Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Review Article

Therapeutic Effectiveness of Sinensetin Against Cancer and Other Human Complications: A Review of Biological Potential and Pharmacological Activities

Author(s): Kanika Patel and Dinesh Kumar Patel*

Volume 22, Issue 3, 2022

Published on: 21 December, 2022

Page: [144 - 154] Pages: 11

DOI: 10.2174/1871529X23666221207121955

Price: $65

Abstract

Background: Plant and their active phytoproducts have been used in modern medicine and playing an important role in the health sectors since a very early age. Human beings need a considerable amount of these plant-based phytochemicals for their health. The flavonoidal class phytochemical is an important class of natural products in modern healthcare because of their different pharmacological activities and health benefits. Flavonoidal class phytochemicals have been used to treat diabetes and related secondary complications in humans. Flavonoids have antiapoptotic, anti-hyperlipidemic, anti-inflammatory, and anti-oxidant potential in the health sectors. Sinensetin, also called 3',4',5,6,7-pentametoksiflavon is a colorless compound with a molecular weight 372.37g/mol and is found to be present in the Orthosiphon stamineus.

Methods: In the present investigation, we aim to collect scientific information on sinensetin and analyze it for its biological potential and therapeutic benefits against various types of disorders and complications. Medicinal importance and pharmacological activities data have been collected and analyzed in the present work for sinensetin through literature data analysis of different research works. Google Science Direct, PubMed, Scopus, and Google Scholar were mainly searched to collect the scientific information in the present work. The present work analyzed sinensetin biological potential, pharmacological activities, and analytical aspects.

Results: Literature data analysis of different scientific research works revealed the biological potential of phytochemicals in medicine, including flavonoids. Sinensetin has anti-tumor, antiinflammatory, anti-oxidant, anti-diabetic, and antibacterial activities through their testing in different in vitro and in vivo models. Sinensetin has physiological functions, including anti-oxidant, antiinflammation, and anti-cancer potential in medicine. Scientific data analysis signified the biological importance of sinensetin against tumors, gastric cancer, colorectal cancer, breast cancer, diabetes, influenza H1N1 infection, obesity, inflammation, colitis, brain disorders, and microbial infections. Further biological potential of sinensetin on enzymes and angiogenesis has been analyzed in the present work. Sinensetin was isolated through different analytical and extraction techniques, including chromatographic techniques.

Conclusion: Literature data analysis signified sinensetin’s biological potential and pharmacological activities in medicine.

Graphical Abstract

[1]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. β-sitosterol: Bioactive compounds in foods, their role in health promotion and disease prevention “A concise report of its phytopharmaceutical importance”. Curr. Tradit. Med., 2017, 3(3), 168-177.
[http://dx.doi.org/10.2174/2215083803666170615111759]
[2]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Kumar Patel, D. Health benefits of furanocoumarins ‘Psoralidin’ an active phytochemical of Psoralea corylifolia: The present, past and future scenario. Curr. Bioact. Compd., 2019, 15(4), 369-376.
[http://dx.doi.org/10.2174/1573407214666180511153438]
[3]
Marques, G.S.; Leão, W.F.; Lyra, M.A.M.; Peixoto, M.S.; Monteiro, R.P.M.; Rolim, L.A.; Xavier, H.S.; Neto, P.J.R.; Soares, L.A.L. Comparative evaluation of UV/VIS and HPLC analytical methodologies applied for quantification of flavonoids from leaves of Bauhinia forficata. Rev. Bras. Farmacogn., 2013, 23(1), 51-57.
[http://dx.doi.org/10.1590/S0102-695X2012005000143]
[4]
Fontana Pereira, D.; Cazarolli, L.H.; Lavado, C.; Mengatto, V.; Figueiredo, M.S.R.B.; Guedes, A.; Pizzolatti, M.G.; Silva, F.R.M.B. Effects of flavonoids on α-glucosidase activity: Potential targets for glucose homeostasis. Nutrition, 2011, 27(11-12), 1161-1167.
[http://dx.doi.org/10.1016/j.nut.2011.01.008] [PMID: 21684120]
[5]
Mohan, S.; Nandhakumar, L. Role of various flavonoids: Hypotheses on novel approach to treat diabetes. J. Med. Hypotheses, 2014, 8(1), 1-6.
[http://dx.doi.org/10.1016/j.jmhi.2013.06.001]
[6]
de Souza, L.A.; Tavares, W.M.G.; Lopes, A.P.M.; Soeiro, M.M.; de Almeida, W.B. Structural analysis of flavonoids in solution through DFT 1H NMR chemical shift calculations: Epigallocatechin, Kaempferol and Quercetin. Chem. Phys. Lett., 2017, 676, 46-52.
[http://dx.doi.org/10.1016/j.cplett.2017.03.038]
[7]
Govindarasu, M.; Palani, M.; Vaiyapuri, M. In silico docking studies on kaempferitrin with diverse inflammatory and apoptotic proteins functional approach towards the colon cancer. Int. J. Pharm. Pharm. Sci., 2017, 9(9), 199.
[http://dx.doi.org/10.22159/ijpps.2017v9i9.20500]
[8]
Ibrahim, R.M.; El-Halawany, A.M.; Saleh, D.O.; Naggar, E.M.B.E.; El-Shabrawy, A.E.R.O.; El-Hawary, S.S. HPLC-DAD-MS/MS profiling of phenolics from Securigera securidaca flowers and its anti-hyperglycemic and anti-hyperlipidemic activities. Rev. Bras. Farmacogn., 2015, 25(2), 134-141.
[http://dx.doi.org/10.1016/j.bjp.2015.02.008]
[9]
Morita, M.; Takahashi, I.; Kanai, M.; Okafuji, F.; Iwashima, M.; Hayashi, T.; Watanabe, S.; Hamazaki, T.; Shimozawa, N.; Suzuki, Y.; Furuya, H.; Yamada, T.; Imanaka, T. Baicalein 5,6,7-trimethyl ether, a flavonoid derivative, stimulates fatty acid β-oxidation in skin fibroblasts of X-linked adrenoleukodystrophy. FEBS Lett., 2005, 579(2), 409-414.
[http://dx.doi.org/10.1016/j.febslet.2004.11.102] [PMID: 15642351]
[10]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7(1), 31-42.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.009]
[11]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr. Tradit. Med., 2018, 4(2), 120-127.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[12]
Patel, D.K. Pharmacological activities and therapeutic potential of kaempferitrin in medicine for the treatment of human disorders: A review of medicinal importance and health benefits. Cardiovasc. Hematol. Disord. Drug Targets, 2021, 21(2), 104-114.
[http://dx.doi.org/10.2174/1871529X21666210812111931] [PMID: 34387174]
[13]
Amzad Hossain, M.; Ismail, Z. Quantification and enrichment of sinensetin in the leaves of Orthosiphon stamineus. Arab. J. Chem., 2016, 9, S1338-S1341.
[http://dx.doi.org/10.1016/j.arabjc.2012.02.016]
[14]
Febriani, Y.; Fidrianny, I. Isolation of two methoxy flavonoid compounds from kumis kucing (Orthoshipon stamineus, Benth.) a popular plant in Indonesian herbal medicine Jamu. Res. J. Pharm. Biol. Chem. Sci., 2017, 8, 1640-1646.
[15]
Kong, C.; Tan, M.W.; Nathan, S. Orthosiphon stamineus protects Caenorhabditis elegans against Staphylococcus aureus infection through immunomodulation. Biol. Open, 2014, 3(7), 644-655.
[http://dx.doi.org/10.1242/bio.20148334] [PMID: 24972867]
[16]
Silalahi, M. Orthosiphon stamineus Benth (uses and bioactivities). Indones. J. Sci. Edu., 2019, 3(1), 26.
[http://dx.doi.org/10.31002/ijose.v3i1.729]
[17]
Himani, B.; Seema, B.; Bhole, N.; Mayank, Y.; Vinod, S.; Mamta, S. Misai kuching: A glimpse of maestro. Int. J. Pharm. Sci. Rev. Res., 2013, 55-59.
[18]
Meidinna, H.N.; Fatchiyah, F. The potential role of rosmarinic acid and sinensetin as α- amylase inhibitor: In silico study. Pure Appl. Chem., 2019, 8(1), 73-79.
[http://dx.doi.org/10.21776/ub.jpacr.2019.008.001.460]
[19]
Tahir, I.; Ahmad, M.N.; Islam, A.K.M.S.; Arbain, D. Virtual searching of dummy template for sinensetin based on 2d molecular similarity using chemdb tool. Indones. J. Chem., 2012, 12(3), 217-222.
[http://dx.doi.org/10.22146/ijc.21333]
[20]
Kim, J.A.; Kim, S.M.; Ha, S.E.; Vetrivel, P.; Saralamma, V.V.G.; Kim, E.H.; Kim, G.S. Sinensetin regulates age-related sarcopenia in cultured primary thigh and calf muscle cells. BMC Complement. Altern. Med., 2019, 19(1), 287.
[http://dx.doi.org/10.1186/s12906-019-2714-2] [PMID: 31660942]
[21]
Aziz, A.H.A.; Yunus, M.A.C.; Yian, L.N.; Idham, Z.; Rithwan, F.; Hadzri, H.M. Enhancement and optimization of sinensetin extract from Orthosiphon stamineus using supercrtitical carbon dioxide extraction. Malays. J. Anal. Sci., 2018, 22, 867-876.
[22]
Shafaei, A.; Sultan Khan, M.; Aisha, A.F.A.; Abdul Majid, A.; Hamdan, M.; Mordi, M.; Ismail, Z. Flavonoids-rich orthosiphon stamineus extract as new candidate for angiotensin I-converting enzyme inhibition: A molecular docking study. Molecules, 2016, 21(11), 1500.
[http://dx.doi.org/10.3390/molecules21111500] [PMID: 27834876]
[23]
Erenler, R.; Telcı, İ.; Elmastaş, M.; Aksıt, H.; Gül, F.; Tüfekçı, A.R.; Demırtaş, İ.; Kayir, Ö. Quantification of flavonoids isolated from Mentha spicata in selected clones of Turkish mint landraces. Turk. J. Chem., 2018, 42(6), 1695-1705.
[http://dx.doi.org/10.3906/kim-1712-3]
[24]
Chae, H.S.; Kim, Y.M.; Chin, Y.W. Sinensetin inhibits interleukin-6 in human mast cell - 1 via signal transducers and activators of the transcription 3 (STAT3) and Nuclear Factor Kappa B (NF-κB) pathways. Nat. Prod. Sci., 2017, 23(1), 1.
[http://dx.doi.org/10.20307/nps.2017.23.1.1]
[25]
Tan, K.T.; Lin, M.X.; Lin, S.C.; Tung, Y.T.; Lin, S.H.; Lin, C.C. Sinensetin induces apoptosis and autophagy in the treatment of human T-cell lymphoma. Anticancer Drugs, 2019, 30(5), 485-494.
[http://dx.doi.org/10.1097/CAD.0000000000000756] [PMID: 30702500]
[26]
Dong, Y.; Ji, G.; Cao, A.; Shi, J.; Shi, H.; Xie, J.; Wu, D. Effects of sinensetin on proliferation and apoptosis of human gastric cancer AGS cells. Zhongguo Zhongyao Zazhi, 2011, 36(6), 790-794.
[PMID: 21710752]
[27]
Pereira, C.; Duarte, M.; Silva, P.; Bento da Silva, A.; Duarte, C.; Cifuentes, A.; García-Cañas, V.; Bronze, M.; Albuquerque, C.; Serra, A. Polymethoxylated flavones target cancer stemness and improve the antiproliferative effect of 5-fluorouracil in a 3D cell model of colorectal cancer. Nutrients, 2019, 11(2), 326.
[http://dx.doi.org/10.3390/nu11020326] [PMID: 30717428]
[28]
Tezuka, Y.; Stampoulis, P.; Banskota, A.H.; Awale, S.; Tran, K.Q.; Saiki, I.; Kadota, S. Constituents of the Vietnamese medicinal plant Orthosiphon stamineus. Chem. Pharm. Bull., 2000, 48(11), 1711-1719.
[http://dx.doi.org/10.1248/cpb.48.1711] [PMID: 11086900]
[29]
Androutsopoulos, V.P.; Ruparelia, K.; Arroo, R.R.J.; Tsatsakis, A.M.; Spandidos, D.A. CYP1-mediated antiproliferative activity of dietary flavonoids in MDA-MB-468 breast cancer cells. Toxicology, 2009, 264(3), 162-170.
[http://dx.doi.org/10.1016/j.tox.2009.07.023] [PMID: 19666078]
[30]
Kang, S.I.; Shin, H.S.; Kim, S.J. Sinensetin enhances adipogenesis and lipolysis by increasing cyclic adenosine monophosphate levels in 3T3-L1 adipocytes. Biol. Pharm. Bull., 2015, 38(4), 552-558.
[http://dx.doi.org/10.1248/bpb.b14-00700] [PMID: 25735898]
[31]
Kang, S.I.; Shin, H.S.; Ko, H.C.; Kim, S.J. Effects of sinensetin on lipid metabolism in mature 3T3-L1 adipocytes. Phytother. Res., 2013, 27(1), 131-134.
[http://dx.doi.org/10.1002/ptr.4683] [PMID: 22438091]
[32]
Lin, Y.; Vermeer, M.A.; Bos, W.; van Buren, L.; Schuurbiers, E.; Miret-Catalan, S.; Trautwein, E.A. Molecular structures of citrus flavonoids determine their effects on lipid metabolism in HepG2 cells by primarily suppressing apoB secretion. J. Agric. Food Chem., 2011, 59(9), 4496-4503.
[http://dx.doi.org/10.1021/jf1044475] [PMID: 21425871]
[33]
Laavola, M.; Nieminen, R.; Yam, M.; Sadikun, A.; Asmawi, M.; Basir, R.; Welling, J.; Vapaatalo, H.; Korhonen, R.; Moilanen, E. Flavonoids eupatorin and sinensetin present in Orthosiphon stamineus leaves inhibit inflammatory gene expression and STAT1 activation. Planta Med., 2012, 78(8), 779-786.
[http://dx.doi.org/10.1055/s-0031-1298458] [PMID: 22516932]
[34]
Shin, H.S.; Kang, S.I.; Yoon, S.A.; Ko, H.C.; Kim, S.J. Sinensetin attenuates LPS-induced inflammation by regulating the protein level of IκB-α. Biosci. Biotechnol. Biochem., 2012, 76(4), 847-849.
[http://dx.doi.org/10.1271/bbb.110908] [PMID: 22484952]
[35]
Ishiwa, J.; Sato, T.; Mimaki, Y.; Sashida, Y.; Yano, M.; Ito, A. A citrus flavonoid, nobiletin, suppresses production and gene expression of matrix metalloproteinase 9/gelatinase B in rabbit synovial fibroblasts. J. Rheumatol., 2000, 27(1), 20-25.
[PMID: 10648013]
[36]
Xiong, Y.; Deng, Z.; Liu, J.; Qiu, J.; Guo, L.; Feng, P.; Sui, J.; Chen, D.; Guo, H. Enhancement of epithelial cell autophagy induced by sinensetin alleviates epithelial barrier dysfunction in colitis. Pharmacol. Res., 2019, 148, 104461.
[http://dx.doi.org/10.1016/j.phrs.2019.104461] [PMID: 31542404]
[37]
Nagase, H.; Omae, N.; Omori, A.; Nakagawasai, O.; Tadano, T.; Yokosuka, A.; Sashida, Y.; Mimaki, Y.; Yamakuni, T.; Ohizumi, Y. Nobiletin and its related flavonoids with CRE-dependent transcription-stimulating and neuritegenic activities. Biochem. Biophys. Res. Commun., 2005, 337(4), 1330-1336.
[http://dx.doi.org/10.1016/j.bbrc.2005.10.001] [PMID: 16253614]
[38]
Youn, K.; Yu, Y.; Lee, J.; Jeong, W.S.; Ho, C.T.; Jun, M. Polymethoxyflavones: Novel β-Secretase (BACE1) inhibitors from citrus peels. Nutrients, 2017, 9(9), 973.
[http://dx.doi.org/10.3390/nu9090973] [PMID: 28869548]
[39]
Yam, M.F.; Tan, C.S.; Shibao, R. Vasorelaxant effect of sinensetin via the NO/sGC/cGMP pathway and potassium and calcium channels. Hypertens. Res., 2018, 41(10), 787-797.
[http://dx.doi.org/10.1038/s41440-018-0083-8] [PMID: 30111856]
[40]
Pan, Y.; Tiong, K.H.; Abd-Rashid, B.A.; Ismail, Z.; Ismail, R.; Mak, J.W.; Ong, C.E. In vitro effect of important herbal active constituents on human cytochrome P450 1A2 (CYP1A2) activity. Phytomedicine, 2014, 21(12), 1645-1650.
[http://dx.doi.org/10.1016/j.phymed.2014.08.003] [PMID: 25442272]
[41]
Malterud, K.E.; Rydland, K.M. Inhibitors of 15-lipoxygenase from orange peel. J. Agric. Food Chem., 2000, 48(11), 5576-5580.
[http://dx.doi.org/10.1021/jf000613v] [PMID: 11087521]
[42]
Bormann, H.; Melzig, M.F. Inhibition of metallopeptidases by flavonoids and related compounds. Pharmazie, 2000, 55(2), 129-132.
[PMID: 10723772]
[43]
Bai, J.; Li, L.; Zhao, S.; Fan, X.; Zhang, J.; Hu, M.; Chen, Y.; Sun, Y.; Wang, B.; Jin, J.; Wang, X.; Zhang, D.; Hu, J.; Li, Y. Heterotropic activation of flavonoids on cytochrome P450 3A4: A case example of alleviating dronedarone-induced cytotoxicity. Toxicol. Lett., 2020, 319, 187-196.
[http://dx.doi.org/10.1016/j.toxlet.2019.11.016] [PMID: 31756459]
[44]
Kim, D.S.; Lim, S.B. Semi-continuous subcritical water extraction of flavonoids from Citrus unshiu Peel: Their antioxidant and enzyme inhibitory activities. Antioxidants, 2020, 9(5), 360.
[http://dx.doi.org/10.3390/antiox9050360] [PMID: 32344942]
[45]
Pan, Y.; Abd-Rashid, B.A.; Ismail, Z.; Ismail, R.; Mak, J.W.; Pook, P.C.K.; Er, H.M.; Ong, C.E. In vitro effects of active constituents and extracts of Orthosiphon stamineus on the activities of three major human cDNA-expressed cytochrome P450 enzymes. Chem. Biol. Interact., 2011, 190(1), 1-8.
[http://dx.doi.org/10.1016/j.cbi.2011.01.022] [PMID: 21276781]
[46]
Mohamed, E.A.H.; Siddiqui, M.J.A.; Ang, L.F.; Sadikun, A.; Chan, S.H.; Tan, S.C.; Asmawi, M.Z.; Yam, M.F. Potent α-glucosidase and α-amylase inhibitory activities of standardized 50% ethanolic extracts and sinensetin from Orthosiphon stamineus Benth as anti-diabetic mechanism. BMC Complement. Altern. Med., 2012, 12(1), 176.
[http://dx.doi.org/10.1186/1472-6882-12-176] [PMID: 23039079]
[47]
Damsud, T.; Grace, M.H.; Adisakwattana, S.; Phuwapraisirisan, P. Orthosiphol A from the aerial parts of Orthosiphon aristatus is putatively responsible for hypoglycemic effect via α-glucosidase inhibition. Nat. Prod. Commun., 2014, 9(5), 1934578X1400900.
[http://dx.doi.org/10.1177/1934578X1400900512] [PMID: 25026708]
[48]
Li, J.; Jie, X.; Liang, X.; Chen, Z.; Xie, P.; Pan, X.; Zhou, B.; Li, J. Sinensetin suppresses influenza a virus-triggered inflammation through inhibition of NF-κB and MAPKs signalings. BMC Complement. Med. Ther., 2020, 20(1), 135.
[http://dx.doi.org/10.1186/s12906-020-02918-3] [PMID: 32370749]
[49]
Lam, I.K.; Alex, D.; Wang, Y.H.; Liu, P.; Liu, A.L.; Du, G.H.; Yuen Lee, S.M. In vitro and in vivo structure and activity relationship analysis of polymethoxylated flavonoids: Identifying sinensetin as a novel antiangiogenesis agent. Mol. Nutr. Food Res., 2012, 56(6), 945-956.
[http://dx.doi.org/10.1002/mnfr.201100680] [PMID: 22707269]
[50]
Deipenbrock, M.; Hensel, A. Polymethoxylated flavones from Orthosiphon stamineus leaves as antiadhesive compounds against uropathogenic E. coli. Fitoterapia, 2019, 139, 104387.
[http://dx.doi.org/10.1016/j.fitote.2019.104387] [PMID: 31678632]
[51]
Choi, C.H.; Sun, K.H.; An, C.S.; Yoo, J.C.; Hahm, K.S.; Lee, I.H.; Sohng, J.K.; Kim, Y.C. Reversal of P-glycoprotein-mediated multidrug resistance by 5,6,7,3′,4′-pentamethoxyflavone (Sinensetin). Biochem. Biophys. Res. Commun., 2002, 295(4), 832-840.
[http://dx.doi.org/10.1016/S0006-291X(02)00755-6] [PMID: 12127970]
[52]
Bai, J.; Zhao, S.; Fan, X.; Chen, Y.; Zou, X.; Hu, M.; Wang, B.; Jin, J.; Wang, X.; Hu, J.; Zhang, D.; Li, Y. Inhibitory effects of flavonoids on P-glycoprotein in vitro and in vivo: Food/herb-drug interactions and structure–activity relationships. Toxicol. Appl. Pharmacol., 2019, 369, 49-59.
[http://dx.doi.org/10.1016/j.taap.2019.02.010] [PMID: 30790579]
[53]
Wei, G.J.; Sheen, J.F.; Lu, W.C.; Hwang, L.S.; Ho, C.T.; Lin, C.I. Identification of sinensetin metabolites in rat urine by an isotope-labeling method and ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry. J. Agric. Food Chem., 2013, 61(21), 5016-5021.
[http://dx.doi.org/10.1021/jf3046768] [PMID: 23647150]
[54]
Guo; Li; Gu; Zhu; Su; Bai Simultaneous Quantification and Pharmacokinetic Study of Nine Bioactive Components of Orthosiphon stamineus Benth. Extract in Rat Plasma by UHPLCMS/ MS. Molecules, 2019, 24, 3057.
[55]
Ye, X.; Cao, D.; Zhao, X.; Song, F.; Huang, Q.; Fan, G.; Wu, F. Chemical fingerprint and metabolic profile analysis of Citrus reticulate ‘Chachi’ decoction by HPLC-PDA-IT-MSn and HPLC-Quadrupole-Orbitrap-MS method. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 970, 108-120.
[http://dx.doi.org/10.1016/j.jchromb.2014.06.035] [PMID: 25255155]
[56]
Loon, Y.H.; Wong, J.W.; Yap, S.P.; Yuen, K.H. Determination of flavonoids from Orthosiphon stamineus in plasma using a simple HPLC method with ultraviolet detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 816(1-2), 161-166.
[http://dx.doi.org/10.1016/j.jchromb.2004.11.021] [PMID: 15664346]
[57]
Yam, M.F.; Mohamed, E.A.H.; Ang, L.F.; Pei, L.; Darwis, Y.; Mahmud, R.; Asmawi, M.Z.; Basir, R.; Ahmad, M. A simple isocratic HPLC method for the simultaneous determination of sinensetin, eupatorin, and 3′-hydroxy-5,6,7,4′-tetramethoxyflavone in Orthosiphon stamineus extracts. J. Acupunct. Meridian Stud., 2012, 5(4), 176-182.
[http://dx.doi.org/10.1016/j.jams.2012.05.005] [PMID: 22898066]
[58]
Nakanishi, M.; Hino, M.; Yoshimura, M.; Amakura, Y.; Nomoto, H. Identification of sinensetin and nobiletin as major antitrypanosomal factors in a citrus cultivar. Exp. Parasitol., 2019, 200, 24-29.
[http://dx.doi.org/10.1016/j.exppara.2019.03.008] [PMID: 30898543]
[59]
Xu, Y.; Lv, X.; Yang, G.; Zhan, J.; Li, M.; Long, T.; Ho, C.T.; Li, S. Simultaneous separation of six pure polymethoxyflavones from sweet orange peel extract by high performance counter current chromatography. Food Chem., 2019, 292, 160-165.
[http://dx.doi.org/10.1016/j.foodchem.2019.04.031] [PMID: 31054661]
[60]
Li, H.J.; Zhang, C.T.; Du, H.; Xu, T.; Li, Q.; Wang, P.; Fang, G.; Fan, G. Chemical composition of Bawei Longzuan Granule and its anti‐arthritic activity on collagen‐induced arthritis in rats by inhibiting inflammatory responses. Chem. Biodivers., 2019, 16(9), e1900294.
[http://dx.doi.org/10.1002/cbdv.201900294] [PMID: 31381811]
[61]
Guccione, C.; Bergonzi, M.; Piazzini, V.; Bilia, A. A simple and rapid HPLC-PDA MS method for the profiling of citrus peels and traditional Italian liquors. Planta Med., 2016, 82(11/12), 1039-1045.
[http://dx.doi.org/10.1055/s-0042-108735] [PMID: 27280933]
[62]
Li, Z.; Zhao, Z.; Zhou, Z. Simultaneous separation and purification of five polymethoxylated flavones from “Dahongpao” Tangerine (Citrus tangerina Tanaka) using macroporous adsorptive resins combined with Prep-HPLC. Molecules, 2018, 23(10), 2660.
[http://dx.doi.org/10.3390/molecules23102660] [PMID: 30332822]
[63]
Roselló-Soto, E.; Martí-Quijal, F.; Cilla, A.; Munekata, P.; Lorenzo, J.; Remize, F.; Barba, F. Influence of temperature, solvent and pH on the selective extraction of phenolic compounds from tiger nuts by-products: Triple-TOF-LC-MS-MS characterization. Molecules, 2019, 24(4), 797.
[http://dx.doi.org/10.3390/molecules24040797] [PMID: 30813299]
[64]
Guo, Z.; Liang, X.; Xie, Y. Qualitative and quantitative analysis on the chemical constituents in Orthosiphon stamineus Benth. using ultra high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal., 2019, 164, 135-147.
[http://dx.doi.org/10.1016/j.jpba.2018.10.023] [PMID: 30390555]
[65]
Ernawita; Wahyuono, R.; Hesse, J.; Hipler, U-C.; Elsner, P.; Böhm, V. In vitro lipophilic antioxidant capacity, antidiabetic and antibacterial activity of citrus fruits extracts from aceh, Indonesia. Antioxidants, 2017, 6(1), 11.
[http://dx.doi.org/10.3390/antiox6010011]
[66]
Ahmed, W.; Azmat, R.; Qayyum, A.; Khan, S.U.; Khan, S.M.; Ahmed, S.; Moin, S. Extraction of diverse polyphenols in relation with storage periods of Citrus paradisi CV. Shamber through HPLC–DAD technique using different solvent. J. Food Sci. Technol., 2019, 56(1), 384-390.
[http://dx.doi.org/10.1007/s13197-018-3499-x] [PMID: 30728581]
[67]
Fu, M.; Xu, Y.; Chen, Y.; Wu, J.; Yu, Y.; Zou, B.; An, K.; Xiao, G. Evaluation of bioactive flavonoids and antioxidant activity in Pericarpium Citri reticulatae (Citrus reticulata ‘Chachi’) during storage. Food Chem., 2017, 230, 649-656.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.098] [PMID: 28407962]
[68]
Yamamoto, K.; Yahada, A.; Sasaki, K.; Ogawa, K.; Koga, N.; Ohta, H. Chemical markers of shiikuwasha juice adulterated with calamondin juice. J. Agric. Food Chem., 2012, 60(44), 11182-11187.
[http://dx.doi.org/10.1021/jf303374g] [PMID: 23043313]
[69]
Russo, M.; Rigano, F.; Arigò, A.; Sciarrone, D.; Calabrò, M.L.; Farnetti, S.; Dugo, P.; Mondello, L. Rapid isolation, reliable characterization, and water solubility improvement of polymethoxyflavones from cold-pressed mandarin essential oil. J. Sep. Sci., 2016, 39(11), 2018-2027.
[http://dx.doi.org/10.1002/jssc.201501366] [PMID: 27060470]
[70]
Zhang, H.; Bibi, A.; Lu, H.; Han, J.; Chen, H. Comparative study on ambient ionization methods for direct analysis of navel orange tissues by mass spectrometry. J. Mass Spectrom., 2017, 52(8), 526-533.
[http://dx.doi.org/10.1002/jms.3961] [PMID: 28628730]
[71]
Ismail, Z.; Saidan, N.H.; Aisha, A.F.A.; Hamil, M.S.R.; Abdul Majid, A.M.S. A novel reverse phase high-performance liquid chromatography method for standardization of Orthosiphon stamineus leaf extracts. Pharmacognosy Res., 2015, 7(1), 23-31.
[http://dx.doi.org/10.4103/0974-8490.147195] [PMID: 25598631]
[72]
Zou, G.A.; Su, Z.H.; Zhang, H.W.; Wang, Y.; Yang, J.S.; Zou, Z.M. Flavonoids from the Stems of Croton caudatus Geisel. var. tomentosus Hook. Molecules, 2010, 15(3), 1097-1102.
[http://dx.doi.org/10.3390/molecules15031097] [PMID: 20335965]
[73]
de Pascual-T, J.; González, M.; Vicente, S.; Bellido, I. Flavonoids from Chenopodium botrys. Planta Med., 1981, 41(4), 389-391.
[http://dx.doi.org/10.1055/s-2007-971732] [PMID: 17401861]
[74]
Kimura, J.; Nemoto, K.; Yokosuka, A.; Mimaki, Y.; Degawa, M.; Ohizumi, Y. 6-demethoxynobiletin, a nobiletin-analog citrus flavonoid, enhances extracellular signal-regulated kinase phosphorylation in PC12D cells. Biol. Pharm. Bull., 2013, 36(10), 1646-1649.
[http://dx.doi.org/10.1248/bpb.b13-00230] [PMID: 23934345]
[75]
Wang, D.; Wang, J.; Huang, X.; Tu, Y.; Ni, K. Identification of polymethoxylated flavones from green tangerine peel (Pericarpium Citri Reticulatae Viride) by chromatographic and spectroscopic techniques. J. Pharm. Biomed. Anal., 2007, 44(1), 63-69.
[http://dx.doi.org/10.1016/j.jpba.2007.01.048] [PMID: 17367982]
[76]
Ortuño, A.; Arcas, M.C.; Botía, J.M.; Fuster, M.D.; Del Río, J.A. Increasing resistance against Phytophthora citrophthora in tangelo Nova fruits by modulating polymethoxyflavones levels. J. Agric. Food Chem., 2002, 50(10), 2836-2839.
[http://dx.doi.org/10.1021/jf011382a] [PMID: 11982408]
[77]
Delaney, B.; Phillips, K.; Vasquez, C.; Wilson, A.; Cox, D.; Wang, H.B.; Manthey, J. Genetic toxicity of a standardized mixture of citrus polymethoxylated flavones. Food Chem. Toxicol., 2002, 40(5), 617-624.
[http://dx.doi.org/10.1016/S0278-6915(02)00007-8] [PMID: 11955667]
[78]
Robbins, R.C. Flavones in citrus exhibit antiadhesive action on platelets. Int. J. Vitam. Nutr. Res., 1988, 58(4), 418-421.
[PMID: 3243696]
[79]
del Río, J.A.; Gómez, P.; Baidez, A.G.; Arcas, M.C.; Botía, J.M.; Ortuño, A. Changes in the levels of polymethoxyflavones and flavanones as part of the defense mechanism of Citrus sinensis (cv. Valencia Late) fruits against Phytophthora citrophthora. J. Agric. Food Chem., 2004, 52(7), 1913-1917.
[http://dx.doi.org/10.1021/jf035038k] [PMID: 15053528]
[80]
Muhammad, H.; Gomes-Carneiro, M.R.; Poça, K.S.; De-Oliveira, A.C.A.X.; Afzan, A.; Sulaiman, S.A.; Ismail, Z.; Paumgartten, F.J.R. Evaluation of the genotoxicity of Orthosiphon stamineus aqueous extract. J. Ethnopharmacol., 2011, 133(2), 647-653.
[http://dx.doi.org/10.1016/j.jep.2010.10.055] [PMID: 21044879]
[81]
Ye, X.; Song, F.; Fan, G.; Wu, F. Simultaneous determination of 11 constituents in Citrus reticulate ‘Chachi’ by high performance liquid chromatography. Se Pu, 2015, 33(4), 423-427.
[http://dx.doi.org/10.3724/SP.J.1123.2014.12015] [PMID: 26292415]
[82]
Hijaz, F.; Manthey, J.A.; Van der Merwe, D.; Killiny, N. Nucleotides, micro- and macro-nutrients, limonoids, flavonoids, and hydroxycinnamates composition in the phloem sap of sweet orange. Plant Signal. Behav., 2016, 11(6), e1183084.
[http://dx.doi.org/10.1080/15592324.2016.1183084] [PMID: 27171979]
[83]
Zhao, L.; Zhao, H.; Zhao, X.; Kong, W.; Hu, Y.; Yang, S.; Yang, M. Simultaneous quantification of seven bioactive flavonoids in Citri Reticulatae Pericarpium by ultra-fast liquid chromatography coupled with tandem mass spectrometry. Phytochem. Anal., 2016, 27(3-4), 168-173.
[http://dx.doi.org/10.1002/pca.2612] [PMID: 27313153]
[84]
Zhao, B.T.; Kim, E.J.; Son, K.H.; Son, J.K.; Min, B.S.; Woo, M.H. Quality evaluation and pattern recognition analyses of marker compounds from five medicinal drugs of Rutaceae family by HPLC/PDA. Arch. Pharm. Res., 2015, 38(8), 1512-1520.
[http://dx.doi.org/10.1007/s12272-015-0583-x] [PMID: 25732613]
[85]
Ding, Y.Q.; Xiong, Y.; Zhou, B.; Deng, M.Z.; Deng, K.Z. Isolation and structural identification of flavonoids from Aurantii fructus. Zhongguo Zhongyao Zazhi, 2015, 40(12), 2352-2356.
[PMID: 26591524]
[86]
Nogata, Y.; Ohta, H.; Sumida, T.; Sekiya, K. Effect of extraction method on the concentrations of selected bioactive compounds in mandarin juice. J. Agric. Food Chem., 2003, 51(25), 7346-7351.
[http://dx.doi.org/10.1021/jf034732x] [PMID: 14640582]
[87]
Yam, M.F.; Lim, V.; Salman, I.M.; Ameer, O.Z.; Ang, L.F.; Rosidah, N.; Abdulkarim, M.F.; Abdullah, G.Z.; Basir, R.; Sadikun, A.; Asmawi, M.Z. HPLC and anti-inflammatory studies of the flavonoid rich chloroform extract fraction of Orthosiphon stamineus leaves. Molecules, 2010, 15(6), 4452-4466.
[http://dx.doi.org/10.3390/molecules15064452] [PMID: 20657453]
[88]
Wang, Z.; Li, S.; Ferguson, S.; Goodnow, R.; Ho, C.T. Validated reversed phase LC method for quantitative analysis of polymethoxyflavones in citrus peel extracts. J. Sep. Sci., 2008, 31(1), 30-37.
[http://dx.doi.org/10.1002/jssc.200700331] [PMID: 18095294]
[89]
Zhou, D.Y.; Zhang, X.L.; Xu, Q.; Xue, X.Y.; Zhang, F.F.; Liang, X.M. UPLC/Q-TOFMS/MS as a powerful technique for rapid identification of polymethoxylated flavones in Fructus aurantii. J. Pharm. Biomed. Anal., 2009, 50(1), 2-8.
[http://dx.doi.org/10.1016/j.jpba.2009.03.010] [PMID: 19428213]
[90]
Lu, Y.; Zhang, C.; Bucheli, P.; Wei, D. Citrus flavonoids in fruit and traditional Chinese medicinal food ingredients in China. Plant Foods Hum. Nutr., 2006, 61(2), 55-63.
[http://dx.doi.org/10.1007/s11130-006-0014-8] [PMID: 16816988]
[91]
Green, C.O.; Wheatley, A.O.; Osagie, A.U.; Morrison, E.Y.S.A.; Asemota, H.N. Determination of polymethoxylated flavones in peels of selected Jamaican and Mexican citrus (Citrus spp.) cultivars by high-performance liquid chromatography. Biomed. Chromatogr., 2007, 21(1), 48-54.
[http://dx.doi.org/10.1002/bmc.718] [PMID: 17080505]
[92]
Kim, H.; Moon, J.Y.; Mosaddik, A.; Cho, S.K. Induction of apoptosis in human cervical carcinoma HeLa cells by polymethoxylated flavone-rich Citrus grandis Osbeck (Dangyuja) leaf extract. Food Chem. Toxicol., 2010, 48(8-9), 2435-2442.
[http://dx.doi.org/10.1016/j.fct.2010.06.006] [PMID: 20538032]
[93]
Weber, B.; Hartmann, B.; Stöckigt, D.; Schreiber, K.; Roloff, M.; Bertram, H.J.; Schmidt, C.O. Liquid chromatography/mass spectrometry and liquid chromatography/nuclear magnetic resonance as complementary analytical techniques for unambiguous identification of polymethoxylated flavones in residues from molecular distillation of orange peel oils (Citrus sinensis). J. Agric. Food Chem., 2006, 54(2), 274-278.
[http://dx.doi.org/10.1021/jf051606f] [PMID: 16417279]
[94]
Mouly, P.; Gaydou, E.M.; Auffray, A. Simultaneous separation of flavanone glycosides and polymethoxylated flavones in citrus juices using liquid chromatography. J. Chromatogr. A, 1998, 800(2), 171-179.
[http://dx.doi.org/10.1016/S0021-9673(97)01131-X] [PMID: 9561761]
[95]
Miyazawa, M.; Okuno, Y.; Fukuyama, M.; Nakamura, S.; Kosaka, H. Antimutagenic activity of polymethoxyflavonoids from Citrus aurantium. J. Agric. Food Chem., 1999, 47(12), 5239-5244.
[http://dx.doi.org/10.1021/jf990176o] [PMID: 10606602]
[96]
Rouseff, R.L.; Ting, S.V. Quantitation of polymethoxylated flavones in orange juice by high-performance liquid chromatography. J. Chromatogr. A, 1979, 176(1), 75-87.
[http://dx.doi.org/10.1016/S0021-9673(00)92088-0] [PMID: 546912]
[97]
Xu, L.; Jiang, W.; Jia, H.; Zheng, L.; Xing, J.; Liu, A.; Du, G. Discovery of multitarget-directed ligands against influenza A virus from compound Yizhihao through a predictive system for compound-protein interactions. Front. Cell. Infect. Microbiol., 2020, 10, 16.
[http://dx.doi.org/10.3389/fcimb.2020.00016] [PMID: 32117796]
[98]
Leporini, M.; Tundis, R.; Sicari, V.; Pellicanò, T.M.; Dugay, A.; Deguin, B.; Loizzo, M.R. Impact of extraction processes on phytochemicals content and biological activity of Citrus × clementina Hort. Ex Tan. leaves: New opportunity for under-utilized food by-products. Food Res. Int., 2020, 127, 108742.
[http://dx.doi.org/10.1016/j.foodres.2019.108742] [PMID: 31882102]
[99]
Zhou, D.Y.; Chen, D.L.; Xu, Q.; Xue, X.Y.; Zhang, F.F.; Liang, X.M. Characterization of polymethoxylated flavones in Fructus aurantii by liquid chromatography with atmospheric pressure chemical ionization combined with tandem mass spectrometry. J. Pharm. Biomed. Anal., 2007, 43(5), 1692-1699.
[http://dx.doi.org/10.1016/j.jpba.2006.12.032] [PMID: 17291708]
[100]
Sendra, J.M.; Navarro, J.L.; Izquierdo, L. C18 solid-phase isolation and high-performance liquid chromatography/ultraviolet diode array determination of fully methoxylated flavones in citrus juices. J. Chromatogr. Sci., 1988, 26(9), 443-448.
[http://dx.doi.org/10.1093/chromsci/26.9.443] [PMID: 3225307]
[101]
Wang, X. Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Lett., 2009, 583(20), 3303-3309.
[http://dx.doi.org/10.1016/j.febslet.2009.09.042] [PMID: 19796637]
[102]
Sun, B.F. Total synthesis of natural and pharmaceutical products powered by organocatalytic reactions. Tetrahedron Lett., 2015, 56(17), 2133-2140.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.046]
[103]
Pieper, P.; McHugh, E.; Amaral, M.; Tempone, A.G.; Anderson, E.A. Enantioselective synthesis and anti-parasitic properties of aporphine natural products. Tetrahedron, 2020, 76(2), 130814.
[http://dx.doi.org/10.1016/j.tet.2019.130814]
[104]
Shen, B. A new golden age of natural products drug discovery. Cell, 2015, 163(6), 1297-1300.
[http://dx.doi.org/10.1016/j.cell.2015.11.031] [PMID: 26638061]
[105]
Deyou, T.; Woo, J.H.; Choi, J.H.; Jang, Y.P. A new natural product from the leaves of Olinia usambarensis and evaluation of its constituents for cytotoxicity against human ovarian cancer cells. S. Afr. J. Bot., 2017, 113, 182-185.
[http://dx.doi.org/10.1016/j.sajb.2017.08.011]
[106]
Yam, M.F.; Ang, L.F.; Basir, R.; Salman, I.M.; Ameer, O.Z.; Asmawi, M.Z. Evaluation of the anti-pyretic potential of Orthosiphon stamineus Benth standardized extract. Inflammopharmacology, 2009, 17(1), 50-54.
[http://dx.doi.org/10.1007/s10787-008-8038-3] [PMID: 19127348]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy