Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Prediction of Partition Coefficient of Carbamates using GA-MLR and GAANN Methods, and Comparison with Experimental Data

Author(s): Seyedeh Azadeh Moosavi, Esmat Mohammadinasab* and Tahereh Momeni Isfahani

Volume 20, Issue 5, 2023

Published on: 17 January, 2023

Page: [481 - 493] Pages: 13

DOI: 10.2174/1570178620666221205095036

Price: $65

Abstract

In the present study, quantum mechanics calculations at the B3LYP theory level and 6- 31G* basis set were carried out to obtain the optimized geometry of carbamates. Then, a comprehensive set of molecular descriptors was computed by using the Dragon software. A genetic algorithm (GA) was also applied to select the suitable variables that resulted in the best-fixed models. The relationship between the molecular descriptors and the partition coefficient of 66 types of carbamates is represented. The molecular descriptors were applied for modeling the multiple linear regression (MLR) and artificial neural network (ANN) methods. The quantitative structure-property relationship models showed that the GA-ANN over the GA-MLR approach resulted in the best outcome. So, the predicted partition coefficient was found to be in good agreement with the experimental partition coefficient. The EEig01x and ALOGP descriptors were applied for modeling the multiple linear regression (MLR) and artificial neural network (ANN) methods. The best model was validated by Q2 LOO, Q2 F1, Q2 F2, Q2 F3, and CCC techniques and external validation parameters for the established theoretical models.

« Previous
Graphical Abstract

[1]
Roberts, T.R.; Hutson, D.H.; Lee, P.W.; Nicholls, P.H.; Plimmer, J.R. Metabolic pathways of agrochemicals: part 1: herbicides and plant growth regulators; Royal Society of Chemistry; Cambridge, , 1998; 1, pp. 167-174.
[2]
Roberts, T.R.; Hutson, D.H.; Jewess, P.J.; Lee, P.; Nicholls, P.H. Metabolic pathways of agrochemicals: part 2: Insecticides and fungicides; Royal Society of Chemistry; Cambridge, , 1999; 2, pp. 3-75.
[3]
Piel, C.; Pouchieu, C.; Carles, C.; Béziat, B.; Boulanger, M.; Bureau, M.; Busson, A.; Grüber, A.; Lecluse, Y.; Migault, L.; Renier, M.; Rondeau, V.; Schwall, X.; Tual, S.; Pierre, L.; Baldi, I.; Arveux, P.; Bara, S.; Bouvier, A.M.; Busquet, T.; Colonna, M.; Coureau, G.; Delanoé, M.; Grosclaude, P.; Guizard, A.V.; Herbrecht, P.; Laplante, J.J.; Lapotre-Ledoux, B.; Launoy, G.; Lenoir, D.; Marrer, E.; Marcotullio, E.; Maynadié, M.; Molinié, F.; Monnereau, A.; Paumier, A.; Pouzet, P.; Thibaudier, J.M.; Troussard, X.; Velten, M.; Wavelet, E.; Woronoff, A.S. Environ. Int., 2019, 130, 104876.
[http://dx.doi.org/10.1016/j.envint.2019.05.070]
[4]
Testa, B.; Mayer, J.M.; Mayer, J. Hydrolysis in drug and prodrug metabolism; John Wiley & Sons: New York, 2003.
[http://dx.doi.org/10.1002/9783906390444]
[5]
Ghosh, A.K.; Brindisi, M. J. Med. Chem., 2015, 58(7), 2895-2940.
[http://dx.doi.org/10.1021/jm501371s] [PMID: 25565044]
[6]
Roy, K.K.; Dixit, A.; Saxena, A.K. J. Mol. Graph. Model., 2008, 27(2), 197-208.
[http://dx.doi.org/10.1016/j.jmgm.2008.04.006] [PMID: 18515163]
[7]
Lee, S.; Barron, M.G. J. Comput. Aided Mol. Des., 2016, 30(4), 347-363.
[http://dx.doi.org/10.1007/s10822-016-9910-7] [PMID: 27055524]
[8]
Sun, G.; Zhang, Y.; Pei, L.; Lou, Y.; Mu, Y.; Yun, J.; Li, F.; Wang, Y.; Hao, Z.; Xi, S.; Li, C.; Chen, C.; Zhao, L.; Zhang, N.; Zhong, R.; Peng, Y. Ecotoxicol. Environ. Saf., 2021, 222, 112525-112538.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112525] [PMID: 34274838]
[9]
Toropov, A.A.; Toropova, A.P.; Cappelli, C.I.; Benfenati, E. Fluid Phase Equilib., 2015, 397, 44-49.
[http://dx.doi.org/10.1016/j.fluid.2015.03.051]
[10]
Cappelli, C.I.; Benfenati, E.J. Environ. Res., 2015, 143, 26-32.
[http://dx.doi.org/10.1016/j.envres.2015.09.025]
[11]
Amiri, R.; Djelloul, M.; Amel, B. J. Chem. Soc., 2020, 85(4), 467-480.
[12]
Mudasir, M.; Wibowo, Y.M.; Pranowo, H.D. Indian J. Chem., 2016, 5, 54-68.
[13]
Souyei, B.; Hadj Seyd, A.; Zaiz, F.; Rebiai, A. Acta Chim. Slov., 2019, 66(2), 315-325.
[http://dx.doi.org/10.17344/acsi.2018.4793] [PMID: 33855509]
[14]
Zapadka, M.; Kaczmarek, M.; Kupcewicz, B.; Dekowski, P.; Walkowiak, A.; Kokotkiewicz, A.; Łuczkiewicz, M.; Buciński, A. J. Pharm. Biomed. Anal., 2019, 5(164), 681-689.
[http://dx.doi.org/10.1016/j.jpba.2018.11.024] [PMID: 30476861]
[15]
Chen, X.; Lin, M.; Sun, L.; Xu, T.; Lai, K.; Huang, M.; Lin, H. Food Chem., 2019, 293, 271-277.
[http://dx.doi.org/10.1016/j.foodchem.2019.04.085] [PMID: 31151611]
[16]
Gaullier, C.; Baran, N.; Dousset, S.; Devau, N.; Billet, D.; Kitzinger, G.; Coisy, E. Ecol. Eng., 2019, 136, 185-192.
[http://dx.doi.org/10.1016/j.ecoleng.2019.06.019]
[17]
Tripathi, M.; Singal, S.K. Ecol. Indic., 2019, 96, 430-436.
[http://dx.doi.org/10.1016/j.ecolind.2018.09.025]
[18]
Amari, S.I. Differential-Geometrical Methods in Statistics; Springer-Verlag: Berlin, 1990, p. 28.
[19]
Miller, T.H.; Gallidabino, M.D.; MacRae, J.I.; Owen, S.F.; Bury, N.R.; Barron, L.P. Sci. Total Environ., 2019, 648, 80-89.
[http://dx.doi.org/10.1016/j.scitotenv.2018.08.122] [PMID: 30114591]
[20]
Zhao, Y.; Li, Y. J. Clean. Prod., 2019, 221, 113-121.
[http://dx.doi.org/10.1016/j.jclepro.2019.02.156]
[21]
Bora, A.; Suzuki, T.; Funar-Timofei, S. Environ. Sci. Pollut. Res. Int., 2019, 26(14), 14547-14561.
[http://dx.doi.org/10.1007/s11356-019-04662-9] [PMID: 30877540]
[22]
Bermúdez-Saldaña, J.M.; Cronin, M.T.D. Pest Manag. Sci., 2006, 62(9), 819-831.
[http://dx.doi.org/10.1002/ps.1233] [PMID: 16763959]
[23]
Vacondio, F.; Silva, C.; Mor, M.; Testa, B. Drug Metab. Rev., 2010, 42(4), 551-589.
[http://dx.doi.org/10.3109/03602531003745960] [PMID: 20441444]
[24]
Vacondio, F.; Silva, C.; Lodola, A.; Fioni, A.; Rivara, S.; Duranti, A.; Tontini, A.; Sanchini, S.; Clapper, J.R.; Piomelli, D.; Mor, M.; Tarzia, G. ChemMedChem, 2009, 4(9), 1495-1504.
[http://dx.doi.org/10.1002/cmdc.200900120] [PMID: 19554599]
[25]
Bahmani, A.; Saaidpour, S.; Rostami, A. Sci. Rep., 2017, 7(1), 5760.
[http://dx.doi.org/10.1038/s41598-017-05964-z] [PMID: 28127051]
[26]
Valkó, K.L. J. Pharm. Biomed. Anal., 2016, 130, 35-54.
[http://dx.doi.org/10.1016/j.jpba.2016.04.009] [PMID: 27084527]
[27]
Lopez, K.; Pinheiro, S.; Zamora, W.J. J. Comput. Aided Mol. Des., 2021, 35(8), 923-931.
[http://dx.doi.org/10.1007/s10822-021-00409-2] [PMID: 34251523]
[28]
Lanevskij, K.; Didziapetris, R. J. Pharm. Sci., 2019, 108(1), 78-86.
[http://dx.doi.org/10.1016/j.xphs.2018.10.006] [PMID: 30321548]
[29]
Wang, S.; Cheng, M.; Zhou, L.; Dai, Y.; Dang, Y.; Ji, X. SAR QSAR Environ. Res., 2021, 32(5), 379-393.
[http://dx.doi.org/10.1080/1062936X.2021.1902387] [PMID: 33823697]
[30]
Bouakkadia, A.; Lourici, L.; Messadi, D. Manag. Environ. Qual., 2017, 28(4), 579-592.
[http://dx.doi.org/10.1108/MEQ-08-2015-0162]
[31]
Golmohammadi, H. J. Comput. Chem., 2009, 30(15), 2455-2465.
[http://dx.doi.org/10.1002/jcc.21243] [PMID: 19360793]
[32]
Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. J. Am. Stat. Assoc., 2008, 103, 880-888.
[33]
Randic, M.; Basak, S.C. SAR QSAR Environ. Res., 2000, 11(1), 1-23.
[http://dx.doi.org/10.1080/10629360008033226] [PMID: 10768403]
[34]
Hocking, R. Methods and Applications of Linear Models: Regression and the Analysis of Variance; John Wiley & Sons: New York, 2013, pp. 359-395.
[35]
Thapliyal, A.; Khar, R.K.; Chandra, A. Curr. Nanosci., 2018, 14(3), 239-251.
[http://dx.doi.org/10.2174/1573413713666171103103141]
[36]
Arief, I.; Armunanto, R.; Setiaji, B.; Fachrie, M. Molekul., 2016, 11(2), 158-167.
[37]
Bouarra, N.; Nadji, N.; Nouri, L.; Boudjemaa, A.; Bachari, K.; Messadi, D. J. Serb. Chem. Soc., 2021, 86(1), 63-75.
[http://dx.doi.org/10.2298/JSC200219019B]
[38]
Mahfoudi, R.; Tahri, D.; Djeridane, A.; Yousfi, M.; Gaydou, E.M. J. Biochem. Mol. Toxicol., 2018, 32(12), e22222.
[http://dx.doi.org/10.1002/jbt.22222] [PMID: 30230144]
[39]
Souza, E.S.; Zaramello, L.; Kuhnen, C.A.; Junkes, B.S.; Yunes, R.A.; Heinzen, V.E.F. Int. J. Mol. Sci., 2011, 12(10), 7250-7264.
[http://dx.doi.org/10.3390/ijms12107250] [PMID: 22072945]
[40]
Zhang, H.; Shen, C.; Liu, R.Z.; Mao, J.; Liu, C.T.; Mu, B. J. Appl. Toxicol., 2020, 40(9), 1198-1209.
[http://dx.doi.org/10.1002/jat.3975] [PMID: 32207182]
[41]
Roy, K.; Kar, S.; Das, R.N. A primer on QSAR/QSPR modeling; Springer: Cham, 2015, pp. 37-59.
[42]
Saghaie, L.; Sakhi, H.; Sabzyan, H.; Shahlaei, M.; Shamshirian, D. Med. Chem. Res., 2013, 22(4), 1679-1688.
[http://dx.doi.org/10.1007/s00044-012-0152-5]
[43]
Tóth, G.; Bodai, Z.; Héberger, K. J. Comput. Aided Mol. Des., 2013, 27(10), 837-844.
[http://dx.doi.org/10.1007/s10822-013-9680-4] [PMID: 24141986]
[44]
Popoola, S.I.; Adetiba, E.; Atayero, A.A.; Faruk, N.; Calafate, C.T. Cogent Eng., 2018, 5(1), 1444345.
[http://dx.doi.org/10.1080/23311916.2018.1444345]
[45]
Gramatica, P.; Sangion, A. J. Chem. Inf. Model., 2016, 56(6), 1127-1131.
[46]
Kumar, A.; Kumar, P. J. Hazard. Mater., 2021, 402, 1-12.
[47]
Chirico, N.; Gramatica, P. J. Chem. Inf. Model., 2011, 51(9), 2320-2335.
[http://dx.doi.org/10.1021/ci200211n] [PMID: 21800825]
[48]
Chirico, N.; Gramatica, P. J. Chem. Inf. Model., 2012, 52(8), 2044-2058.
[http://dx.doi.org/10.1021/ci300084j] [PMID: 22721530]
[49]
U.S. National Library of Medicine: http://chem.nlm.nih.gov, (Chem ID plus)..
[50]
Frisch, M.L.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Pople, J.A. Gaussion, Inc. Wallingford CT. , 2009.
[51]
Tsuneda, T. Density functional theory in quantum chemistry; Spring: Germany, 2014, pp. 4-978.
[http://dx.doi.org/10.1007/978-4-431-54825-6]
[52]
Tsuneda, T.; Hirao, K. J. Chem. Phys., 2014, 140(18), 18A513.
[53]
Todeschini, R.; Consonni, V. Handbook of molecular descriptors; John Wiley & Sons: New York, 2008.
[54]
Ahmadi, S.; Habibpour, E. Anticancer. Agents Med. Chem., 2017, 17(4), 552-565.
[http://dx.doi.org/10.2174/1871520616666160811162105] [PMID: 27528182]
[55]
Shahin, A. Ganji, S. Curr. Drug Discov. Technol., 2016, 13(4), 232-253.
[http://dx.doi.org/10.2174/1570163813666160725114241] [PMID: 27457492]
[56]
Mirjalili, S. Evolutionary Algorithms and Neural Networks; Springer: Cham, 2019, 780, pp. 43-55.
[http://dx.doi.org/10.1007/978-3-319-93025-1]
[57]
Glavanović, S.; Glavanović, M.; Tomišić, V. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 157, 258-264.
[http://dx.doi.org/10.1016/j.saa.2015.12.020] [PMID: 26774813]
[58]
Liu, S.; Jin, L.; Yu, H.; Lv, L.; Chen, C.E.; Ying, G.G. Sci. Total Environ., 2020, 706, 135691.
[http://dx.doi.org/10.1016/j.scitotenv.2019.135691] [PMID: 31784180]
[59]
Lin, W.; Jiang, R.; Shen, Y.; Xiong, Y.; Hu, S.; Xu, J.; Ouyang, G. Sci. Total Environ., 2018, 635, 53-59.
[http://dx.doi.org/10.1016/j.scitotenv.2018.04.116] [PMID: 29660727]
[60]
Niazi, A.; Leardi, R. Genetic algorithms in chemometrics; Wiley Online Library: US, 2012.
[http://dx.doi.org/10.1002/cem.2426]
[61]
Sarkhosh, M.; Khorshidi, N.; Niazi, A.; Leardi, R. Chemom. Intell. Lab. Syst., 2014, 139, 168-174.
[http://dx.doi.org/10.1016/j.chemolab.2014.09.004]
[62]
Leardi, R. Nature-inspired Methods in Chemometrics: Genetic Algorithm and Artificial Neural Networks; Elsevier: Amsterdam, 2003.
[63]
Leardi, R. J. Chemometr., 2000, 14(5-6), 643-655.
[http://dx.doi.org/10.1002/1099-128X(200009/12)14:5/6<643:AID-CEM621>3.0.CO;2-E]
[64]
Kurnia, K.A.; Zunita, M.; Coutinho, J.A.; Wenten, I.G.; Santoso, D. J. Mol. Liq., 2022, 347, 118239.
[65]
Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to linear regression analysis; John Wiley & Sons: New York, 2015.
[66]
Chai, T.; Draxler, R.R. Geosci. Model Dev., 2014, 7(3), 1247-1250.
[http://dx.doi.org/10.5194/gmd-7-1247-2014]
[67]
Villarrubia, G.; De Paz, J.F.; Chamoso, P.; la Prieta, F.D. Neurocomputing, 2018, 272, 10-16.
[http://dx.doi.org/10.1016/j.neucom.2017.04.075]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy