Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Identification of the Key Active Pharmaceutical Ingredients of Yishen Qutong Granule, A Chinese Medicine Formula, In The Treatment of Primary Lung Cancer

Author(s): Jiayang Chen, Li Feng*, Wei Jin, Jinyuan Chang, Jie Li and Hao Li

Volume 26, Issue 8, 2023

Published on: 26 December, 2022

Page: [1594 - 1608] Pages: 15

DOI: 10.2174/1386207326666221207152001

Price: $65

Abstract

Background: Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. Traditional Chinese medicine (TCM) reportedly has potential therapeutic effects against LC.

Objective: This study aimed to investigate the antitumor efficacy of Yishen Qutong granule (YSQTG) in primary LC treatment, to identify its key active pharmaceutical ingredients (APIs), and to explore its possible mechanism of action.

Methods: The antitumor role of YSQTG was validated via cell function assays and a xenograft tumor model. Then, high-performance liquid chromatography-mass spectrometry (HPLC-MS) was performed to determine the objective precipitation components of YSQTG, followed by target prediction through reference to databases. Subsequently, the proportion of the predicted targets that underwent actual changes was identified via RNA-sequencing. Enrichment analysis was performed to explore the possible mechanisms of action. Hub genes were screened, and western blotting was used to verify their protein expression levels to identify the core target. Molecular docking between the active compounds and the verified core target was performed, combined with an evaluation of the potential efficacy of candidate compounds using meta-analysis to screen the candidate key APIs.

Results: Experiments confirmed that YSQTG could inhibit LC cell proliferation, induce apoptosis in vitro, and inhibit lung tumor growth in vivo. HPLC-MS, RNA-seq, and enrichment analysis showed that oxidative stress-related pathways were the possible mechanism of YSQTG in primary LC treatment. Western blot verification indicated that heme oxygenase 1 (HMOX1, HO-1) could be the core target. Molecular docking and meta-analysis suggested that genistein and quercetin were the candidate key APIs.

Conclusion: YSQTG and its active ingredients, genistein and quercetin, may have therapeutic effects against LC through their action on the downregulation of oxidative stress-related HMOX1 protein expression.

Graphical Abstract

[1]
Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet, 2021, 398(10299), 535-554.
[http://dx.doi.org/10.1016/S0140-6736(21)00312-3] [PMID: 34273294]
[2]
Zheng, R.; Zhang, S.; Zeng, H.; Wang, S.; Sun, K.; Chen, R.; Li, L.; Wei, W.; He, J. Cancer incidence and mortality in China, 2016. J. Nat. Cancer Center, 2022, 2(1), 1-9.
[http://dx.doi.org/10.1016/j.jncc.2022.02.002]
[3]
Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; Geisinger, K.; Hirsch, F.R.; Ishikawa, Y.; Kerr, K.M.; Noguchi, M.; Pelosi, G.; Powell, C.A.; Tsao, M.S.; Wistuba, I. The 2015 world health organization classification of lung tumors. J. Thorac. Oncol., 2015, 10(9), 1243-1260.
[http://dx.doi.org/10.1097/JTO.0000000000000630] [PMID: 26291008]
[4]
Howlader, N.; Forjaz, G.; Mooradian, M.J.; Meza, R.; Kong, C.Y.; Cronin, K.A.; Mariotto, A.B.; Lowy, D.R.; Feuer, E.J. The effect of advances in lung-cancer treatment on population mortality. N. Engl. J. Med., 2020, 383(7), 640-649.
[http://dx.doi.org/10.1056/NEJMoa1916623] [PMID: 32786189]
[5]
Teng, J.F.; Mei, Q.B.; Zhou, X.G.; Tang, Y.; Xiong, R.; Qiu, W.Q.; Pan, R.; Law, B.Y.K.; Wong, V.K.W.; Yu, C.L.; Long, H.A.; Xiao, X.L.; Zhang, F.; Wu, J.M.; Qin, D.L.; Wu, A.G. Polyphyllin VI induces caspase-1-mediated pyroptosis via the induction of ROS/NF-κB/NLRP3/GSDMD signal axis in non-small cell lung cancer. Cancers (Basel), 2020, 12(1), 193.
[http://dx.doi.org/10.3390/cancers12010193] [PMID: 31941010]
[6]
Zheng, Z.; Ma, Y.; Wang, L.; Deng, H.; Wang, Z.; Li, J.; Xu, Z. Chinese herbal medicine Feiyanning cooperates with cisplatin to enhance cytotoxicity to non-small-cell lung cancer by inhibiting protective autophagy. J. Ethnopharmacol., 2021, 276, 114196.
[http://dx.doi.org/10.1016/j.jep.2021.114196] [PMID: 33984457]
[7]
Lu, Y.; Sun, C.; Jiao, L.; Liu, Y.; Gong, Y.; Xu, L. Chinese herbal medicine combined with first-generation EGFR-TKIs in treatment of advanced non-small cell lung cancer with EGFR sensitizing mutation: A systematic review and meta-analysis. Front. Pharmacol., 2021, 12, 698371.
[http://dx.doi.org/10.3389/fphar.2021.698371] [PMID: 34512332]
[8]
Yukun, Y.; Li, F.; Lei, Z.; Jie, L.; Yin, G.; Ningjun, W.; Jianhua, Y.; Zhenglong, J.; Shengqi, H.; Dianrong, L.; Fang, W.; Yanlin, D.; Weiping, Z. Effects of Yishengukang decoction on expression of bone-specific alkaline phosphatase, carboxyterminal propeptide of type I procollagen, and carboxyterminal cross-linked telepeptide of type I collagen in malignant tumor patients with bone metastasis. J. Tradit. Chin. Med., 2017, 37(1), 30-34.
[http://dx.doi.org/10.1016/S0254-6272(17)30023-7] [PMID: 29956899]
[9]
Berish, R.B.; Ali, A.N.; Telmer, P.G.; Ronald, J.A.; Leong, H.S. Translational models of prostate cancer bone metastasis. Nat. Rev. Urol., 2018, 15(7), 403-421.
[http://dx.doi.org/10.1038/s41585-018-0020-2] [PMID: 29769644]
[10]
Lieber, M.; Todaro, G.; Smith, B.; Szakal, A.; Nelson-Rees, W. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int. J. Cancer, 1976, 17(1), 62-70.
[http://dx.doi.org/10.1002/ijc.2910170110] [PMID: 175022]
[11]
Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; Fu, X.; Liu, S.; Bo, X.; Yu, G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation, 2021, 2(3), 100141.
[http://dx.doi.org/10.1016/j.xinn.2021.100141] [PMID: 34557778]
[12]
Reijnders, M; Waterhouse, R Summary visualizations of gene ontology terms with go-figure! Front. Bioinform., 2021, 1
[13]
Han, K.; Zhang, L.; Wang, M.; Zhang, R.; Wang, C.; Zhang, C. Prediction methods of herbal compounds in Chinese medicinal herbs. Molecules, 2018, 23(9), 2303.
[http://dx.doi.org/10.3390/molecules23092303] [PMID: 30201875]
[14]
Williamson, E. Synergy and other interactions in phytomedicines. Phytomedicine, 2001, 8(5), 401-409.
[http://dx.doi.org/10.1078/0944-7113-00060] [PMID: 11695885]
[15]
Hao, P.; Jiang, F.; Cheng, J.; Ma, L.; Zhang, Y.; Zhao, Y. Traditional chinese medicine for cardiovascular disease. J. Am. Coll. Cardiol., 2017, 69(24), 2952-2966.
[http://dx.doi.org/10.1016/j.jacc.2017.04.041] [PMID: 28619197]
[16]
Sucher, N.J. The application of Chinese medicine to novel drug discovery. Expert Opin. Drug Discov., 2013, 8(1), 21-34.
[http://dx.doi.org/10.1517/17460441.2013.739602] [PMID: 23170842]
[17]
Caesar, L.K.; Cech, N.B. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat. Prod. Rep., 2019, 36(6), 869-888.
[http://dx.doi.org/10.1039/C9NP00011A] [PMID: 31187844]
[18]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[19]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[20]
May, B.H.; Lu, C.; Xue, C.C.L. Collections of traditional Chinese medical literature as resources for systematic searches. J. Altern. Complement. Med., 2012, 18(12), 1101-1107.
[http://dx.doi.org/10.1089/acm.2011.0587] [PMID: 23062022]
[21]
Fabricant, DS; Farnsworth, NR The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect., 2001, 109(Suppl. 1), 69-75.
[22]
Miller, L.H.; Su, X. Artemisinin: Discovery from the Chinese herbal garden. Cell, 2011, 146(6), 855-858.
[http://dx.doi.org/10.1016/j.cell.2011.08.024] [PMID: 21907397]
[23]
Guo, W.; Huang, J.; Wang, N.; Tan, H.Y.; Cheung, F.; Chen, F.; Feng, Y. Integrating network pharmacology and pharmacological evaluation for deciphering the action mechanism of herbal formula Zuojin pill in suppressing hepatocellular carcinoma. Front. Pharmacol., 2019, 10, 1185.
[http://dx.doi.org/10.3389/fphar.2019.01185] [PMID: 31649545]
[24]
Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative stress in cancer. Cancer Cell, 2020, 38(2), 167-197.
[http://dx.doi.org/10.1016/j.ccell.2020.06.001] [PMID: 32649885]
[25]
Tuli, H.S.; Tuorkey, M.J.; Thakral, F.; Sak, K.; Kumar, M.; Sharma, A.K.; Sharma, U.; Jain, A.; Aggarwal, V.; Bishayee, A. Molecular mechanisms of action of genistein in cancer: Recent advances. Front. Pharmacol., 2019, 10, 1336.
[http://dx.doi.org/10.3389/fphar.2019.01336] [PMID: 31866857]
[26]
Smeriglio, A.; Calderaro, A.; Denaro, M.; Laganà, G.; Bellocco, E. Effects of isolated isoflavones intake on health. Curr. Med. Chem., 2019, 26(27), 5094-5107.
[http://dx.doi.org/10.2174/0929867324666171006143047] [PMID: 28990503]
[27]
Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Genistein and cancer: Current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419.
[http://dx.doi.org/10.3945/an.114.008052] [PMID: 26178025]
[28]
Dong, J.Y.; Qin, L.Q. Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res. Treat., 2011, 125(2), 315-323.
[http://dx.doi.org/10.1007/s10549-010-1270-8] [PMID: 21113655]
[29]
Hwang, Y.W.; Kim, S.Y.; Jee, S.H.; Kim, Y.N.; Nam, C.M. Soy food consumption and risk of prostate cancer: A meta-analysis of observational studies. Nutr. Cancer, 2009, 61(5), 598-606.
[http://dx.doi.org/10.1080/01635580902825639] [PMID: 19838933]
[30]
Yu, Y.; Xing, Y.; Zhang, Q.; Zhang, Q.; Huang, S.; Li, X.; Gao, C. Soy isoflavone genistein inhibits hsa_circ_0031250/MIR ‐873‐5p/FOXM1 axis to suppress non‐small‐cell lung cancer progression. IUBMB Life, 2021, 73(1), 92-107.
[http://dx.doi.org/10.1002/iub.2404] [PMID: 33159503]
[31]
Zhang, J.; Su, H.; Li, Q.; Li, J.; Zhao, Q. Genistein decreases A549 cell viability via inhibition of the PI3K/AKT/HIF-1α/VEGF and NF-κB/COX-2 signaling pathways. Mol. Med. Rep., 2017, 15(4), 2296-2302.
[http://dx.doi.org/10.3892/mmr.2017.6260] [PMID: 28259980]
[32]
Chan, L.; Pang, Y.; Wang, Y.; Zhu, D.; Taledaohan, A.; Jia, Y.; Zhao, L.; Wang, W. Genistein-induced mitochondrial dysfunction and FOXO3a/PUMA expression in non-small lung cancer cells. Pharm. Biol., 2022, 60(1), 1876-1883.
[http://dx.doi.org/10.1080/13880209.2022.2123933] [PMID: 36200643]
[33]
Fu, Z.; Cao, X.; Liu, L.; Cao, X.; Cui, Y.; Li, X.; Quan, M.; Ren, K.; Chen, A.; Xu, C.; Qiu, Y.; Chen, X.; Wang, Z.; Cao, J. Genistein inhibits lung cancer cell stem like characteristics by modulating MnSOD and FoxM1 expression. Oncol. Lett., 2020, 20(3), 2506-2515.
[http://dx.doi.org/10.3892/ol.2020.11802] [PMID: 32782570]
[34]
Liu, D.; Yan, L.; Wang, L.; Tai, W.; Wang, W.; Yang, C. Genistein enhances the effect of cisplatin on the inhibition of non-small cell lung cancer A549 cell growth in vitro and in vivo. Oncol. Lett., 2014, 8(6), 2806-2810.
[http://dx.doi.org/10.3892/ol.2014.2597] [PMID: 25364470]
[35]
Tossetta, G.; Marzioni, D. Natural and synthetic compounds in ovarian cancer: A focus on NRF2/KEAP1 pathway. Pharmacol. Res., 2022, 183, 106365.
[http://dx.doi.org/10.1016/j.phrs.2022.106365] [PMID: 35901941]
[36]
Sahin, K.; Yenice, E.; Bilir, B.; Orhan, C.; Tuzcu, M.; Sahin, N.; Ozercan, I.H.; Kabil, N.; Ozpolat, B.; Kucuk, O. Genistein prevents development of spontaneous ovarian cancer and inhibits tumor growth in hen model. Cancer Prev. Res. (Phila.), 2019, 12(3), 135-146.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0289] [PMID: 30651293]
[37]
Sekar, V.; Anandasadagopan, S.K.; Ganapasam, S. Genistein regulates tumor microenvironment and exhibits anticancer effect in dimethyl hydrazine-induced experimental colon carcinogenesis. Biofactors, 2016, 42(6), 623-637.
[http://dx.doi.org/10.1002/biof.1298] [PMID: 27255553]
[38]
Liu, X.; Sun, C.; Liu, B.; Jin, X.; Li, P.; Zheng, X.; Zhao, T.; Li, F.; Li, Q. Genistein mediates the selective radiosensitizing effect in NSCLC A549 cells via inhibiting methylation of the keap1 gene promoter region. Oncotarget, 2016, 7(19), 27267-27279.
[http://dx.doi.org/10.18632/oncotarget.8403] [PMID: 27029077]
[39]
Huang, K.Y.; Wang, T.H.; Chen, C.C.; Leu, Y.L.; Li, H.J.; Jhong, C.L.; Chen, C.Y. Growth suppression in lung cancer cells harboring EGFR-C797S mutation by quercetin. Biomolecules, 2021, 11(9), 1271.
[http://dx.doi.org/10.3390/biom11091271] [PMID: 34572484]
[40]
Guo, H.; Ding, H.; Tang, X.; Liang, M.; Li, S.; Zhang, J.; Cao, J. Quercetin induces pro‐apoptotic autophagy via SIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Thorac. Cancer, 2021, 12(9), 1415-1422.
[http://dx.doi.org/10.1111/1759-7714.13925] [PMID: 33709560]
[41]
Yang, J.H.; Hsia, T.C.; Kuo, H.M.; Chao, P.D.L.; Chou, C.C.; Wei, Y.H.; Chung, J.G. Inhibition of lung cancer cell growth by quercetin glucuronides via G2/M arrest and induction of apoptosis. Drug Metab. Dispos., 2006, 34(2), 296-304.
[http://dx.doi.org/10.1124/dmd.105.005280] [PMID: 16280456]
[42]
Jia, X.B.; Zhang, Q.; Xu, L.; Yao, W.J.; Wei, L. Lotus leaf flavonoids induce apoptosis of human lung cancer A549 cells through the ROS/p38 MAPK pathway. Biol. Res., 2021, 54(1), 7.
[http://dx.doi.org/10.1186/s40659-021-00330-w] [PMID: 33653412]
[43]
Kawabata, K.; Mukai, R.; Ishisaka, A. Quercetin and related polyphenols: New insights and implications for their bioactivity and bioavailability. Food Funct., 2015, 6(5), 1399-1417.
[http://dx.doi.org/10.1039/C4FO01178C] [PMID: 25761771]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy