Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

KCa-Related Neurological Disorders: Phenotypic Spectrum and Therapeutic Indications

Author(s): Aqeela Zahra, Ru Liu, Wenzhe Han, Hui Meng, Qun Wang, YunFu Wang, Susan L. Campbell and Jianping Wu*

Volume 21, Issue 7, 2023

Published on: 19 December, 2022

Page: [1504 - 1518] Pages: 15

DOI: 10.2174/1570159X21666221208091805

Price: $65

Abstract

Although potassium channelopathies have been linked to a wide range of neurological conditions, the underlying pathogenic mechanism is not always clear, and a systematic summary of clinical manifestation is absent. Several neurological disorders have been associated with alterations of calcium-activated potassium channels (KCa channels), such as loss- or gain-of-function mutations, post-transcriptional modification, etc. Here, we outlined the current understanding of the molecular and cellular properties of three subtypes of KCa channels, including big conductance KCa channels (BK), small conductance KCa channels (SK), and the intermediate conductance KCa channels (IK). Next, we comprehensively reviewed the loss- or gain-of-function mutations of each KCa channel and described the corresponding mutation sites in specific diseases to broaden the phenotypic-genotypic spectrum of KCa-related neurological disorders. Moreover, we reviewed the current pharmaceutical strategies targeting KCa channels in KCa-related neurological disorders to provide new directions for drug discovery in anti-seizure medication.

Graphical Abstract

[1]
Nappi, P.; Miceli, F.; Soldovieri, M.V.; Ambrosino, P.; Barrese, V.; Taglialatela, M. Epileptic channelopathies caused by neuronal Kv7 (KCNQ) channel dysfunction. Pflugers Arch., 2020, 472(7), 881-898.
[http://dx.doi.org/10.1007/s00424-020-02404-2] [PMID: 32506321]
[2]
Niday, Z.; Tzingounis, A.V. Potassium channel gain of function in epilepsy: An unresolved paradox. Neuroscientist, 2018, 24(4), 368-380.
[http://dx.doi.org/10.1177/1073858418763752] [PMID: 29542386]
[3]
Kole, M.H.P.; Stuart, G.J. Signal processing in the axon initial segment. Neuron, 2012, 73(2), 235-247.
[http://dx.doi.org/10.1016/j.neuron.2012.01.007] [PMID: 22284179]
[4]
Gutman, G.A.; Chandy, K.G.; Grissmer, S.; Lazdunski, M.; Mckinnon, D.; Pardo, L.A.; Robertson, G.A.; Rudy, B.; Sanguinetti, M.C.; Stühmer, W.; Wang, X. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol. Rev., 2005, 57(4), 473-508.
[http://dx.doi.org/10.1124/pr.57.4.10] [PMID: 16382104]
[5]
Barcia, G.; Fleming, M.R.; Deligniere, A.; Gazula, V.R.; Brown, M.R.; Langouet, M.; Chen, H.; Kronengold, J.; Abhyankar, A.; Cilio, R.; Nitschke, P.; Kaminska, A.; Boddaert, N.; Casanova, J.L.; Desguerre, I.; Munnich, A.; Dulac, O.; Kaczmarek, L.K.; Colleaux, L.; Nabbout, R. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat. Genet., 2012, 44(11), 1255-1259.
[http://dx.doi.org/10.1038/ng.2441] [PMID: 23086397]
[6]
Sah, P.; Louise Faber, E.S. Channels underlying neuronal calcium-activated potassium currents. Prog. Neurobiol., 2002, 66(5), 345-353.
[http://dx.doi.org/10.1016/S0301-0082(02)00004-7] [PMID: 12015199]
[7]
D’Adamo, M.C.; Catacuzzeno, L.; Di Giovanni, G.; Franciolini, F.; Pessia, M. K+ channelepsy: Progress in the neurobiology of potassium channels and epilepsy. Front. Cell. Neurosci., 2013, 7, 134.
[http://dx.doi.org/10.3389/fncel.2013.00134] [PMID: 24062639]
[8]
Zang, K.; Zhang, Y.; Hu, J.; Wang, Y. The large conductance calcium-and voltage-activated potassium channel (BK) and epilepsy. CNS Neurol Disord Targets (Formerly. Curr. Drug Targets CNS Neurol. Disord., 2018, 17, 248-254.
[http://dx.doi.org/10.2174/1871527317666180404104055] [PMID: 29623857]
[9]
Marty, A.; Neher, E. Potassium channels in cultured bovine adrenal chromaffin cells. J. Physiol., 1985, 367(1), 117-141.
[http://dx.doi.org/10.1113/jphysiol.1985.sp015817] [PMID: 2414437]
[10]
Contet, C.; Goulding, S.P.; Kuljis, D.A.; Barth, A.L. BK channels in the central nervous system. Int. Rev. Neurobiol., 2016, 128, 281-342.
[http://dx.doi.org/10.1016/bs.irn.2016.04.001] [PMID: 27238267]
[11]
Surguchev, A.; Bai, J.P.; Joshi, P.; Navaratnam, D. Hair cell BK channels interact with RACK1, and PKC increases its expression on the cell surface by indirect phosphorylation. Am. J. Physiol. Cell Physiol., 2012, 303(2), C143-C150.
[http://dx.doi.org/10.1152/ajpcell.00062.2012] [PMID: 22538239]
[12]
Yan, J.; Aldrich, R.W. LRRC26 auxiliary protein allows BK channel activation at resting voltage without calcium. Nature, 2010, 466(7305), 513-516.
[http://dx.doi.org/10.1038/nature09162] [PMID: 20613726]
[13]
Yuan, P.; Leonetti, M.D.; Hsiung, Y.; MacKinnon, R. Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel. Nature, 2012, 481(7379), 94-97.
[http://dx.doi.org/10.1038/nature10670] [PMID: 22139424]
[14]
Belyaeva, E.A.; Sokolova, T.V. Mechanism(s) of modulation of Cd2+-induced cytotoxcity by paxilline and NS1619/NS004: An involvement of Ca2+-activated big-conductance potassium channel and/or respiratory chain of mitochondria? Zh. Evol. Biokhim. Fiziol., 2020, 56(7), 737.
[http://dx.doi.org/10.31857/S0044452920071523]
[15]
Cui, J. BK channel gating mechanisms: Progresses toward a better understanding of 533 variants linked neurological diseases. Front Physiol, 2021, 1867.
[16]
Liu, J.; Ye, J.; Zou, X.; Xu, Z.; Feng, Y.; Zou, X.; Chen, Z.; Li, Y.; Cang, Y. CRL4ACRBN E3 ubiquitin ligase restricts BK channel activity and prevents epileptogenesis. Nat. Commun., 2014, 5(1), 3924.
[http://dx.doi.org/10.1038/ncomms4924]
[17]
Choi, T.Y.; Lee, S.H.; Kim, Y.J.; Bae, J.R.; Lee, K.M.; Jo, Y.; Kim, S.J.; Lee, A.R.; Choi, S.; Choi, L.M.; Bang, S.; Song, M.R.; Chung, J.; Lee, K.J.; Kim, S.H.; Park, C.S.; Choi, S.Y. Cereblon maintains synaptic and cognitive function by regulating BK channel. J. Neurosci., 2018, 38(14), 3571-3583.
[http://dx.doi.org/10.1523/JNEUROSCI.2081-17.2018] [PMID: 29530986]
[18]
Hu, H.; Shao, L.R.; Chavoshy, S.; Gu, N.; Trieb, M.; Behrens, R.; Laake, P.; Pongs, O.; Knaus, H.G.; Ottersen, O.P.; Storm, J.F. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J. Neurosci., 2001, 21(24), 9585-9597.
[http://dx.doi.org/10.1523/JNEUROSCI.21-24-09585.2001] [PMID: 11739569]
[19]
Sun, AX; Yuan, Q; Fukuda, M; Yu, W; Yan, H; Lim, GGY Potassium channel dysfunction in human neuronal models of Angelman syndrome. Science (80- ), 2019, 366, 1486-1492.
[http://dx.doi.org/10.1126/science.aav5386]
[20]
Nikitin, E.S.; Vinogradova, L.V. Potassium channels as prominent targets and tools for the treatment of epilepsy. Expert Opin. Ther. Targets, 2021, 25(3), 223-235.
[http://dx.doi.org/10.1080/14728222.2021.1908263] [PMID: 33754930]
[21]
Zhang, J.; Yan, J. Regulation of BK channels by auxiliary Î3 subunits. Front. Physiol., 2014, 5, 401.
[http://dx.doi.org/10.3389/fphys.2014.00401] [PMID: 25360119]
[22]
Fan, C.; Sukomon, N.; Flood, E.; Rheinberger, J.; Allen, T.W.; Nimigean, C.M. Ball-and-chain inactivation in a calcium-gated potassium channel. Nature, 2020, 580(7802), 288-293.
[http://dx.doi.org/10.1038/s41586-020-2116-0] [PMID: 32269335]
[23]
Toro, L.; Li, M.; Zhang, Z.; Singh, H.; Wu, Y.; Stefani, E. MaxiK channel and cell signalling. Pflugers Arch., 2014, 466(5), 875-886.
[http://dx.doi.org/10.1007/s00424-013-1359-0] [PMID: 24077696]
[24]
Kyle, B.D.; Ahrendt, E.; Braun, A.P.; Braun, J.E.A. The large conductance, calcium-activated K+ (BK) channel is regulated by cysteine string protein. Sci. Rep., 2013, 3(1), 2447.
[http://dx.doi.org/10.1038/srep02447] [PMID: 23945775]
[25]
García-Junco-Clemente, P.; Cantero, G.; Gómez-Sánchez, L.; Linares-Clemente, P.; Martínez-López, J.A.; Luján, R.; Fernández-Chacón, R. Cysteine string protein-α prevents activity-dependent degeneration in GABAergic synapses. J. Neurosci., 2010, 30(21), 7377-7391.
[http://dx.doi.org/10.1523/JNEUROSCI.0924-10.2010] [PMID: 20505105]
[26]
Chamberlain, L.H.; Burgoyne, R.D. Cysteine-string protein. J. Neurochem., 2000, 74(5), 1781-1789.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0741781.x] [PMID: 10800920]
[27]
Ahrendt, E.; Kyle, B.; Braun, A.P.; Braun, J.E.A. Cysteine string protein limits expression of the large conductance, calcium-activated K+ (BK) channel. PLoS One, 2014, 9(1), e86586.
[http://dx.doi.org/10.1371/journal.pone.0086586] [PMID: 24475152]
[28]
Benton, M.D.; Lewis, A.H.; Bant, J.S.; Raman, I.M. Iberiotoxin-sensitive and -insensitive BK currents in Purkinje neuron somata. J. Neurophysiol., 2013, 109(10), 2528-2541.
[http://dx.doi.org/10.1152/jn.00127.2012] [PMID: 23446695]
[29]
Graber, D.; Imagawa, E.; Miyake, N.; Matsumoto, N.; Miyatake, S.; Graber, M. Polymicrogyria in a child with KCNMA1-related channelopathy. Brain Dev., 2021.
[PMID: 34674900]
[30]
Du, W.; Bautista, J.F.; Yang, H.; Diez-Sampedro, A.; You, S.A.; Wang, L.; Kotagal, P.; Lüders, H.O.; Shi, J.; Cui, J.; Richerson, G.B.; Wang, Q.K. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat. Genet., 2005, 37(7), 733-738.
[http://dx.doi.org/10.1038/ng1585] [PMID: 15937479]
[31]
Li, X.; Poschmann, S.; Chen, Q.; Fazeli, W.; Oundjian, N.J.; Snoeijen-Schouwenaars, F.M.; Fricke, O.; Kamsteeg, E.J.; Willemsen, M.; Wang, Q.K. De novo BK channel variant causes epilepsy by affecting voltage gating but not Ca2+ sensitivity. Eur. J. Hum. Genet., 2018, 26(2), 220-229.
[http://dx.doi.org/10.1038/s41431-017-0073-3] [PMID: 29330545]
[32]
Liang, L.; Li, X.; Moutton, S.; Schrier Vergano, S.A.; Cogné, B.; Saint-Martin, A.; Hurst, A.C.E.; Hu, Y.; Bodamer, O.; Thevenon, J.; Hung, C.Y.; Isidor, B.; Gerard, B.; Rega, A.; Nambot, S.; Lehalle, D.; Duffourd, Y.; Thauvin-Robinet, C.; Faivre, L.; Bézieau, S.; Dure, L.S.; Helbling, D.C.; Bick, D.; Xu, C.; Chen, Q.; Mancini, G.M.S.; Vitobello, A.; Wang, Q.K. De novo loss-of-function KCNMA1 variants are associated with a new multiple malformation syndrome and a broad spectrum of developmental and neurological phenotypes. Hum. Mol. Genet., 2019, 28(17), 2937-2951.
[http://dx.doi.org/10.1093/hmg/ddz117] [PMID: 31152168]
[33]
Mameli, C.; Cazzola, R.; Spaccini, L.; Calcaterra, V.; Macedoni, M.; La Verde, P.A.; D’Auria, E.; Verduci, E.; Lista, G.; Zuccotti, G.V. Neonatal diabetes in patients affected by liang-wang syndrome carrying KCnma1 variant p.(Gly375Arg) suggest a potential role of Ca2+ and voltage-activated K+ channel activity in human insulin secretion. Curr. Issues Mol. Biol., 2021, 43(2), 1036-1042.
[http://dx.doi.org/10.3390/cimb43020073] [PMID: 34563042]
[34]
Tabarki, B.; AlMajhad, N.; AlHashem, A.; Shaheen, R.; Alkuraya, F.S. Homozygous KCNMA1 mutation as a cause of cerebellar atrophy, developmental delay and seizures. Hum. Genet., 2016, 135(11), 1295-1298.
[http://dx.doi.org/10.1007/s00439-016-1726-y] [PMID: 27567911]
[35]
Carvalho-de-Souza, J.L.; Kubota, T.; Du, X.; Latorre, R.; Gomez, C.M.; Bezanilla, F. A missense mutation in the selectivity filter of BK affects the channel’s potassium conductance. Biophys. J., 2016, 110(3), 449a.
[http://dx.doi.org/10.1016/j.bpj.2015.11.2412]
[36]
Yeşil, G.; Aralaşmak, A.; Akyüz, E.; İçağasıoğlu, D.; Uygur Şahin, T.; Bayram, Y. Expanding the phenotype of homozygous KCNMA1 mutations; dyskinesia, epilepsy, intellectual disability, cerebellar and corticospinal tract atrophy. Balkan Med. J., 2018, 35(4), 336-339.
[http://dx.doi.org/10.4274/balkanmedj.2017.0986] [PMID: 29545233]
[37]
Bailey, C.S.; Moldenhauer, H.J.; Park, S.M.; Keros, S.; Meredith, A.L. KCNMA1-linked channelopathy. J. Gen. Physiol., 2019, 151(10), 1173-1189.
[http://dx.doi.org/10.1085/jgp.201912457] [PMID: 31427379]
[38]
Kendler, K.S.; Kalsi, G.; Holmans, P.A.; Sanders, A.R.; Aggen, S.H.; Dick, D.M.; Aliev, F.; Shi, J.; Levinson, D.F.; Gejman, P.V. Genomewide association analysis of symptoms of alcohol dependence in the molecular genetics of schizophrenia (MGS2) control sample. Alcohol. Clin. Exp. Res., 2011, 35(5), 963-975.
[http://dx.doi.org/10.1111/j.1530-0277.2010.01427.x] [PMID: 21314694]
[39]
Kreifeldt, M.; Cates-Gatto, C.; Roberts, A.J.; Contet, C. BK channel β1 subunit contributes to behavioral adaptations elicited by chronic intermittent ethanol exposure. Alcohol. Clin. Exp. Res., 2015, 39(12), 2394-2402.
[http://dx.doi.org/10.1111/acer.12911] [PMID: 26578345]
[40]
Beecham, G.W.; Hamilton, K.; Naj, A.C.; Martin, E.R.; Huentelman, M.; Myers, A.J.; Corneveaux, J.J.; Hardy, J.; Vonsattel, J.P.; Younkin, S.G.; Bennett, D.A.; De Jager, P.L.; Larson, E.B.; Crane, P.K.; Kamboh, M.I.; Kofler, J.K.; Mash, D.C.; Duque, L.; Gilbert, J.R.; Gwirtsman, H.; Buxbaum, J.D.; Kramer, P.; Dickson, D.W.; Farrer, L.A.; Frosch, M.P.; Ghetti, B.; Haines, J.L.; Hyman, B.T.; Kukull, W.A.; Mayeux, R.P.; Pericak-Vance, M.A.; Schneider, J.A.; Trojanowski, J.Q.; Reiman, E.M.; Schellenberg, G.D.; Montine, T.J. Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet., 2014, 10(9), e1004606.
[http://dx.doi.org/10.1371/journal.pgen.1004606] [PMID: 25188341]
[41]
Lorenz, S.; Heils, A.; Kasper, J.M.; Sander, T. Allelic association of a truncation mutation of theKCNMB3 gene with idiopathic generalized epilepsy. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2007, 144B(1), 10-13.
[http://dx.doi.org/10.1002/ajmg.b.30369] [PMID: 16958040]
[42]
Poulsen, A.N.; Wulf, H.; Hay-Schmidt, A.; Jansen-Olesen, I.; Olesen, J.; Klaerke, D.A. Differential expression of BK channel isoforms and β-subunits in rat neuro-vascular tissues. Biochim. Biophys. Acta Biomembr., 2009, 1788(2), 380-389.
[http://dx.doi.org/10.1016/j.bbamem.2008.10.001] [PMID: 18992709]
[43]
Riazi, M.A.; Brinkman-Mills, P.; Johnson, A.; Naylor, S.L.; Minoshima, S.; Shimizu, N.; Baldini, A.; McDermid, H.E. Identification of a putative regulatory subunit of a calcium-activated potassium channel in the dup(3q) syndrome region and a related sequence on 22q11.2. Genomics, 1999, 62(1), 90-94.
[http://dx.doi.org/10.1006/geno.1999.5975] [PMID: 10585773]
[44]
Martin, G.E.; Hendrickson, L.M.; Penta, K.L.; Friesen, R.M.; Pietrzykowski, A.Z.; Tapper, A.R.; Treistman, S.N. Identification of a BK channel auxiliary protein controlling molecular and behavioral tolerance to alcohol. Proc. Natl. Acad. Sci. USA, 2008, 105(45), 17543-17548.
[http://dx.doi.org/10.1073/pnas.0801068105] [PMID: 18981408]
[45]
Brenner, R.; Chen, Q.H.; Vilaythong, A.; Toney, G.M.; Noebels, J.L.; Aldrich, R.W. BK channel β4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures. Nat. Neurosci., 2005, 8(12), 1752-1759.
[http://dx.doi.org/10.1038/nn1573] [PMID: 16261134]
[46]
Cavalleri, G.L.; Weale, M.E.; Shianna, K.V.; Singh, R.; Lynch, J.M.; Grinton, B.; Szoeke, C.; Murphy, K.; Kinirons, P.; O’Rourke, D.; Ge, D.; Depondt, C.; Claeys, K.G.; Pandolfo, M.; Gumbs, C.; Walley, N.; McNamara, J.; Mulley, J.C.; Linney, K.N.; Sheffield, L.J.; Radtke, R.A.; Tate, S.K.; Chissoe, S.L.; Gibson, R.A.; Hosford, D.; Stanton, A.; Graves, T.D.; Hanna, M.G.; Eriksson, K.; Kantanen, A.M.; Kalviainen, R.; O’Brien, T.J.; Sander, J.W.; Duncan, J.S.; Scheffer, I.E.; Berkovic, S.F.; Wood, N.W.; Doherty, C.P.; Delanty, N.; Sisodiya, S.M.; Goldstein, D.B. Multicentre search for genetic susceptibility loci in sporadic epilepsy syndrome and seizure types: A case-control study. Lancet Neurol., 2007, 6(11), 970-980.
[http://dx.doi.org/10.1016/S1474-4422(07)70247-8] [PMID: 17913586]
[47]
Jafari, A.; Noursadeghi, E.; Khodagholi, F.; Saghiri, R.; Sauve, R.; Aliaghaei, A.; Eliassi, A. Brain mitochondrial ATP-insensitive large conductance Ca+2-activated K+ channel properties are altered in a rat model of amyloid-β neurotoxicity. Exp. Neurol., 2015, 269, 8-16.
[http://dx.doi.org/10.1016/j.expneurol.2014.12.024] [PMID: 25828534]
[48]
Zhang, Z.B.; Tian, M.Q.; Gao, K.; Jiang, Y.W.; Wu, Y. De novo KCNMA1 mutations in children with early-onset paroxysmal dyskinesia and developmental delay. Mov. Disord., 2015, 30(9), 1290-1292.
[http://dx.doi.org/10.1002/mds.26216] [PMID: 26195193]
[49]
N'Gouemo, P. Targeting BK (big potassium) channels in epilepsy. Expert Opin Ther Targets., 2011, 15(11), 1283-1295.
[http://dx.doi.org/10.1517/14728222.2011.620607] [PMID: 21923633]
[50]
Salkoff, L.; Butler, A.; Ferreira, G.; Santi, C.; Wei, A. High-conductance potassium channels of the SLO family. Nat. Rev. Neurosci., 2006, 7(12), 921-931.
[http://dx.doi.org/10.1038/nrn1992] [PMID: 17115074]
[51]
Deng, P.Y.; Rotman, Z.; Blundon, J.A.; Cho, Y.; Cui, J.; Cavalli, V.; Zakharenko, S.S.; Klyachko, V.A. FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels. Neuron, 2013, 77(4), 696-711.
[http://dx.doi.org/10.1016/j.neuron.2012.12.018] [PMID: 23439122]
[52]
Xia, X.M.; Zeng, X.; Lingle, C.J. Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature, 2002, 418(6900), 880-884.
[http://dx.doi.org/10.1038/nature00956] [PMID: 12192411]
[53]
Moczydlowski, E.G. BK channel news: Full coverage on the calcium bowl. J. Gen. Physiol., 2004, 123(5), 471-473.
[http://dx.doi.org/10.1085/jgp.200409069] [PMID: 15111642]
[54]
Yuan, P; Leonetti, MD; Pico, AR; Hsiung, Y; MacKinnon, R Structure of the human BK 636 channel Ca2+-activation apparatus at 3.0 Å resolution. Science (80- ), 2010, 329, 182-186.
[55]
Lu, R.; Alioua, A.; Kumar, Y.; Eghbali, M.; Stefani, E.; Toro, L. MaxiK channel partners: Hysiological impact. J. Physiol., 2006, 570(1), 65-72.
[http://dx.doi.org/10.1113/jphysiol.2005.098913] [PMID: 16239267]
[56]
Hou, S.; Xu, R.; Heinemann, S.H.; Hoshi, T. The RCK1 high-affinity Ca2+ sensor confers carbon monoxide sensitivity to Slo1 BK channels. Proc. Natl. Acad. Sci. USA, 2008, 105(10), 4039-4043.
[http://dx.doi.org/10.1073/pnas.0800304105] [PMID: 18316727]
[57]
Jiang, Y.; Lee, A.; Chen, J.; Cadene, M.; Chait, B.T.; MacKinnon, R. Crystal structure and mechanism of a calcium-gated potassium channel. Nature, 2002, 417(6888), 515-522.
[http://dx.doi.org/10.1038/417515a] [PMID: 12037559]
[58]
Nishida, M.; Cadene, M.; Chait, B.T.; MacKinnon, R. Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J., 2007, 26(17), 4005-4015.
[http://dx.doi.org/10.1038/sj.emboj.7601828] [PMID: 17703190]
[59]
Niu, X.; Qian, X.; Magleby, K.L. Linker-gating ring complex as passive spring and Ca2+-dependent machine for a voltage- and Ca2+-activated potassium channel. Neuron, 2004, 42(5), 745-756.
[http://dx.doi.org/10.1016/j.neuron.2004.05.001] [PMID: 15182715]
[60]
Schreiber, M.; Salkoff, L. A novel calcium-sensing domain in the BK channel. Biophys. J., 1997, 73(3), 1355-1363.
[http://dx.doi.org/10.1016/S0006-3495(97)78168-2] [PMID: 9284303]
[61]
Zeng, X.H.; Xia, X.M.; Lingle, C.J. Divalent cation sensitivity of BK channel activation supports the existence of three distinct binding sites. J. Gen. Physiol., 2005, 125(3), 273-286.
[http://dx.doi.org/10.1085/jgp.200409239] [PMID: 15738049]
[62]
Yang, J.; Krishnamoorthy, G.; Saxena, A.; Zhang, G.; Shi, J.; Yang, H.; Delaloye, K.; Sept, D.; Cui, J. An epilepsy/dyskinesia-associated mutation enhances BK channel activation by potentiating Ca2+ sensing. Neuron, 2010, 66(6), 871-883.
[http://dx.doi.org/10.1016/j.neuron.2010.05.009] [PMID: 20620873]
[63]
Magidovich, E.; Yifrach, O. Conserved gating hinge in ligand- and voltage-dependent K+ channels. Biochemistry, 2004, 43(42), 13242-13247.
[http://dx.doi.org/10.1021/bi048377v] [PMID: 15491131]
[64]
Tao, X.; MacKinnon, R. Molecular structures of the human Slo1 K+ channel in complex with β4. eLife, 2019, 8, e51409.
[http://dx.doi.org/10.7554/eLife.51409]
[65]
Zhou, Y.; Xia, X.M.; Lingle, C.J. The functionally relevant site for paxilline inhibition of BK channels. Proc. Natl. Acad. Sci. USA, 2020, 117(2), 1021-1026.
[http://dx.doi.org/10.1073/pnas.1912623117] [PMID: 31879339]
[66]
Liu, R.; Zhang, Z.; Liu, H.; Hou, P.; Lang, J.; Wang, S.; Yan, H.; Li, P.; Huang, Z.; Wu, H.; Rong, M.; Huang, J.; Wang, H.; Lv, L.; Qiu, M.; Ding, J.; Lai, R. Human β-defensin 2 is a novel opener of Ca2+-activated potassium channels and induces vasodilation and hypotension in monkeys. Hypertension, 2013, 62(2), 415-425.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.01076] [PMID: 23734009]
[67]
Hoshi, T.; Heinemann, S.H. Modulation of BK channels by small endogenous molecules and pharmaceutical channel openers. Int. Rev. Neurobiol., 2016, 128, 193-237.
[http://dx.doi.org/10.1016/bs.irn.2016.03.020] [PMID: 27238265]
[68]
Horrigan, F.T.; Heinemann, S.H.; Hoshi, T. Heme regulates allosteric activation of the Slo1 BK channel. J. Gen. Physiol., 2005, 126(1), 7-21.
[http://dx.doi.org/10.1085/jgp.200509262] [PMID: 15955873]
[69]
Hou, S.; Heinemann, S.H.; Hoshi, T. Modulation of BKCa channel gating by endogenous signaling molecules. Physiology (Bethesda), 2009, 24(1), 26-35.
[http://dx.doi.org/10.1152/physiol.00032.2008] [PMID: 19196649]
[70]
Valverde, MA; Rojas, P; Amigo, J; Cosmelli, D; Orio, P; Bahamonde, MI Acute activation of Maxi-K channels (hSlo) by estradiol binding to the β subunit. Science (80- ), 1999, 285, 1929-1931.
[71]
McManus, O.B.; Harris, G.H.; Giangiacomo, K.M.; Feigenbaum, P.; Reuben, J.P.; Addy, M.E.; Burka, J.F.; Kaczorowski, G.J.; Garcia, M.L. An activator of calcium-dependent potassium channels isolated from a medicinal herb. Biochemistry, 1993, 32(24), 6128-6133.
[http://dx.doi.org/10.1021/bi00075a002] [PMID: 7685635]
[72]
Nardi, A.; Calderone, V.; Chericoni, S.; Morelli, I. Natural modulators of large-conductance calcium-activated potassium channels. Planta Med., 2003, 69(10), 885-892.
[http://dx.doi.org/10.1055/s-2003-45095] [PMID: 14648389]
[73]
Lakshmikanthcharan, S.; Chaitanya, J.S.K.; Nandakumar, S.M.; Nandakumar, S.M. Verapamil as an adjuvant treatment for drug-resistant epilepsy. Indian J. Crit. Care Med., 2018, 22(9), 680-682.
[http://dx.doi.org/10.4103/ijccm.IJCCM_250_18] [PMID: 30294138]
[74]
Mehranfard, N.; Gholamipour-Badie, H.; Motamedi, F.; Janahmadi, M.; Naderi, N. Long-term increases in BK potassium channel underlie increased action potential firing in dentate granule neurons following pilocarpine-induced status epilepticus in rats. Neurosci. Lett., 2015, 585, 88-91.
[http://dx.doi.org/10.1016/j.neulet.2014.11.041] [PMID: 25434869]
[75]
Roy, S.; Morayo Akande, A.; Large, R.J.; Webb, T.I.; Camarasu, C.; Sergeant, G.P.; McHale, N.G.; Thornbury, K.D.; Hollywood, M.A. Structure-activity relationships of a novel group of large-conductance Ca2+-activated K(+) (BK) channel modulators: The GoSlo-SR family. ChemMedChem, 2012, 7(10), 1763-1769.
[http://dx.doi.org/10.1002/cmdc.201200321] [PMID: 22930560]
[76]
Cheney, J.A.; Weisser, J.D.; Bareyre, F.M.; Laurer, H.L.; Saatman, K.E.; Raghupathi, R.; Gribkoff, V.; Starrett, J.E., Jr; McIntosh, T.K. The maxi-K channel opener BMS-204352 attenuates regional cerebral edema and neurologic motor impairment after experimental brain injury. J. Cereb. Blood Flow Metab., 2001, 21(4), 396-403.
[http://dx.doi.org/10.1097/00004647-200104000-00008] [PMID: 11323525]
[77]
Bentzen, B.H.; Nardi, A.; Calloe, K.; Madsen, L.S.; Olesen, S.P.; Grunnet, M. The small molecule NS11021 is a potent and specific activator of Ca2+-activated big-conductance K+ channels. Mol. Pharmacol., 2007, 72(4), 1033-1044.
[http://dx.doi.org/10.1124/mol.107.038331] [PMID: 17636045]
[78]
Allen, D.; Bond, C.T.; Luján, R.; Ballesteros-Merino, C.; Lin, M.T.; Wang, K.; Klett, N.; Watanabe, M.; Shigemoto, R.; Stackman, R.W., Jr; Maylie, J.; Adelman, J.P. The SK2-long isoform directs synaptic localization and function of SK2-containing channels. Nat. Neurosci., 2011, 14(6), 744-749.
[http://dx.doi.org/10.1038/nn.2832] [PMID: 21602822]
[79]
Pedarzani, P.; Stocker, M. Molecular and cellular basis of small and intermediate-conductance, calcium-activated potassium channel function in the brain. Cell. Mol. Life Sci., 2008, 65(20), 3196-3217.
[http://dx.doi.org/10.1007/s00018-008-8216-x] [PMID: 18597044]
[80]
Sarpal, D.; Koenig, J.I.; Adelman, J.P.; Brady, D.; Prendeville, L.C.; Shepard, P.D. Regional distribution of SK3 mRNA-containing neurons in the adult and adolescent rat ventral midbrain and their relationship to dopamine-containing cells. Synapse, 2004, 53(2), 104-113.
[http://dx.doi.org/10.1002/syn.20042] [PMID: 15170822]
[81]
Stocker, M.; Pedarzani, P. Differential distribution of three Ca2+-activated K(+) channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol. Cell. Neurosci., 2000, 15(5), 476-493.
[http://dx.doi.org/10.1006/mcne.2000.0842] [PMID: 10833304]
[82]
Adelman, J.P.; Maylie, J.; Sah, P. Small-conductance Ca2+-activated K+ channels: Form and function. Annu. Rev. Physiol., 2012, 74(1), 245-269.
[http://dx.doi.org/10.1146/annurev-physiol-020911-153336] [PMID: 21942705]
[83]
Bond, C.T.; Maylie, J.; Adelman, J.P. Small-conductance calcium-activated potassium channels. Ann. N.Y. Acad. Sci., 1999, 868(1), 370-378.
[http://dx.doi.org/10.1111/j.1749-6632.1999.tb11298.x] [PMID: 10414306]
[84]
Stackman, R.W.; Hammond, R.S.; Linardatos, E.; Gerlach, A.; Maylie, J.; Adelman, J.P.; Tzounopoulos, T. Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. J. Neurosci., 2002, 22(23), 10163-10171.
[http://dx.doi.org/10.1523/JNEUROSCI.22-23-10163.2002] [PMID: 12451117]
[85]
Zhang, Z.; Shi, G.; Liu, Y.; Xing, H.; Kabakov, A.Y.; Zhao, A.S.; Agbortoko, V.; Kim, J.; Singh, A.K.; Koren, G.; Harrington, E.O.; Sellke, F.W.; Feng, J. Coronary endothelial dysfunction prevented by small-conductance calcium-activated potassium channel activator in mice and patients with diabetes. J. Thorac. Cardiovasc. Surg., 2020, 160(6), e263-e280.
[http://dx.doi.org/10.1016/j.jtcvs.2020.01.078] [PMID: 32199659]
[86]
Vick, K.A., IV; Guidi, M.; Stackman, R.W., Jr. in vivo pharmacological manipulation of small conductance Ca2+-activated K+ channels influences motor behavior, object memory and fear conditioning. Neuropharmacology, 2010, 58(3), 650-659.
[http://dx.doi.org/10.1016/j.neuropharm.2009.11.008] [PMID: 19944112]
[87]
Kushwah, N.; Jain, V.; Kadam, M.; Kumar, R.; Dheer, A.; Prasad, D.; Kumar, B.; Khan, N. Ginkgo biloba L. Prevents hypobaric hypoxia-induced spatial memory deficit through small conductance calcium-activated potassium channel inhibition: The role of ERK/] CaMKII/CREB signaling. Front. Pharmacol., 2021, 12, 669701.
[http://dx.doi.org/10.3389/fphar.2021.669701] [PMID: 34326768]
[88]
Hammond, R.S.; Bond, C.T.; Strassmaier, T.; Jennifer Ngo-Anh, T.; Adelman, J.P.; Maylie, J.; Stackman, R.W. Small-conductance Ca2+-activated K+ channel type 2 (SK2) modulates hippocampal learning, memory, and synaptic plasticity. J. Neurosci., 2006, 26(6), 1844-1853.
[http://dx.doi.org/10.1523/JNEUROSCI.4106-05.2006] [PMID: 16467533]
[89]
Jenkins, D.P.; Strøbæk, D.; Hougaard, C.; Jensen, M.L.; Hummel, R.; Sørensen, U.S.; Christophersen, P.; Wulff, H. Negative gating modulation by (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphthylamine (NS8593) depends on residues in the inner pore vestibule: Pharmacological evidence of deep-pore gating of K(Ca)2 channels. Mol. Pharmacol., 2011, 79(6), 899-909.
[http://dx.doi.org/10.1124/mol.110.069807] [PMID: 21363929]
[90]
Singh, S.; Syme, C.A.; Singh, A.K.; Devor, D.C.; Bridges, R.J. Benzimidazolone activators of chloride secretion: Potential therapeutics for cystic fibrosis and chronic obstructive pulmonary disease. J. Pharmacol. Exp. Ther., 2001, 296(2), 600-611.
[PMID: 11160649]
[91]
Al Dera, H.; Alassiri, M.; Eleawa, S.M.; AlKhateeb, M.A.; Hussein, A.M.; Dallak, M.; Sakr, H.F.; Alqahtani, S.; Khalil, M.A. Melatonin improves memory deficits in rats with cerebral hypoperfusion, possibly, through decreasing the expression of small-conductance Ca2+-activated K+ channels. Neurochem. Res., 2019, 44(8), 1851-1868.
[http://dx.doi.org/10.1007/s11064-019-02820-6] [PMID: 31187398]
[92]
Ewin, S.E.; Morgan, J.W.; Niere, F.; McMullen, N.P.; Barth, S.H.; Almonte, A.G.; Raab-Graham, K.F.; Weiner, J.L. Chronic intermittent ethanol exposure selectively increases synaptic excitability in the ventral domain of the rat hippocampus. Neuroscience, 2019, 398, 144-157.
[http://dx.doi.org/10.1016/j.neuroscience.2018.11.028] [PMID: 30481568]
[93]
Fakira, A.K.; Portugal, G.S.; Carusillo, B.; Melyan, Z.; Morón, J.A. Increased small conductance calcium-activated potassium type 2 channel-mediated negative feedback on N-methyl-D-aspartate receptors impairs synaptic plasticity following context-dependent sensitization to morphine. Biol. Psychiatry, 2014, 75(2), 105-114.
[http://dx.doi.org/10.1016/j.biopsych.2013.04.026] [PMID: 23735878]
[94]
Ishikawa, M.; Mu, P.; Moyer, J.T.; Wolf, J.A.; Quock, R.M.; Davies, N.M.; Hu, X.; Schlüter, O.M.; Dong, Y. Homeostatic synapse-driven membrane plasticity in nucleus accumbens neurons. J. Neurosci., 2009, 29(18), 5820-5831.
[http://dx.doi.org/10.1523/JNEUROSCI.5703-08.2009] [PMID: 19420249]
[95]
Lee, C-H; MacKinnon, R Activation mechanism of a human SKcalmodulin channel complex elucidated by cryo-EM structures. Science (80), 2018, 360, 508-513.
[96]
Chandy, K.G.; Fantino, E.; Kalman, K.; Gutman, G.A.; Gargus, J.J. Gene encoding neuronal calcium-activated potassium channel has polymorphic CAG repeats, a candidate role in excitotoxic neurodegeneration and maps to 22q11-q13, critical region for bipolar disease and Schizophrenia disorder 4. Am. J. Hum. Genet., 1997, 61, A305-A305.
[97]
Blank, T.; Nijholt, I.; Kye, M.J.; Radulovic, J.; Spiess, J. Small-conductance, Ca2+-activated K+ channel SK3 generates age-related memory and LTP deficits. Nat. Neurosci., 2003, 6(9), 911-912.
[http://dx.doi.org/10.1038/nn1101] [PMID: 12883553]
[98]
Grube, S.; Gerchen, M.F.; Adamcio, B.; Pardo, L.A.; Martin, S.; Malzahn, D.; Papiol, S.; Begemann, M.; Ribbe, K.; Friedrichs, H.; Radyushkin, K.A.; Müller, M.; Benseler, F.; Riggert, J.; Falkai, P.; Bickeböller, H.; Nave, K.A.; Brose, N.; Stühmer, W.; Ehrenreich, H. A CAG repeat polymorphism of KCNN3 predicts SK3 channel function and cognitive performance in schizophrenia. EMBO Mol. Med., 2011, 3(6), 309-319.
[http://dx.doi.org/10.1002/emmm.201100135] [PMID: 21433290]
[99]
Hopf, F.W.; Bowers, M.S.; Chang, S.J.; Chen, B.T.; Martin, M.; Seif, T.; Cho, S.L.; Tye, K.; Bonci, A. Reduced nucleus accumbens SK channel activity enhances alcohol seeking during abstinence. Neuron, 2010, 65(5), 682-694.
[http://dx.doi.org/10.1016/j.neuron.2010.02.015] [PMID: 20223203]
[100]
Oliveira, M.S.; Skinner, F.; Arshadmansab, M.F.; Garcia, I.; Mello, C.F.; Knaus, H.G.; Ermolinsky, B.S.; Otalora, L.F.P.; Garrido-Sanabria, E.R. Altered expression and function of small-conductance (SK) Ca2+-activated K+ channels in pilocarpine-treated epileptic rats. Brain Res., 2010, 1348, 187-199.
[http://dx.doi.org/10.1016/j.brainres.2010.05.095] [PMID: 20553876]
[101]
Ritter-Makinson, S.; Clemente-Perez, A.; Higashikubo, B.; Cho, F.S.; Holden, S.S.; Bennett, E.; Chkhaidze, A.; Eelkman Rooda, O.H.J.; Cornet, M.C.; Hoebeek, F.E.; Yamakawa, K.; Cilio, M.R.; Delord, B.; Paz, J.T. Augmented reticular thalamic bursting and seizures in Scn1a-Dravet syndrome. Cell Rep., 2019, 26(1), 54-64.e6.
[http://dx.doi.org/10.1016/j.celrep.2018.12.018] [PMID: 30605686]
[102]
Miller, M.J.; Rauer, H.; Tomita, H.; Rauer, H.; Gargus, J.J.; Gutman, G.A.; Cahalan, M.D.; Chandy, K.G. Nuclear localization and dominant-negative suppression by a mutant SKCa3 N-terminal channel fragment identified in a patient with schizophrenia. J. Biol. Chem., 2001, 276(30), 27753-27756.
[http://dx.doi.org/10.1074/jbc.C100221200] [PMID: 11395478]
[103]
Hugues, M.; Romey, G.; Duval, D.; Vincent, J.P.; Lazdunski, M. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: Voltage-clamp and biochemical characterization of the toxin receptor. Proc. Natl. Acad. Sci. USA, 1982, 79(4), 1308-1312.
[http://dx.doi.org/10.1073/pnas.79.4.1308] [PMID: 6122211]
[104]
Mourre, C.; Fournier, C.; Soumireu-Mourat, B. Apamin, a blocker of the calcium-activated potassium channel, induces neurodegeneration of Purkinje cells exclusively. Brain Res., 1997, 778(2), 405-408.
[http://dx.doi.org/10.1016/S0006-8993(97)01165-7] [PMID: 9459560]
[105]
Pedarzani, P.; D’hoedt, D.; Doorty, K.B.; Wadsworth, J.D.F.; Joseph, J.S.; Jeyaseelan, K.; Kini, R.M.; Gadre, S.V.; Sapatnekar, S.M.; Stocker, M.; Strong, P.N. Tamapin, a venom peptide from the Indian red scorpion (Mesobuthus tamulus) that targets small conductance Ca2+-activated K+ channels and afterhyperpolarization currents in central neurons. J. Biol. Chem., 2002, 277(48), 46101-46109.
[http://dx.doi.org/10.1074/jbc.M206465200] [PMID: 12239213]
[106]
Strøbæk, D.; Hougaard, C.; Johansen, T.H.; Sørensen, U.S.; Nielsen, E.Ø.; Nielsen, K.S.; Taylor, R.D.T.; Pedarzani, P.; Christophersen, P. Inhibitory gating modulation of small conductance Ca2+-activated K+ channels by the synthetic compound (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphtylamine (NS8593) reduces afterhyperpolarizing current in hippocampal CA1 neurons. Mol. Pharmacol., 2006, 70(5), 1771-1782.
[http://dx.doi.org/10.1124/mol.106.027110] [PMID: 16926279]
[107]
Strøbæk, D.; Teuber, L.; Jørgensen, T.D.; Ahring, P.K.; Kjær, K.; Hansen, R.S.; Olesen, S.P.; Christophersen, P.; Skaaning-Jensen, B. Activation of human IK and SK Ca2+-activated K+ channels by NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime). Biochim. Biophys. Acta Biomembr., 2004, 1665(1-2), 1-5.
[http://dx.doi.org/10.1016/j.bbamem.2004.07.006] [PMID: 15471565]
[108]
Sankaranarayanan, A.; Raman, G.; Busch, C.; Schultz, T.; Zimin, P.I.; Hoyer, J.; Köhler, R.; Wulff, H. Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure. Mol. Pharmacol., 2009, 75(2), 281-295.
[http://dx.doi.org/10.1124/mol.108.051425] [PMID: 18955585]
[109]
Hougaard, C.; Eriksen, B.L.; Jørgensen, S.; Johansen, T.H.; Dyhring, T.; Madsen, L.S.; Strøbaek, D.; Christophersen, P. Selective positive modulation of the SK3 and SK2 subtypes of small conductance Ca2+ -activated K+ channels. Br. J. Pharmacol., 2007, 151(5), 655-665.
[http://dx.doi.org/10.1038/sj.bjp.0707281] [PMID: 17486140]
[110]
Shakkottai, V.G.; Chou, C.; Oddo, S.; Sailer, C.A.; Knaus, H.G.; Gutman, G.A.; Barish, M.E.; LaFerla, F.M.; Chandy, K.G. Enhanced neuronal excitability in the absence of neurodegeneration induces cerebellar ataxia. J. Clin. Invest., 2004, 113(4), 582-590.
[http://dx.doi.org/10.1172/JCI200420216] [PMID: 14966567]
[111]
Kasumu, A.W.; Hougaard, C.; Rode, F.; Jacobsen, T.A.; Sabatier, J.M.; Eriksen, B.L.; Strøbæk, D.; Liang, X.; Egorova, P.; Vorontsova, D.; Christophersen, P.; Rønn, L.C.B.; Bezprozvanny, I. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem. Biol., 2012, 19(10), 1340-1353.
[http://dx.doi.org/10.1016/j.chembiol.2012.07.013] [PMID: 23102227]
[112]
Cao, Y.J.; Dreixler, J.C.; Couey, J.J.; Houamed, K.M. Modulation of recombinant and native neuronal SK channels by the neuroprotective drug riluzole. Eur. J. Pharmacol., 2002, 449(1-2), 47-54.
[http://dx.doi.org/10.1016/S0014-2999(02)01987-8] [PMID: 12163105]
[113]
Bauer, C.K.; Schneeberger, P.E.; Kortüm, F.; Altmüller, J.; Santos-Simarro, F.; Baker, L.; Keller-Ramey, J.; White, S.M.; Campeau, P.M.; Gripp, K.W.; Kutsche, K. Gain-of-function mutations in KCNN3 encoding the small-conductance Ca2+-activated K+ channel SK3 cause Zimmermann-Laband syndrome. Am. J. Hum. Genet., 2019, 104(6), 1139-1157.
[http://dx.doi.org/10.1016/j.ajhg.2019.04.012] [PMID: 31155282]
[114]
Gripp, K.W.; Smithson, S.F.; Scurr, I.J.; Baptista, J.; Majumdar, A.; Pierre, G.; Williams, M.; Henderson, L.B.; Wentzensen, I.M.; McLaughlin, H.; Leeuwen, L.; Simon, M.E.H.; van Binsbergen, E.; Dinulos, M.B.P.; Kaplan, J.D.; McRae, A.; Superti-Furga, A.; Good, J.M.; Kutsche, K. Syndromic disorders caused by gain-of-function variants in KCNH1, KCNK4, and KCNN3—a subgroup of K+ channelopathies. Eur. J. Hum. Genet., 2021, 29(9), 1384-1395.
[http://dx.doi.org/10.1038/s41431-021-00818-9] [PMID: 33594261]
[115]
Koot, B.G.P.; Alders, M.; Verheij, J.; Beuers, U.; Cobben, J.M. A de novo mutation in KCNN3 associated with autosomal dominant idiopathic non-cirrhotic portal hypertension. J. Hepatol., 2016, 64(4), 974-977.
[http://dx.doi.org/10.1016/j.jhep.2015.11.027] [PMID: 26658685]
[116]
Rapetti-Mauss, R.; Lacoste, C.; Picard, V.; Guitton, C.; Lombard, E.; Loosveld, M.; Nivaggioni, V.; Dasilva, N.; Salgado, D.; Desvignes, J.P.; Béroud, C.; Viout, P.; Bernard, M.; Soriani, O.; Vinti, H.; Lacroze, V.; Feneant-Thibault, M.; Thuret, I.; Guizouarn, H.; Badens, C. A mutation in the Gardos channel is associated with hereditary xerocytosis. Blood, 2015, 126(11), 1273-1280.
[http://dx.doi.org/10.1182/blood-2015-04-642496] [PMID: 26148990]
[117]
Glogowska, E.; Lezon-Geyda, K.; Maksimova, Y.; Schulz, V.P.; Gallagher, P.G. Mutations in the Gardos channel (KCNN4) are associated with hereditary xerocytosis. Blood, 2015, 126(11), 1281-1284.
[http://dx.doi.org/10.1182/blood-2015-07-657957] [PMID: 26198474]
[118]
Andolfo, I.; Russo, R.; Manna, F.; Shmukler, B.E.; Gambale, A.; Vitiello, G.; De Rosa, G.; Brugnara, C.; Alper, S.L.; Snyder, L.M.; Iolascon, A. Novel Gardos channel mutations linked to dehydrated hereditary stomatocytosis (xerocytosis). Am. J. Hematol., 2015, 90(10), 921-926.
[http://dx.doi.org/10.1002/ajh.24117] [PMID: 26178367]
[119]
Gárdos, G. The function of calcium in the potassium permeability of human erythrocytes. Biochim. Biophys. Acta, 1958, 30(3), 653-654.
[http://dx.doi.org/10.1016/0006-3002(58)90124-0] [PMID: 13618284]
[120]
Ishii, T.M.; Silvia, C.; Hirschberg, B.; Bond, C.T.; Adelman, J.P.; Maylie, J. A human intermediate conductance calcium-activated potassium channel. Proc. Natl. Acad. Sci. USA, 1997, 94(21), 11651-11656.
[http://dx.doi.org/10.1073/pnas.94.21.11651] [PMID: 9326665]
[121]
Logsdon, N.J.; Kang, J.; Togo, J.A.; Christian, E.P.; Aiyar, J. A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J. Biol. Chem., 1997, 272(52), 32723-32726.
[http://dx.doi.org/10.1074/jbc.272.52.32723] [PMID: 9407042]
[122]
Ghanshani, S.; Wulff, H.; Miller, M.J.; Rohm, H.; Neben, A.; Gutman, G.A.; Cahalan, M.D.; Chandy, K.G. Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J. Biol. Chem., 2000, 275(47), 37137-37149.
[http://dx.doi.org/10.1074/jbc.M003941200] [PMID: 10961988]
[123]
Chen, M.X.; Gorman, S.A.; Benson, B.; Singh, K.; Hieble, J.P.; Michel, M.C.; Tate, S.N.; Trezise, D.J. Small and intermediate conductance Ca2+ -activated K+ channels confer distinctive patterns of distribution in human tissues and differential cellular localisation in the colon and corpus cavernosum. Naunyn Schmiedebergs Arch. Pharmacol., 2004, 369(6), 602-615.
[http://dx.doi.org/10.1007/s00210-004-0934-5] [PMID: 15127180]
[124]
Nguyen, T.V.; Matsuyama, H.; Baell, J.; Hunne, B.; Fowler, C.J.; Smith, J.E.; Nurgali, K.; Furness, J.B. Effects of compounds that influence IK (KCNN4) channels on afterhyperpolarizing potentials, and determination of IK channel sequence, in guinea pig enteric neurons. J. Neurophysiol., 2007, 97(3), 2024-2031.
[http://dx.doi.org/10.1152/jn.00935.2006] [PMID: 17229825]
[125]
Köhler, M; Hirschberg, B; Bond, CT; Kinzie, JM; Marrion, N V; Maylie, J Small-conductance, calcium-activated potassium channels from mammalian brain. Science (80- ), 1996, 273, 1709-1714.
[http://dx.doi.org/10.1126/science.273.5282.1709]
[126]
Nilius, B.; Vriens, J.; Prenen, J.; Droogmans, G.; Voets, T. TRPV4 calcium entry channel: A paradigm for gating diversity. Am J Physiol Physiol, 2004, 286(2), C195-205.
[127]
Sahu, G.; Asmara, H.; Zhang, F.X.; Zamponi, G.W.; Turner, R.W. Activity-dependent facilitation of CaV1. 3 calcium channels promotes KCa3. 1 activation in hippocampal neurons. J. Neurosci., 2017, 37(46), 11255-11270.
[http://dx.doi.org/10.1523/JNEUROSCI.0967-17.2017] [PMID: 29038242]
[128]
Yu, Z.; Dou, F.; Wang, Y.; Hou, L.; Chen, H. Ca2+-dependent endoplasmic reticulum stress correlation with astrogliosis involves upregulation of KCa3.1 and inhibition of AKT/mTOR signaling. J. Neuroinflammation, 2018, 15(1), 316.
[http://dx.doi.org/10.1186/s12974-018-1351-x] [PMID: 30442153]
[129]
Choi, S.; Kim, J.A.; Li, H.; Shin, K.O.; Oh, G.T.; Lee, Y.M.; Oh, S.; Pewzner-Jung, Y.; Futerman, A.H.; Suh, S.H. KCa 3.1 upregulation preserves endothelium‐dependent vasorelaxation during aging and oxidative stress. Aging Cell, 2016, 15(5), 801-810.
[http://dx.doi.org/10.1111/acel.12502] [PMID: 27363720]
[130]
Rauer, H.; Lanigan, M.D.; Pennington, M.W.; Aiyar, J.; Ghanshani, S.; Cahalan, M.D.; Norton, R.S.; Chandy, K.G. Structure-guided transformation of charybdotoxin yields an analog that selectively targets Ca2+-activated over voltage-gated K(+) channels. J. Biol. Chem., 2000, 275(2), 1201-1208.
[http://dx.doi.org/10.1074/jbc.275.2.1201] [PMID: 10625664]
[131]
Miller, C.; Moczydlowski, E.; Latorre, R.; Phillips, M. Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature, 1985, 313(6000), 316-318.
[http://dx.doi.org/10.1038/313316a0] [PMID: 2578618]
[132]
Visan, V.; Fajloun, Z.; Sabatier, J.M.; Grissmer, S. Mapping of Maurotoxin Binding Sites on hKv1.2, hKv1.3, and hIKCa1 Channels. Mol. Pharmacol., 2004, 66(5), 1103-1112.
[http://dx.doi.org/10.1124/mol.104.002774] [PMID: 15286210]
[133]
Jensen, B.S.; Strøbæk, D.; Christophersen, P.; Jørgensen, T.D.; Hansen, C.; Silahtaroglu, A.; Olesen, S.P.; Ahring, P.K. Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. Am. J. Physiol. Cell Physiol., 1998, 275(3), C848-C856.
[http://dx.doi.org/10.1152/ajpcell.1998.275.3.C848] [PMID: 9730970]
[134]
Wulff, H.; Gutman, G.A.; Cahalan, M.D.; Chandy, K.G. Delineation of the clotrimazole/TRAM-34 binding site on the intermediate conductance calcium-activated potassium channel, IKCa1. J. Biol. Chem., 2001, 276(34), 32040-32045.
[http://dx.doi.org/10.1074/jbc.M105231200] [PMID: 11425865]
[135]
Oliván-Viguera, A.; Valero, M.S.; Coleman, N.; Brown, B.M.; Laría, C.; Divina, M.M.; Gálvez, J.A.; Díaz-de-Villegas, M.D.; Wulff, H.; Badorrey, R.; Köhler, R. A novel pan-negative-gating modulator of KCa2/3 channels, fluoro-di-benzoate, RA-2, inhibits endothelium-derived hyperpolarization-type relaxation in coronary artery and produces bradycardia in vivo. Mol. Pharmacol., 2015, 87(2), 338-348.
[http://dx.doi.org/10.1124/mol.114.095745] [PMID: 25468883]
[136]
Devor, D.C.; Singh, A.K.; Frizzell, R.A.; Bridges, R.J. Modulation of Cl- secretion by benzimidazolones. I. Direct activation of a Ca2+-dependent K+ channel. Am. J. Physiol., 1996, 271(5 Pt 1), L775-L784.
[PMID: 8944721]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy