://dx.doi.org/10.1093/bfgp/elm006] [PMID: 17525074]
[17]
Rosso, M.N.; Vieira, P.; de Almeida-Engler, J.; Castagnone-Sereno, P. Proteins secreted by root-knot nematodes accumulate in the extracellular compartment during root infection. Plant Signal. Behav., 2011, 6(8), 1232-1234.
[http://dx.doi.org/10.4161/psb.6.8.16290] [PMID: 21720210]
[18]
Vieira, P.; Danchin, E.G.J.; Neveu, C.; Crozat, C.; Jaubert, S.; Hussey, R.S.; Engler, G.; Abad, P.; de Almeida-Engler, J.; Castagnone-Sereno, P.; Rosso, M.N. The plant apoplasm is an important recipient compartment for nematode secreted proteins. J. Exp. Bot., 2011, 62(3), 1241-1253.
[http://dx.doi.org/10.1093/jxb/erq352] [PMID: 21115667]
[19]
Cabrera, J.; Olmo, R.; Ruiz-Ferrer, V.; Abreu, I.; Hermans, C.; Martinez-Argudo, I.; Fenoll, C.; Escobar, C. A Phenotyping method of giant cells from Root-knot nematode feeding sites by Confocal Microscopy Highlights a role of CHITINASE-LIKE 1 in Arabidopsis. Int. J. Mol. Sci., 2018, 19(2), 429.
[http://dx.doi.org/10.3390/ijms19020429] [PMID: 29389847]
[20]
Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol., 2019, 3(3), 430-439.
[http://dx.doi.org/10.1038/s41559-018-0793-y] [PMID: 30718852]
[21]
Davies, K.G.; Curtis, R.H.C. Cuticle surface coat of plant-parasitic nematodes. Annu. Rev. Phytopathol., 2011, 49(1), 135-156.
[http://dx.doi.org/10.1146/annurev-phyto-121310-111406] [PMID: 21568702]
[22]
Mejias, J.; Truong, N.M.; Abad, P.; Favery, B.; Quentin, M. Plant protens and processes targeted by parasitic nematode effectors. Front. Plant Sci., 2019, 10, 970.
[http://dx.doi.org/10.3389/fpls.2019.00970] [PMID: 31417587]
[23]
Ntalli, N.G.; Caboni, P. Botanical nematicides: a review. J. Agric. Food Chem., 2012, 60(40), 9929-9940.
[http://dx.doi.org/10.1021/jf303107j] [PMID: 22973877]
[24]
Tileubayeva, Z.; Avdeenko, A.; Avdeenko, S.; Stroiteleva, N.; Kondrashev, S. Plant-parasitic nematodes affecting vegetable crops in greenhouses. Saudi J. Biol. Sci., 2021, 28(9), 5428-5433.
[http://dx.doi.org/10.1016/j.sjbs.2021.05.075]
[25]
Poveda, J.; Abril-Urias, P.; Escobar, C. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Front. Microbiol., 2020, 11, 992.
[http://dx.doi.org/10.3389/fmicb.2020.00992] [PMID: 32523567]
[26]
Sato, K.; Kadota, Y.; Shirasu, K. Plant immune responses to parasitic nematodes. Front. Plant Sci., 2019, 10, 1165.
[http://dx.doi.org/10.3389/fpls.2019.01165] [PMID: 31616453]
[27]
Ansari, K.G.M.T.; Manokaran, S.; Raja, S.; Khan, S.A.; Lyla, S. Checklist of nematodes (Nematoda: Adenophorea) from southeast continental shelf of India. Check List, 2012, 8(3), 414-420.
[http://dx.doi.org/10.15560/8.3.414]
[28]
Decraemer, W.; Hunt, D.J. Structure and classification.Plant Nematology;; Perry, R.N.; Moens, M., Eds.; CAB International: Wallingford, Oxfordshire, 2006, pp. 3-32.
[http://dx.doi.org/10.1079/9781845930561.0003]
[29]
Jain, R.K.; Mathur, K.N.; Singh, R.V. Estimation of losses due to plant parasitic nematodes on different crops in India. Indian J. Nematol., 2007, 37, 219-221.
[30]
Singh, A.U. Yield losses in crops due to phytonematodes. Egypt. J. Agronematol., 2014, 13(1), 75-94.
[31]
Kumar, V.; Khan, M.R.; Walia, R.K. Crop loss estimations due to plant-parasitic nematodes in major crops in India. Natl. Acad. Sci. Lett., 2020, 43(5), 409-412.
[http://dx.doi.org/10.1007/s40009-020-00895-2]
[32]
Singh, S.; Singh, B.; Singh, A.P. Nematodes: A threat to sustainability of agriculture. Procedia Env. Sci., 2015, 29, 215-216.
[http://dx.doi.org/10.1016/j.proenv.2015.07.270]
[33]
Janati, S.; Houari, A.; Wifaya, A.; Essarioui, A.; Mimouni, A.; Hormatallah, A.; Sbaghi, M.; Dababat, A.A.; Mokrini, F. Occurrence of te Root-knot nematode species in Vegetable crops in Souss regions of Morocco. Plant Pathol. J., 2018, 34(4), 308-315.
[http://dx.doi.org/10.5423/PPJ.OA.02.2018.0017] [PMID: 30140184]
[34]
Hofmann, J.; Grundler, F. How do nematodes get their sweets? Solute supply to sedentary plant-parasitic nematodes. Nematology, 2007, 9(4), 451-458.
[http://dx.doi.org/10.1163/156854107781487305]
[35]
Elling, A.A. Major emerging problems with minor meloidogyne species. Phytopathology, 2013, 103(11), 1092-1102.
[http://dx.doi.org/10.1094/PHYTO-01-13-0019-RVW] [PMID: 23777404]
[36]
Ralmi, N.H.A.A.; Khandaker, M.M. Occurrence and control of root nematode in crops: A review. Aus. J. Crop Sci., 2016, 10(12), 1649, 1654.
[37]
Sikder, M.M.; Vestergård, M. Impacts of root metabolites on soil nematodes. Front. Plant Sci., 2020, 10, 1792.
[http://dx.doi.org/10.3389/fpls.2019.01792] [PMID: 32082349]
[38]
Coyne, D.L.; Cortada, L.; Dalzell, J.J.; Claudius-Cole, A.O.; Haukeland, S.; Luambano, N.; Talwana, H. Plant-Parasitic nematodes and food security in Sub-Saharan African. Annu. Rev. Phytopathol., 2018, 56(1), 381-403.
[http://dx.doi.org/10.1146/annurev-phyto-080417-045833] [PMID: 29958072]
[39]
Manzanilla-Lopez, R.H.; Starr, J.L. Interactions with other pathogens.Root knot nematodes;; Perry, R.N.; Moens, M.; Starr, J.L., Eds.; CAB International: Wallingford, Oxfordshire, 2009, pp. 223-245.
[http://dx.doi.org/10.1079/9781845934927.0223]
[40]
Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; Perry, R.N. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol., 2013, 14(9), 946-961.
[http://dx.doi.org/10.1111/mpp.12057] [PMID: 23809086]
[41]
Verdejo-Lucas, S.; Talavera, M. Root-knot nematodes on zucchini (Cucurbita pepo subsp. pepo): Pathogenicity and management. Crop Prot., 2019, 126, 104943.
[http://dx.doi.org/10.1016/j.cropro.2019.104943]
[42]
Strange, R.N.; Scott, P.R. Plant disease: A threat to global food security. Annu. Rev. Phytopathol., 2005, 43(1), 83-116.
[http://dx.doi.org/10.1146/annurev.phyto.43.113004.133839] [PMID: 16078878]
[43]
Chitwood, D.J. Phytochemical based strategies for nematode control. Annu. Rev. Phytopathol., 2002, 40(1), 221-249.
[http://dx.doi.org/10.1146/annurev.phyto.40.032602.130045] [PMID: 12147760]
[44]
Chitwood, D. Nematicides. In: Encyclopedia of Agrochemicals;; Plimmer, J.R., Ed.; John Wiley and Sons: New York, 2003; 3, pp. 1104-1115.
[http://dx.doi.org/10.1002/047126363X.agr171]
[45]
Hua, X.; Liu, N.; Zhou, S.; Zhang, L.; Yin, H.; Wang, G.; Fan, Z.; Ma, Y. Design, Synthesis and Biological activity of novel aromatic amide derivatives containing sulfide and sulfone substructures. Engineering (Beijing), 2020, 6(5), 553-559.
[http://dx.doi.org/10.1016/j.eng.2019.09.011]
[46]
Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical Pesticides and Human health: The Urgent need for a new concept in agriculture. Front. Public Health, 2016, 4, 148.
[http://dx.doi.org/10.3389/fpubh.2016.00148] [PMID: 27486573]
[47]
Oka, Y.; Shuker, S.; Tkachi, N. Systemic nematicidal activity of fluensulfone against the root-knot nematode Meloidogyne incognita on pepper. Pest Manag. Sci., 2012, 68(2), 268-275.
[http://dx.doi.org/10.1002/ps.2256] [PMID: 21842527]
[48]
Caboni, P.; Tronci, L.; Liori, B.; Tocco, G.; Sasanelli, N.; Diana, A.; Tulipaline, A. Structure–activity aspects as a nematicide and V-ATPase inhibitor. Pestic. Biochem. Physiol., 2014, 112, 33-39.
[http://dx.doi.org/10.1016/j.pestbp.2014.05.002] [PMID: 24974115]
[49]
Jeschke, P. Latest generation of halogen-containing pesticides. Pest Manag. Sci., 2017, 73(6), 1053-1066.
[http://dx.doi.org/10.1002/ps.4540] [PMID: 28145087]
[50]
Jeschke, P. Progress of modern agricultural chemistry and future prospects. Pest Manag. Sci., 2016, 72(3), 433-455.
[http://dx.doi.org/10.1002/ps.4190] [PMID: 26577980]
[51]
Li, P.; Tian, P.; Chen, Y.; Song, X.; Xue, W.; Jin, L.; Hu, D.; Yang, S.; Song, B. Novel bisthioether derivatives containing a 1,3,4-oxadiazole moiety: design, synthesis, antibacterial and nematocidal activities. Pest Manag. Sci., 2018, 74(4), 844-852.
[http://dx.doi.org/10.1002/ps.4762] [PMID: 29024290]
[52]
Li, C.; Yuan, S.; Jiang, F.; Xie, Y.; Guo, Y.; Yu, H.; Cheng, Y.; Qian, H.; Yao, W. Degradation of fluopyram in water under ozone enhanced microbubbles: Kinetics, degradation products, reaction mechanism, and toxicity evaluation. Chemosphere, 2020, 258, 127216.
[http://dx.doi.org/10.1016/j.chemosphere.2020.127216] [PMID: 32535436]
[53]
Watson, T.T.; Desaeger, J.A. Evaluation of non-fumigant chemical and biological nematicides for strawberry production in Florida. Crop Prot., 2019, 117, 100-107.
[http://dx.doi.org/10.1016/j.cropro.2018.11.019]
[54]
Matera, C.; Grundler, F.M.W.; Schleker, A.S.S. Sublethal fluazaindolizine doses inhibit development of the cyst nematode Heterodera schachtii during sedentary parasitism. Pest Manag. Sci., 2021, 77(7), 3571-3580.
[http://dx.doi.org/10.1002/ps.6411] [PMID: 33840151]
[55]
Silva, J.O.; Loffredo, A.; da Rocha, M.R.; Becker, J.O. Efficacy of new nematicides for managing Meloidogyne incognita in tomato crop. J. Phytopathol., 2019, 167(5), 295-298.
[http://dx.doi.org/10.1111/jph.12798]
[56]
Slomczynska, U.; South, M.S.; Bunkers, G.J.; Edgecomb, D.; Wyse-Pester, D.; Selness, S.; Ding, Y.; Christiansen, J.; Ediger, K.; Miller, W.; Charumilind, P.; Hartmann, G.; Williams, J.; Dimmic, M.; Shortt, B.; Haakenson, W.; Wideman, A.; Crawford, M.; Hresko, M.; McCarter, J. Tioxazafen: A new broad-spectrum seed treatment nematicide. ACS Symp. Ser., 2015, 1204, 129-147.
[http://dx.doi.org/10.1021/bk-2015-1204.ch010]
[57]
Zhang, J.; Nan, X.; Yu, H.T.; Cheng, P.L.; Zhang, Y.; Liu, Y.Q.; Zhang, S.Y.; Hu, G.F.; Liu, H.; Chen, A.L. Synthesis, biological activities and structure−activity relationships for new avermectin analogues. Eur. J. Med. Chem., 2016, 121(121), 422-432.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.056] [PMID: 27318119]
[58]
El-Saber Batiha, G.; Alqahtani, A.; Ilesanmi, O.B.; Saati, A.A.; El-Mleeh, A.; Hetta, H.F.; Magdy Beshbishy, A. Avermectin derivatives, pharmacokinetics, therapeutic and toxic dosages, mechanism of action, and their biological effects. Pharmaceuticals (Basel), 2020, 13(8), 196.
[http://dx.doi.org/10.3390/ph13080196] [PMID: 32824399]
[59]
Xu, Q.; Zhao, Z.; Liang, P.; Wang, S; Li, F.; Jin, S.; Zhang, J. Identification of novel nematode succinate dehydrogenase inhibitors: Virtual screening based on ligand-pocket interactions. Chem. Bio. Drug Des., 2021. [Epub ahead of print].
[http://dx.doi.org/10.1111/cbdd.14019]
[60]
Chen, X.; Li, X.; Pang, K.; Fan, X.; Ma, Y.; Hu, J. Dissipation behavior and residue distribution of fluazaindolizine and its seven metabolites in tomato ecosystem based on SAX SPE procedure using HPLC-QqQ-MS/MS technique. J. Hazard. Mater., 2018, 342, 698-704.
[http://dx.doi.org/10.1016/j.jhazmat.2017.08.056] [PMID: 28917198]
[61]
Desaeger, J.A.; Watson, T.T. Evaluation of new chemical and biological nematicides for managing Meloidogyne javanica in tomato production and associated double‐crops in Florida. Pest Manag. Sci., 2019, 75(12), 3363-3370.
[http://dx.doi.org/10.1002/ps.5481] [PMID: 31074102]
[62]
Kearn, J.; Lilley, C.; Urwin, P.; O’Connor, V.; Holden-Dye, L. Progressive metabolic impairment underlies the novel nematicidal action of fluensulfone on the potato cyst nematode Globodera pallida. Pestic. Biochem. Physiol., 2017, 142, 83-90.
[http://dx.doi.org/10.1016/j.pestbp.2017.01.009] [PMID: 29107251]
[63]
Caboni, P.; Aissani, N.; Demurtas, M.; Ntalli, N.; Onnis, V. Nematicidal activity of acetophenones and chalcones against Meloidogyne incognita and structure-activity considerations. Pest Manag. Sci., 2016, 72(1), 125-130.
[http://dx.doi.org/10.1002/ps.3978] [PMID: 25641877]
[64]
Gad, S.C. Encyclopedia of Toxicology, 3rd ed; Reference Module in Biomedical Sciences, 2014, pp. 473-474.
[http://dx.doi.org/10.1016/B978-0-12-386454-3.00888-5]
[65]
Baidoo, R.; Mengistu, T.; Mcsorley, R.; Stamps, R.H.; Brito, J.; Crow, W.T. Management of root-knot nematode (Meloidogyne incognita) on Pittosporum tobira under greenhouse, field, and on-farm conditions in Florida. J. Nematol., 2017, 49(2), 133-139.
[http://dx.doi.org/10.21307/jofnem-2017-057] [PMID: 28706312]
[66]
Qin, S.; Gan, J.; Liu, W.; Becker, J.O. Degradation and adsorption of fosthiazate in soil. J. Agric. Food Chem., 2004, 52(20), 6239-6242.
[http://dx.doi.org/10.1021/jf049094c] [PMID: 15453693]
[67]
Karpouzas, D.G.; Karanasios, E.; Menkissoglu-Spiroudi, U. Enhanced microbial degradation of cadusafos in soils from potato monoculture: demonstration and characterization. Chemosphere, 2004, 56(6), 549-559.
[http://dx.doi.org/10.1016/j.chemosphere.2004.04.019] [PMID: 15212898]
[68]
Arbeli, Z.; Fuentes, C.L. Accelerated biodegradation of pesticides: An overview of the phenomenon, its basis and possible solutions; and a discussion on the tropical dimension. Crop Prot., 2007, 26(12), 1733-1746.
[http://dx.doi.org/10.1016/j.cropro.2007.03.009]
[69]
Qiao, K.; Liu, X.; Wang, H.; Xia, X.; Ji, X.; Wang, K. Effect of abamectin on root-knot nematodes and tomato yield. Pest Manag. Sci., 2012, 68(6), 853-857.
[http://dx.doi.org/10.1002/ps.2338] [PMID: 22395950]
[70]
Khalil, S.M. Bright future with nematicidal phytochemicals. Biol. Méd. (Paris), 2014, 6, 2.
[71]
Bernard, G.C.; Egnin, M.; Bonsi, C. The impact of Plant-Parasitic nematodes on agriculture and methods of control. Nematology-Concepts Diagnosis and Control, 2017, 7, 121-151.
[72]
Suvarna, A.S. A Review on synthetic heterocyclic compounds in agricultural and other applications. Int. J. Pharm. Tech. Res., 2015, 8, 170-179.
[73]
Dua, R.; Shrivastava, S.; Sonwane, S.K.; Srivastava, S.K. Pharmacological significance of synthetic heterocycles scaffold: A review. Adv. Biores., 2011, 2021, 5-120.
[74]
Qadir, T.; Amin, A.; Sharma, P.K.; Jeelani, I.; Abe, H. A Review on medicinally important Hetrocyclic compounds. Open Med. Chem. J., 2022, 16(1), e187410452202280.
[http://dx.doi.org/10.2174/18741045-v16-e2202280]
[75]
Anamika; Utreja, D.; Kaur, J.; Sharma, S. Synthesis of Schiff bases of coumarin and their antifungal activity. Indian J. Heterocycl. Chem., 2019, 28(4), 433-439.
[76]
Utreja, D.; Sharma, S.; Goyal, A.; Kaur, K.; Kaushal, S. Synthesis and Biological activity of quaternary quinolinium salts: A Review. Curr. Org. Chem., 2020, 23(21), 2271-2294.
[http://dx.doi.org/10.2174/1385272823666191023122704]
[77]
Madhvi; Utreja, D.; Sharma, S. Barbiturates: A review of Synthesis and antimicrobial research progress. Curr. Org. Synth., 2022, 19(1), 31-55.
[http://dx.doi.org/10.2174/1570179418666210414104857] [PMID: 33855946]
[78]
Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of Heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res., 2012, 3(9), 2947-2954.
[79]
Jampilek, J. Heterocycles in Medicinal Chemistry. Molecules, 2019, 24(21), 3839.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[80]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.; Roma-Rodrigues, C.; Baptista, P.; Fernandes, A. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of Nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[81]
Wahab, A.; Sultana, A.; Khan, K.M.; Sherwani, S.K.; Perveen, Z.; Taha, M.; Karim, A. Synthesis, antimicrobial, antioxidant and nematicidal activity of (2E,4E)-5-(Benzo[d][1,3]dioxol-5-yl)penta-2,4-dienamides. J. Chem. Soc. Pak., 2015, 37(5), 1008-1014.
[82]
Lahm, G.P.; Desaeger, J.; Smith, B.K.; Pahutski, T.F.; Rivera, M.A.; Meloro, T.; Kucharczyk, R.; Lett, R.M.; Daly, A.; Smith, B.T.; Cordova, D.; Thoden, T.; Wiles, J.A. The discovery of fluazaindolizine: A new product for the control of plant parasitic nematodes. Bioorg. Med. Chem. Lett., 2017, 27(7), 1572-1575.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.029] [PMID: 28242274]
[83]
Kang, S.; Kim, R.Y.; Seo, M.J.; Lee, S.; Kim, Y.M.; Seo, M.; Seo, J.J.; Ko, Y.; Choi, I.; Jang, J.; Nam, J.; Park, S.; Kang, H.; Kim, H.J.; Kim, J.; Ahn, S.; Pethe, K.; Nam, K.; No, Z.; Kim, J. Lead optimization of a novel series of imidazo[1,2-a]pyridine amides leading to a clinical candidate (Q203) as a multi- and extensively-drug-resistant anti-tuberculosis agent. J. Med. Chem., 2014, 57(12), 5293-5305.
[http://dx.doi.org/10.1021/jm5003606] [PMID: 24870926]
[84]
Wei, C.; Huang, J.; Luo, Y.; Wang, S.; Wu, S.; Xing, Z.; Chen, J. Novel amide derivatives containing an imidazo[1,2-a]pyridine moiety: Design, synthesis as potential nematicidal and antibacterial agents. Pestic. Biochem. Physiol., 2021, 175, 104857.
[http://dx.doi.org/10.1016/j.pestbp.2021.104857] [PMID: 33993975]
[85]
Zhou, C.H.; Wang, Y. Recent researches in triazole compounds as medicinal drugs. Curr. Med. Chem., 2012, 19(2), 239-280.
[http://dx.doi.org/10.2174/092986712803414213] [PMID: 22320301]
[86]
Sanjeeva Reddy, C.; Rajesh Kumar, G.; Sunitha, B. Synthesis, antimicrobial and nematicidal evaluation of a new class of triazolo[4,3-c]quinazolinylthiazolidinones. Med. Chem. Res., 2016, 25(5), 923-931.
[http://dx.doi.org/10.1007/s00044-016-1538-6]
[87]
Li, J.J. Imidazole and Bezimidazole.Heterocyclic chemistry in drug discovery; John Wiley& Sons: New Jersey, 2013, pp. 254-356.
[88]
Asghar, N.; Akhtar, S.; Naeem, S.; Ahmed, A.; Faizy, S.; Arif, M.; Saify, Z.S. Synthesis, characterization and SAR of novel Bezimidazole derivatives as Nematicidal agents. Pak. J. Pharm. Sci., 2018, 31(3), 827-833.
[PMID: 29716862]
[89]
Gadegoni, H.; Manda, S.; Rangu, S. Synthesis and screening of novel 2-[5-(substituted phenyl)-[1, 3, 4] oxadiazol-2-yl]-benzoxazoles as potential antimicrobial agents. J. Korean Chem. Soc., 2013, 57(2), 221-226.
[http://dx.doi.org/10.5012/jkcs.2013.57.2.221]
[90]
Friedrich, L.; Lawton, K.; Ruess, W.; Masner, P.; Specker, N.; Rella, M.G.; Meier, B.; Dincher, S.; Staub, T.; Uknes, S.; Metraux, J.P.; Kessmann, H.; Ryals, J. A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J., 1996, 10(1), 61-70.
[http://dx.doi.org/10.1046/j.1365-313X.1996.10010061.x]
[91]
Fan, Z.; Shi, Z.; Zhang, H.; Liu, X.; Bao, L.; Ma, L.; Zuo, X.; Zheng, Q.; Mi, N. Synthesis and biological activity evaluation of 1,2,3-thiadiazole derivatives as potential elicitors with highly systemic acquired resistance. J. Agric. Food Chem., 2009, 57(10), 4279-4286.
[http://dx.doi.org/10.1021/jf8031364] [PMID: 21314199]
[92]
Zhang, R.; Guo, W.; Wang, G.; Chen, X.; Li, Z.; Xu, X. Synthesis and nematicidal activities of 1,2,3-benzotriazin-4-one derivatives containing benzo[d][1,2,3]thiadiazole against meloidogyne incognita. Bioorg. Med. Chem. Lett., 2020, 30(17), 127369.
[93]
Shakil, N.A.; Singh, M.K.; Sathiyendiran, M.; Kumar, J.; Padaria, J.C. Microwave synthesis, characterization and bio-efficacy evaluation of novel chalcone based 6-carbethoxy-2-cyclohexen-1-one and 2H-indazol-3-ol derivatives. Eur. J. Med. Chem., 2013, 59, 120-131.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.038] [PMID: 23229055]
[94]
Chen, J.; Li, Q.X.; Song, B. Chemical Nematicides: Recent research progress and outlook. J. Agric. Food Chem., 2020, 68(44), 12175-12188.
[http://dx.doi.org/10.1021/acs.jafc.0c02871] [PMID: 33079521]
[95]
Wu, X.; Wilairat, P.; Go, M.L. Antimalarial activity of ferrocenyl chalcones. Bioorg. Med. Chem. Lett., 2002, 12(17), 2299-2302.
[http://dx.doi.org/10.1016/S0960-894X(02)00430-4] [PMID: 12161120]
[96]
Yadav, D.K.; Kaushik, P.; Tripathi, K.P.; Rana, V.S.; Yeasin, M.; Kamil, D.; Pankaj; Khatri, D.; Shakil, N.A. Bioefficacy evaluation of ferrocenyl chalcones against Meloidogyne incognita and Sclerotium rolfsii infestation in tomato. J. Environ. Sci. Health B, 2022, 57(3), 192-200.
[http://dx.doi.org/10.1080/03601234.2022.2042154] [PMID: 35193479]
[97]
Yadav, D.K.; Kaushik, P.; Pankaj; Rana, V.S.; Kamil, D.; Khatri, D.; Shakil, N.A. Microwave assisted synthesis, characterization and biological activities of ferrocenyl chalcones and their QSAR analysis. Front Chem., 2019, 7, 814.
[http://dx.doi.org/10.3389/fchem.2019.00814]
[98]
Bisogno, F.; Mascoti, L.; Sanchez, C.; Garibotto, F.; Giannini, F.; Kurina-Sanz, M.; Enriz, R. Structure-antifungal activity relationship of cinnamic acid derivatives. J. Agric. Food Chem., 2007, 55(26), 10635-10640.
[http://dx.doi.org/10.1021/jf0729098] [PMID: 18038998]
[99]
Liu, F.; Luo, X.Q.; Song, B.A.; Bhadury, P.S.; Yang, S.; Jin, L.H.; Xue, W.; Hu, D.Y. Synthesis and antifungal activity of novel sulfoxide derivatives containing trimethoxyphenyl substituted 1,3,4-thiadiazole and 1,3,4-oxadiazole moiety. Bioorg. Med. Chem., 2008, 16(7), 3632-3640.
[http://dx.doi.org/10.1016/j.bmc.2008.02.006] [PMID: 18329885]
[100]
Bondock, S.; Adel, S.; Etman, H.A.; Badria, F.A. Synthesis and antitumor evaluation of some new 1,3,4-oxadiazole-based heterocycles. Eur. J. Med. Chem., 2012, 48, 192-199.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.013] [PMID: 22204901]
[101]
Vishnoi, S.; Agrawal, V.; Kasana, V.K. Synthesis and structure-activity relationships of substituted cinnamic acids and amide analogues: a new class of herbicides. J. Agric. Food Chem., 2009, 57(8), 3261-3265.
[http://dx.doi.org/10.1021/jf8034385] [PMID: 19368353]
[102]
De Vita, D.; Simonetti, G.; Pandolfi, F.; Costi, R.; Di Santo, R.; D’Auria, F.D.; Scipione, L. Exploring the anti-biofilm activity of cinnamic acid derivatives in Candida albicans. Bioorg. Med. Chem. Lett., 2016, 26(24), 5931-5935.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.091] [PMID: 27838185]
[103]
Chen, J.; Gan, X.; Yi, C.; Wang, S.; Yang, Y.; He, F.; Hu, D.; Song, B. Synthesis, nematicidal activity and 3D-QSAR of novel 1,3,4-oxadiazole/thiadiazole thioether derivatives. Chin. J. Chem., 2018, 36(10), 939-944.
[http://dx.doi.org/10.1002/cjoc.201800282]
[104]
Riveiro, M.; De Kimpe, N.; Moglioni, A.; Vázquez, R.; Monczor, F.; Shayo, C.; Davio, C. Coumarins: old compounds with novel promising therapeutic perspectives. Curr. Med. Chem., 2010, 17(13), 1325-1338.
[http://dx.doi.org/10.2174/092986710790936284] [PMID: 20166938]
[105]
Pan, L.; Li, X.Z.; Sun, D.A.; Jin, H.; Guo, H.R.; Qin, B. Design and synthesis of novel coumarin analogs and their nematicidal activity against five phytonematodes. Chin. Chem. Lett., 2016, 27(3), 375-379.
[http://dx.doi.org/10.1016/j.cclet.2016.01.029]
[106]
Takaishi, K.; Izumi, M.; Baba, N.; Kawazu, K.; Nakajima, S. Synthesis and biological evaluation of alkoxycoumarins as novel nematicidal constituents. Bioorg. Med. Chem. Lett., 2008, 18(20), 5614-5617.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.102] [PMID: 18793855]
[107]
Vicentino, A.R.R.; Carneiro, V.C.; Amarante, A.M.; Benjamim, C.F.; de Aguiar, A.P.; Fantappié, M.R. Evaluation of 3-(3-chloro-phenyl)-5-(4-pyridyl)-4,5-dihydroisoxazole as a Novel Anti-Inflammatory Drug Candidate. PLoS One, 2012, 7(6), e39104.
[http://dx.doi.org/10.1371/journal.pone.0039104] [PMID: 22723938]
[108]
Fráguas, R.M.; Costa, V.A.; Terra, W.C.; Aguiar, A.P.; Martins, S.J.; Campos, V.P.; Oliveira, D.F. Toxicities of 4,5-Dihydroisooxazoles against Root knot nematodes and in silico studies of their mode of action. J. Agric. Food Chem., 2020, 68(2), 523-529.
[http://dx.doi.org/10.1021/acs.jafc.9b07839] [PMID: 31908169]
[109]
Che, Z.; Zhang, S.; Shao, Y.; Fan, L.; Xu, H.; Yu, X.; Zhi, X.; Yao, X.; Zhang, R. Synthesis and quantitative structure-activity relationship (QSAR) study of novel N-arylsulfonyl-3-acylindole arylcarbonyl hydrazone derivatives as nematicidal agents. J. Agric. Food Chem., 2013, 61(24), 5696-5705.
[http://dx.doi.org/10.1021/jf400536q] [PMID: 23738496]
[110]
Adib, M.; Peytam, F.; Shourgeshty, R.; Mohammadi-Khanaposhtani, M.; Jahani, M.; Imanparast, S.; Faramarzi, M.A.; Larijani, B.; Moghadamnia, A.A.; Esfahani, E.N.; Bandarian, F.; Mahdavi, M. Design and synthesis of new fused carbazole-imidazole derivatives as anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic, and in silico studies. Bioorg. Med. Chem. Lett., 2019, 29(5), 713-718.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.012] [PMID: 30661823]
[111]
Boiani, M.; González, M. Imidazole and benzimidazole derivatives as chemotherapeutic agents. Mini Rev. Med. Chem., 2005, 5(4), 409-424.
[http://dx.doi.org/10.2174/1389557053544047] [PMID: 15853629]
[112]
Chen, X.; Lee, S.W.; Idhayadhulla, A.; Kumar, R.S.; Manilal, A. Nematicidal, larvicidal and antimicrobial activities of some new mannich base imidazole derivatives. Trop. J. Pharm. Res., 2015, 14(8), 1435-1443.
[http://dx.doi.org/10.4314/tjpr.v14i8.16]
[113]
Kalaria, P.N.; Karad, S.C.; Raval, D.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur. J. Med. Chem., 2018, 158, 917-936.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.040] [PMID: 30261467]
[114]
Kerru, N.; Maddila, S.; Jonnalagadda, S.B. Design of carbon-carbon and carbon-heteroatom bond formation reactions under green conditions. Curr. Org. Chem., 2020, 23(28), 3154-3190.
[http://dx.doi.org/10.2174/1385272823666191202105820]
[115]
Zárate-Zárate, D.; Aguilar, R.; Hernández-Benitez, R.I.; Labarrios, E.M.; Delgado, F.; Tamariz, J. Synthesis of α-ketols by functionalization of captodative alkenes and divergent preparation of heterocycles and natural products. Tetrahedron, 2015, 71(38), 6961-6978.
[http://dx.doi.org/10.1016/j.tet.2015.07.010]
[116]
Kerru, N.; Bhaskaruni, S.V.H.S.; Gummidi, L.; Maddila, S.N.; Maddila, S.; Jonnalagadda, S.B. Recent advances in heterogeneous catalysts for the synthesis of imidazole derivatives. Synth. Commun., 2019, 49(19), 2437-2459.
[http://dx.doi.org/10.1080/00397911.2019.1639755]
[117]
Fang, W.Y.; Ravindar, L.; Rakesh, K.P.; Manukumar, H.M.; Shantharam, C.S.; Alharbi, N.S.; Qin, H.L. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: A critical review. Eur. J. Med. Chem., 2019, 173, 117-153.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.063] [PMID: 30995567]
[118]
Heravi, M.M.; Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: an overview. RSC Advances, 2020, 10(72), 44247-44311.
[http://dx.doi.org/10.1039/D0RA09198G] [PMID: 35557843]
[119]
Walsh, C.T. Nature loves nitrogen heterocycles. Tetrahedron Lett., 2015, 56(23), 3075-3081.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.046]
[120]
Zhang, B.; Studer, A. Recent advances in the synthesis of nitrogen heterocycles via radical cascade reactions using isonitriles as radical acceptors. Chem. Soc. Rev., 2015, 44(11), 3505-3521.
[http://dx.doi.org/10.1039/C5CS00083A] [PMID: 25882084]
[121]
Ma, X.; Lv, X.; Zhang, J. Exploiting polypharmacology for improving therapeutic outcome of kinase inhibitors (KIs): An update of recent medicinal chemistry efforts. Eur. J. Med. Chem., 2018, 143, 449-463.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.049] [PMID: 29202407]
[122]
Kumar, S. Ritika, A brief review of the biological potential of indole derivatives. Future Journal of Pharmaceutical Sciences, 2020, 6(1), 121.
[http://dx.doi.org/10.1186/s43094-020-00141-y]
[123]
Kaur, J.; Utreja, D.; Ekta; Jain, N.; Sharma, S. Recent developments in the synthesis and antimicrobial activity of indole and its derivatives. Curr. Org. Synth., 2019, 16(1), 17-37.
[http://dx.doi.org/10.2174/1570179415666181113144939] [PMID: 31965921]
[124]
Jain, P.; Utreja, D.; Sharma, P. An efficacious synthesis of N‐1–, C‐3–substituted indole derivatives and their antimicrobial studies. J. Heterocycl. Chem., 2020, 57(1), 428-435.
[http://dx.doi.org/10.1002/jhet.3799]
[125]
Rajasekharan, S.K.; Lee, J.H.; Ravichandran, V.; Lee, J. Assessments of iodoindoles and abamectin as inducers of methuosis in pinewood nematode, Bursaphelenchus xylophilus. Sci. Rep., 2017, 7(1), 6803.
[http://dx.doi.org/10.1038/s41598-017-07074-2] [PMID: 28754990]
[126]
Rajasekharan, S.K.; Lee, J.H.; Ravichandran, V.; Kim, J.C.; Park, J.G.; Lee, J. Nematicidal and insecticidal activities of halogenated indoles. Sci. Rep., 2019, 9(1), 2010.
[http://dx.doi.org/10.1038/s41598-019-38561-3] [PMID: 30765810]
[127]
Andersen, O.S.; Koeppe, R.E., II; Roux, B. Gramicidin Channels. IEEE Trans. Nanobiosci., 2005, 4(1), 10-20.
[http://dx.doi.org/10.1109/TNB.2004.842470] [PMID: 15816168]
[128]
Kaur, J.; Utreja, D.; Dhillon, N.K.; Sharma, S. Synthesis of indole derivatives and their evaluation against root knot nematode Meloidogyne incognita. Lett. Org. Chem., 2019, 16(9), 759-767.
[http://dx.doi.org/10.2174/1570178616666190219131042]
[129]
Singh, G.S.; Desta, Z.Y. Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem. Rev., 2012, 112(11), 6104-6155.
[http://dx.doi.org/10.1021/cr300135y] [PMID: 22950860]
[130]
Grewal, A.S. Isatin derivatives with biological activities. Int. J. Pharm. Res, 2012, 4
[http://dx.doi.org/10.1155/2013/192039]
[131]
Varun, V.; Sonam, S.; Kakkar, R. Isatin and its derivatives: a survey of recent syntheses, reactions, and applications. Med. Chem. Comm., 2019, 10(3), 351-368.
[http://dx.doi.org/10.1039/C8MD00585K] [PMID: 30996856]
[132]
Pakravan, P.; Kashanian, S.; Khodaei, M.M.; Harding, F.J. Biochemical and pharmacological characterization of isatin and its derivatives: From structure to activity. Pharamcological reports, 2013, 65, 313-335.
[http://dx.doi.org/10.1016/S1734-1140(13)71007-7]
[133]
Dawar, M.; Utreja, D.; Rani, R.; Kaur, K. Synthesis and evaluation of isatin derivatives as antifungal agents. Lett. Org. Chem., 2020, 17(3), 199-205.
[http://dx.doi.org/10.2174/1570178616666190724120308]
[134]
Kaur, K.; Utreja, D.; Dhillon, N.K.; Pathak, R.K.; Singh, K. N-alkyl isatin derivatives: Synthesis, nematicidal evaluation and protein target identifications for their mode of action. Pest. Biochem. Physiol., 2020, 171, 104736.
[http://dx.doi.org/10.1016/j.pestbp.2020.104736]
[135]
Harrold, M.W.; Zavod, R.M. Basic concepts in medicinal chemistry;, American society of health Pharmacists, Chapter 2: Functional group characteristics and roles 2013.
[136]
Kondo, N.; Takahashi, A.; Ono, K.; Ohnishi, T. DNA Damage induced by alkylating agents and repair pathways. J. Nucleic Acids, 2010, 543531.
[http://dx.doi.org/10.4061/2010/543531]
[137]
Loomba, S.; Utreja, D.; Kaur, K.; Kaur, J.; Sharma, S.; Dhillon, N.K.; Pathak, R.K. Synthesis and evaluation of Isatin Schiff bases against plant pathogens validated through Aspartyl protease and Acetylcholine binding proteins docked studies. Lett. Org. Chem., 2021, 18, 1000-1011.
[http://dx.doi.org/10.2174/1570178618666210610160546]
[138]
Xie, Y.; Li, J.; Kang, R.; Tang, D. Interplay between lipid metabolism and autophagy. Front. Cell Dev. Biol., 2020, 8, 431.
[http://dx.doi.org/10.3389/fcell.2020.00431] [PMID: 32582708]
[139]
Naglah, A.M.; Shinwari, Z.; Bhat, M.A.; Al-Tahhan, M.; Al-Omar, M.A.; Al-Dhfyan, A. Targeting leukemic side population cells by isatin derivatives of nicotinic acid amide. J. Biol. Regul. Homeost. Agents, 2016, 30(2), 353-363.
[PMID: 27358121]
[140]
Jain, N.; Utreja, D.; Dhillon, N.K. A convenient one-pot synthesis and nematicidal activity of nicotinic acid amides. Russ. J. Org. Chem., 2019, 55(6), 845-851.
[http://dx.doi.org/10.1134/S1070428019060150]
[141]
Chen, J.; Chen, Y.; Gan, X.; Song, B.; Hu, D.; Song, B. Synthesis, nematicidal evaluation and 3D-QSAR analysis of novel 1,3,4-Oxadiazole-Cinnamic acid hybrids. J. Agric. Food Chem., 2018, 66(37), 9616-9623.
[http://dx.doi.org/10.1021/acs.jafc.8b03020] [PMID: 30145894]
[142]
McDonald, E.; Jones, K.; Brough, P.; Drysdale, M.; Workman, P. Discovery and development of pyrazole-scaffold Hsp90 inhibitors. Curr. Top. Med. Chem., 2006, 6(11), 1193-1203.
[http://dx.doi.org/10.2174/156802606777812086] [PMID: 16842156]
[143]
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.; Al-aizari, F.; Ansar, M. Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 2018, 23(1), 134.
[http://dx.doi.org/10.3390/molecules23010134] [PMID: 29329257]
[144]
Vicentini, C.B.; Romagnoli, C.; Andreotti, E.; Mares, D. Synthetic pyrazole derivatives as growth inhibitors of some phytopathogenic fungi. J. Agric. Food Chem., 2007, 55(25), 10331-10338.
[http://dx.doi.org/10.1021/jf072077d] [PMID: 18001038]
[145]
Gürsoy, A.; Demirayak, S.; Capan, G.; Erol, K.; Vural, K. Synthesis and preliminary evaluation of new 5-pyrazolinone derivatives as analgesic agents. Eur. J. Med. Chem., 2000, 35(3), 359-364.
[http://dx.doi.org/10.1016/S0223-5234(00)00117-3] [PMID: 10785562]
[146]
Qu, L.; Xu, H.; Wang, X.; Huang, M.; Deng, L.; Guo, Y. Application of sustainable bioresources in agriculture: Iodine-mediated oxidative cyclization for metal free one-pot synthesis of N-phenylpyrazoles arisan analogues as insecticidal agents. ACS Omega, 2017, 2(9), 5974-5980.
[http://dx.doi.org/10.1021/acsomega.7b01106] [PMID: 30023758]
[147]
Schmidt, T.; Puhl, M.; Dickhaut, J.; Bastiaana, H.M.M.; Rack, M.; Culbertson, D.L.; Anspaugh, D.D.; Braun, F.J.; Bucci, T.; Cotter, H. Preparation of N-thio-anthranilamide compounds and their use as pesticides. EPO. WO 2007006670, 2007.
[148]
Pozharskii, A.F.; Soldatenkov, A.T.; Katritzky, A.R. Heterocycles in Agriculture.Heterocycles in Life and Society: An introduction to Heterocyclic Chemistry, 2nd ed; Biochemistry and Applications, 2011, pp. 185-207.
[http://dx.doi.org/10.1002/9781119998372.ch8]
[149]
Kaur, G.; Utreja, D.; Jain, N.; Dhillon, N.K. Synthesis and evaluation of pyrazole derivatives as potent antinemic agents. Russ. J. Org. Chem., 2020, 56(1), 113-118.
[http://dx.doi.org/10.1134/S1070428020010182]
[150]
Chen, X.; Xiao, Y.; Wang, G.; Li, Z.; Xu, X. Synthesis of novel 1,2,3-triazole containing pyridine-pyrazole amide derivatives based on one-pot click reaction and their evaluation for potent nematicidal activity against Meloidogyne incognita. Res. Chem. Intermed., 2015, 42, 5495-5508.
[http://dx.doi.org/10.1007/s11164-015-2381-y]
[151]
Valli, M.; Danuello, A.; Pivatto, M.; Saldaña, J.C.; Heinzen, H.; Domínguez, L.; Campos, V.P.; Marqui, S.R.; Young, M.C.M.; Viegas, C., Jr; Silva, D.H.S.; Bolzani, V.S. Anticholinesterasic, nematostatic and anthelmintic activities of pyridinic and pyrazinic compounds. Curr. Med. Chem., 2011, 18(22), 3423-3430.
[http://dx.doi.org/10.2174/092986711796504718] [PMID: 21728957]
[152]
Marín-Ocampo, L.; Veloza, L.A.; Abonia, R.; Sepúlveda-Arias, J.C. Anti-inflammatory activity of triazine derivatives: A systematic review. Eur. J. Med. Chem., 2019, 162, 435-447.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.027] [PMID: 30469039]
[153]
Utreja, D.; Kaur, J.; Kaur, K.; Jain, P. Recent advances in 1,3,5-Traizine derivatives as antibacterial agents. Mini Rev. Org. Chem., 2020, 17(8), 991-1041.
[http://dx.doi.org/10.2174/1570193X17666200129094032]
[154]
Kaur, J.; Utreja, D.; Dhillon, N.K.; Sharma, S. Synthesis of series of triazine derivatives and their evaluation against root knot nematode Meloidogyne incognita. Lett. Org. Chem., 2018, 15(10), 870-877.
[http://dx.doi.org/10.2174/1570178615666180330155049]
[155]
Avula, S.K.; Khan, M.; Halim, S.A.; Khan, A.; Al-Riyami, S.A.; Csuk, R.; Das, B.; Al-Harrasi, A. Synthesis of New 1H-1,2,3-Triazole analogs in aqueous medium via “Click” Chemistry; A novel class of potential Carbonic anhydrase-II inhibitors. Front Chem., 2021, 9, 642614.
[http://dx.doi.org/10.3389/fchem.2021.642614] [PMID: 34277561]
[156]
Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem., 2019, 27(16), 3511-3531.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317]
[157]
Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1, 2, 3-triazoles: Current developments. Bioorg. Chem., 2017, 71, 30-54.
[158]
Qian, J.; Han, Y.; Li, J.; Zhang, J.; Hu, C. Toxic effect prediction of cefatirizine amidine sodium and its impurities by structure-toxicity relationship of cephalosporins. Toxicol. In Vitro, 2018, 46, 137-147.
[http://dx.doi.org/10.1016/j.tiv.2017.09.021] [PMID: 28963076]
[159]
Lakshman, A.B.; Gupta, R.L.; Prasad, D. Quantitative structure activity relationships for the nematicidal activity of 4-amino-5-substituted aryl-3-mercapto-(4H)-1,2,4-triazoles. Indian J. Chem., 2010, 49B, 1657-1661.
[160]
Nishiwaki, K.; Okamoto, A.; Matsuo, K.; Hayase, Y.; Masaki, S.; Hasegawa, R.; Ohba, K. Tetrahydrobenzotriazines as a new class of nematocide. Bioorg. Med. Chem., 2007, 15(3), 1341-1345.
[http://dx.doi.org/10.1016/j.bmc.2006.11.013] [PMID: 17126022]
[161]
Wang, G.; Chen, X.; Deng, Y.; Li, Z.; Xu, X. Synthesis and nematicidal activity of 1,2,3-benzotriazin-4-one derivatives against Meloidogyne incognita. J. Agric. Food Chem., 2015, 63(31), 6883-6889.
[http://dx.doi.org/10.1021/acs.jafc.5b01762] [PMID: 26145729]
[162]
Chen, X.; Jia, H.; Li, Z.; Xu, X. Synthesis and nematicidal evaluation of 1,2,3-benzotriazin-4-one derivatives containing piperazine as linker against Meloidogyne incognita. Chin. Chem. Lett., 2019, 30(6), 1207-1213.
[http://dx.doi.org/10.1016/j.cclet.2019.02.033]
[163]
Li, J.; Zhang, Z.; Xu, X.; Shao, X.; Li, Z. Nematicidal activities of diamides with diphenylacetylene scaffold against Meloidogyne incognita. Aust. J. Chem., 2015, 68(10), 1543.
[http://dx.doi.org/10.1071/CH15065]
[164]
Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N. An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem., 2011, 7, 442-495.
[http://dx.doi.org/10.3762/bjoc.7.57] [PMID: 21647262]
[165]
Kumar, G.R.; Shankar, K.; Reddy, C.S. Synthesis of novel bis-(1,3,4-oxadiazol-2-ylamino)-2-aryl-1,3-thiazolan-4-ones as antimicrobial, nematicidal and anticancer agents. Indian J. Chem., 2018, 57B, 700-714.
[166]
Chen, L.; Zhao, B.; Fan, Z.; Hu, M.; Li, Q.; Hu, W.; Li, J.; Zhang, J. Discovery of novel isothiazole, 1,2,3-thiadiazole and thiazole based cinnamamides as fungicidal candidates. J. Agric. Food Chem., 2019, 67(45), 12357-12365.
[http://dx.doi.org/10.1021/acs.jafc.9b03891] [PMID: 31596575]
[167]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[168]
Srinivas, A.; Nagaraj, A.; Reddy, C.S. Synthesis and in vitro study of methylene-bis-tetrahydro[1,3]thiazolo[4,5-c]isoxazoles as potential nematicidal agents. Eur. J. Med. Chem., 2010, 45(6), 2353-2358.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.014] [PMID: 20199825]
[169]
Seo, S.M.; Kim, J.; Kim, E.; Park, H.M.; Kim, Y.J.; Park, I.K. Structure-activity relationship of aliphatic compounds for nematicidal activity against pine wood nematode (Bursaphelenchus xylophilus). J. Agric. Food Chem., 2010, 58(3), 1823-1827.
[http://dx.doi.org/10.1021/jf902575f] [PMID: 20055406]
[170]
Kim, J.; Seo, S.M.; Lee, S.G.; Shin, S.C.; Park, I.K. Nematicidal activity of plant essential oils and components from coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) essential oils against pine wood nematode (Bursaphelenchus xylophilus). J. Agric. Food Chem., 2008, 56(16), 7316-7320.
[http://dx.doi.org/10.1021/jf800780f] [PMID: 18605734]
[171]
Choi, I.H.; Kim, J.; Shin, S.C.; Park, I.K. Nematicidal activity of monoterpenoids against pine wood nematode (Bursaphelenchus xylophilus). Russ. J. Nematol., 2007, 15, 35-40.
[172]
Park, I.K.; Kim, J.; Lee, S.G.; Shin, S.C. Nematicidal activity of plant essential oils and components from ajowan (Trachyspermumammi), allspice (Pimenta dioica) and litsea (Litsea cubeba) essential oils against pine wood nematode (Bursaphelenchus xylophilus). J. Nematol., 2007, 39(3), 275-279.
[PMID: 19259498]
[173]
Srinivas, A.; Sunitha, M.; Karthik, P.; Nikitha, G.; Raju, K.; Ravinder, B.; Anusha, S.; Rajasri, T.; Swapna, D.; Swaroopa, D.; Srinivas, K.; Vasumathi Reddy, K. Synthesis and in vitro study of hybrid heterocyclic as potential nematicidal agents. J. Heterocycl. Chem., 2017, 54(6), 3250-3257.
[http://dx.doi.org/10.1002/jhet.2943]
[174]
Huang, D.; Yu, C.; Shao, Z.; Cai, M.; Li, G.; Zheng, L.; Yu, Z.; Zhang, J. Identification and characterization of nematicidal volatile organic compounds from Deep-Sea Virgibacillus dokdonensis MCCC 1A00493. Molecules, 2020, 25(3), 744-758.
[http://dx.doi.org/10.3390/molecules25030744] [PMID: 32050419]
[175]
Cueto, G.M.; Audino, P.G.; Vassena, C.V.; Picollo, M.I.; Zerba, E.N. Toxic effect of aliphatic alcohols against susceptible and permethrin-resistant Pediculus humanus capitis (Anoplura: Pediculidae). J. Med. Entomol., 2002, 39(3), 457-460.
[http://dx.doi.org/10.1603/0022-2585-39.3.457] [PMID: 12061440]
[176]
Burns, A.R.; Bagg, R.; Yeo, M.; Luciani, G.M.; Schertzberg, M.; Fraser, A.G.; Roy, P.J. The novel nematicide wact-86 interacts with aldicarb to kill nematodes. PLoS Negl. Trop. Dis., 2017, 11(4), e0005502.
[http://dx.doi.org/10.1371/journal.pntd.0005502] [PMID: 28379972]
[177]
Banothu, J.; Bosavoju, S.; Bavantula, R. Pyridinium ylide assisted highly stereoselective one pot synthesis of trans-2-(4-Chlorobenzyl)-3-aryl-spiro [cyclopropane-1, 2′-inden]-1′3′-diones and their antimicrobial and nematicidal activities. J. Heterocycl. Chem., 2015, 52(3), 853-860.
[http://dx.doi.org/10.1002/jhet]
[178]
Rajini, A.; Adepu, A.K.; Chirra, S.; Venkatathri, N. Porous palladium aminophosphates: synthesis, characterization, antimicrobial and cytotoxicity studies. RSC Advances, 2015, 5(82), 66956-66964.
[http://dx.doi.org/10.1039/C5RA11923E]
[179]
Fahmi, N.; Masih, I.; Soni, K. Template synthesis, characterization, electrochemical behaviour, antimicrobial, nematicidal and pesticidal activities of palladium(II) macrocyclic complexes. J. Macromol. Struc, 2015, 52(7), 548-560.
[180]
Gluck, S. V-ATPases of the plasma membrane. J. Exp. Biol., 1992, 172(1), 29-37.
[http://dx.doi.org/10.1242/jeb.172.1.29] [PMID: 1491228]
[181]
Seidel, T.; Scholl, S.; Krebs, M.; Rienmüller, F.; Marten, I.; Hedrich, R.; Hanitzsch, M.; Janetzki, P.; Dietz, K.J.; Schumacher, K. Regulation of the V-type ATPase by redox modulation. Biochem. J., 2012, 448(2), 243-251.
[http://dx.doi.org/10.1042/BJ20120976] [PMID: 22943363]
[182]
Caboni, P.; Nadhem; Aissani; Cabras, T.; Falqui, A.; Marotta, R.; Liori, B.; Ntalli, N.; Sarais, G.; Sasanelli, N.; Tocco, G. Potent nematicidal activity of phthalaldehyde, salicyaldehyde and cinnamic aldehyde against meloidogyne incognita. J. Agric. Food Chem., 2013, 61, 1794-1803.
[http://dx.doi.org/10.1021/jf305164m] [PMID: 23379671]
[183]
Qu, G.R.; Xia, R.; Yang, X.N.; Li, J.G.; Wang, D.C.; Guo, H.M. Synthesis of novel C6-phosphonated purine nucleosides under microwave irradiation by SNAr-Arbuzov reaction. J. Org. Chem., 2008, 73(6), 2416-2419.
[http://dx.doi.org/10.1021/jo702680p] [PMID: 18307357]
[184]
Srinivas, A. Synthesis and biological evaluation of novel phosphonyl thiazolo pyrazoles. Heterocycles, 2020, 86977.
[http://dx.doi.org/10.5772/intechopen.86977]
[185]
Qizhuang, H.; Jing, Y.; Hui, M.; Hexing, L. Studies on the spectra and antibacterial properties of rare earth dinuclear complexes with l-phenylalanine and o-phenanthroline. Mater. Lett., 2006, 60(3), 317-320.
[http://dx.doi.org/10.1016/j.matlet.2005.08.051]
[186]
Wakabayashi, T.; Ymamoto, A.; Kazaana, A.; Nakano, Y.; Nojiri, Y.; Kashiwazaki, M. Antibacterial, antifungal and nematicidal activities of rare earth ions. Biol. Trace Elem. Res., 2016, 174(2), 464-470.
[http://dx.doi.org/10.1007/s12011-016-0727-y] [PMID: 27147430]
[187]
Ekta; Utreja, D.; Dhillon, N.K. Synthesis of metal complexes of Schiff bases and their nematicidal activity against root knot nematode Meloidogyne incognita. Lett. Org. Chem., 2014, 11(2), 116-125.
[http://dx.doi.org/10.2174/15701786113106660076]
[188]
Chandra, S.; Gupta, R.; Gupta, N.; Bawa, S.S. Transistion metal chemistryThe chemistry of macrocyclic ligand complexes; Lindoy, L.F., Ed.; Cambridge University Press: Cambridge, 2006.
[189]
Cromwell, W.A.; Yang, J.; Starr, J.L.; Jo, Y.K. Nematicidal effects of silver nanoparticles on root knot nematode in Bermudagrass. J. Nematol., 2014, 46(3), 261-266.
[PMID: 25275999]
[190]
Lim, D.; Roh, J.; Eom, H.; Choi, J.Y.; Hyun, J.; Choi, J. Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ. Toxicol. Chem., 2012, 31(3), 585-592.
[http://dx.doi.org/10.1002/etc.1706] [PMID: 22128035]
[191]
Roh, J.; Sim, S.J.; Yi, J.; Park, K.; Chung, K.H.; Ryu, D.; Choi, J. Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ. Sci. Technol., 2009, 43(10), 3933-3940.
[http://dx.doi.org/10.1021/es803477u] [PMID: 19544910]
[192]
Hamed, S.M.; Hagag, E.S.; Abd El-Raouf, N. Green production of silver nanoparticles, evaluation of their nematicidal activity against Meloidogyne javanica and their impact on growth of faba bean. Beni-Suef Univ. J. Basic Applied Sci., 2019, 8(9), 1-12.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy