Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

A New Dinuclear Copper(II)-Hydrazone Complex: Synthesis, Crystal Structure and Antibacterial Activity

Author(s): Sevda ER*, Hakan Ünver and Gökhan Dikmen

Volume 20, Issue 4, 2023

Published on: 13 December, 2022

Page: [376 - 387] Pages: 12

DOI: 10.2174/1570178620666221202090558

Price: $65

Abstract

Increasing microbial resistance has become a threatening situation for humanity. Therefore, new active antimicrobial compounds are needed to be synthesized. Copper complexes, one of these types of biologically active compounds, appear as compounds with a wide range of biological uses. Many scientific investigations have shown that copper complexes have antibacterial, antimalarial, anti- inflammatory, and anticancer activities. In this study, a new bis-copper(II) complex based on a hydrazone ligand (Ligand A) was designed, synthesized, and evaluated as an antimicrobial agent. The characterization of copper(II) complex was mainly done with single crystal X-ray diffraction and other spectroscopic techniques (FT-IR and Elemental Analysis). In order to determine the chemical structure and vibrational properties, theoretical calculations were carried out. Vibrational wavenumbers and HOMO-LUMO energy gap of copper(II) complex were investigated using the DFT/ B3LYP method, LanL2DZ basis set. The agreement between experimental and theoretical results were observed. Information about local and global chemical activity, the electrophilic and nucleophilic nature of copper(II) complex were theoretically obtained. The ligand and its copper(II) complex were investigated for their antibacterial effects against Gram (+) and Gram (-) bacteria. The results show that copper(II) complex was more effective in reducing cell viability of Enterococcus faecalis, Staphylococcus aureus, and Staphylococcus epidermidis than free hydrazone ligand, whereas it was not effective towards Gram (-) forms. Copper(II) complex displayed the highest antimicrobial activity against Staphylococcus aureus ATCC 25923 and S. epidermidis CECT 4183. The results suggested that the designed metal complex can be a good alternative to similar complex systems as an antimicrobial agent. Besides, there are not many studies in the literature on the antibacterial activities of the copper( II) complex and its ligand. For this reason, the study will contribute to the literature.

« Previous
Graphical Abstract

[1]
Hossain, M.S.; Zakaria, C.M. Kudrat-E-Zahan. M. Am. J. Heterocyclic Chem., 2018, 4(1), 1.
[2]
Cao, W.; Liu, Y.; Zhang, T.; Jia, J. Polyhedron, 2018, 147, 62-68.
[http://dx.doi.org/10.1016/j.poly.2018.03.012]
[3]
Yu, Y.Y.; Xian, H.D.; Liu, J.F.; Zhao, G.L. Molecules, 2009, 14(5), 1747-1754.
[http://dx.doi.org/10.3390/molecules14051747] [PMID: 19471194]
[4]
Al-Shaalan, N.H. Molecules, 2011, 16(10), 8629-8645.
[http://dx.doi.org/10.3390/molecules16108629] [PMID: 21996717]
[5]
Claudel, M.; Schwarte, J.V.; Fromm, K.M. Chemistry, 2020, 2(4), 849-899.
[http://dx.doi.org/10.3390/chemistry2040056]
[6]
Çay, S.; Köse, M.; Tümer, F.; Gölcü, A.; Tümer, M. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 151, 821-838.
[http://dx.doi.org/10.1016/j.saa.2015.07.044] [PMID: 26172470]
[7]
Subha, L.; Balakrishnan, C.; Natarajan, S.; Theetharappan, M.; Subramanian, B.; Neelakantan, M.A. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 153, 249-256.
[http://dx.doi.org/10.1016/j.saa.2015.08.033] [PMID: 26318699]
[8]
Poonia, K.; Siddiqui, S.; Arshad, M.; Kumar, D. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 155, 146-154.
[http://dx.doi.org/10.1016/j.saa.2015.10.015] [PMID: 26619196]
[9]
Correia, I.; Adão, P.; Roy, S.; Wahba, M.; Matos, C.; Maurya, M.R.; Marques, F.; Pavan, F.R.; Leite, C.Q.F.; Avecilla, F.; Costa Pessoa, J. J. Inorg. Biochem., 2014, 141, 83-93.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.07.019] [PMID: 25226436]
[10]
Belal, A.A.M.; El-Deen, I.M.; Farid, N.Y.; Zakaria, R.; Refat, M.S. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 149, 771-787.
[http://dx.doi.org/10.1016/j.saa.2015.05.005] [PMID: 25989615]
[11]
Avaji, P.G.; Vinod Kumar, C.H.; Patil, S.A.; Shivananda, K.N.; Nagaraju, C. Eur. J. Med. Chem., 2009, 44(9), 3552-3559.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.032] [PMID: 19419802]
[12]
Bhaskar, R.; Salunkhe, N.; Yaul, A.; Aswar, A. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 151, 621-627.
[http://dx.doi.org/10.1016/j.saa.2015.06.121] [PMID: 26163785]
[13]
Caro, A.A.; Commissariat, A.; Dunn, C.; Kim, H.; García, S.L.; Smith, A.; Strang, H.; Stuppy, J.; Desrochers, L.P.; Goodwin, T.E. Biochim. Biophys. Acta, 2015, 1850(11), 2256-2264.
[http://dx.doi.org/10.1016/j.bbagen.2015.08.005]
[14]
Kareem, H.S.; Ariffin, A.; Nordin, N.; Heidelberg, T.; Abdul-Aziz, A.; Kong, K.W.; Yehye, W.A. Eur. J. Med. Chem., 2015, 103, 497-505.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.016] [PMID: 26402727]
[15]
Gökçe, M.; Utku, S.; Küpeli, E. Eur. J. Med. Chem., 2009, 44(9), 3760-3764.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.048] [PMID: 19535179]
[16]
Benítez, J.; Cavalcanti de Queiroz, A.; Correia, I.; Alves, M.A.; Alexandre-Moreira, M.S.; Barreiro, E.J.; Lima, L.M.; Varela, J.; González, M.; Cerecetto, H.; Moreno, V.; Pessoa, J.C.; Gambino, D. Eur. J. Med. Chem., 2013, 62, 20-27.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.036] [PMID: 23353731]
[17]
Ragavendran, J.V.; Sriram, D.; Patel, S.K.; Reddy, I.V.; Bharathwajan, N.; Stables, J.; Yogeeswari, P. Eur. J. Med. Chem., 2007, 42(2), 146-151.
[http://dx.doi.org/10.1016/j.ejmech.2006.08.010] [PMID: 17011080]
[18]
Anacona, J.R.; Rincones, M. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 141, 169-175.
[http://dx.doi.org/10.1016/j.saa.2015.01.009] [PMID: 25677531]
[19]
Özdemir, Ü.Ö.; Akkaya, N.; Özbek, N. Inorg. Chim. Acta, 2013, 400, 13-19.
[http://dx.doi.org/10.1016/j.ica.2013.01.031]
[20]
Jordão, A.K.; Ferreira, V.F.; Lima, E.S.; de Souza, M.C.B.V.; Carlos, E.C.L.; Castro, H.C.; Geraldo, R.B.; Rodrigues, C.R.; Almeida, M.C.B.; Cunha, A.C. Bioorg. Med. Chem., 2009, 17(10), 3713-3719.
[http://dx.doi.org/10.1016/j.bmc.2009.03.053] [PMID: 19380229]
[21]
Cui, J.; Lin, Q.; Gan, C.; Zhan, J.; Su, W.; Zhao, D.; Qi, B.; Huang, Y. Steroids, 2015, 98, 138-142.
[http://dx.doi.org/10.1016/j.steroids.2015.03.012] [PMID: 25814068]
[22]
El-Sabbagh, O.I.; Rady, H.M. Eur. J. Med. Chem., 2009, 44(9), 3680-3686.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.001] [PMID: 19423201]
[23]
Li, L.; Li, Z.; Wang, K.; Liu, Y.; Li, Y.; Wang, Q. Bioorg. Med. Chem., 2016, 24(3), 474-483.
[http://dx.doi.org/10.1016/j.bmc.2015.08.015] [PMID: 26337022]
[24]
Chakraborty, A.; Kumar, P.; Ghosh, K.; Roy, P. Eur. J. Pharmacol., 2010, 647(1-3), 1-12.
[http://dx.doi.org/10.1016/j.ejphar.2010.08.003] [PMID: 20797395]
[25]
Hussain, A.; AlAjmi, M.F.; Rehman, M.T.; Amir, S.; Husain, F.M.; Alsalme, A.; Siddiqui, M.A.; AlKhedhairy, A.A.; Khan, R.A. Sci. Rep., 2019, 9(1), 1-17.
[http://dx.doi.org/10.1038/s41598-018-37186-2] [PMID: 30626917]
[26]
Islam, S.M.; Roy, A.S.; Mondal, P.; Mubarak, M.; Mondal, S.; Hossain, D.; Banerjee, S.; Santra, S.C. J. Mol. Catal. Chem., 2011, 336(1-2), 106-114.
[http://dx.doi.org/10.1016/j.molcata.2011.01.006]
[27]
Rostas, A.M.; Badea, M.; Ruta, L.L.; Farcasanu, I.C.; Maxim, C.; Chifiriuc, M.C.; Popa, M.; Luca, M.; Celan Korosin, N.; Cerc Korosec, R.; Bacalum, M.; Raileanu, M.; Olar, R. Molecules, 2020, 25(17), 3777.
[http://dx.doi.org/10.3390/molecules25173777] [PMID: 32825156]
[28]
Vrdoljak, V. Pavlovi c; G.; Maltar-Strme c ;ki, N.; Cindri c . M. New J. Chem., 2016, 40(11), 9263-9274.
[http://dx.doi.org/10.1039/C6NJ01036A]
[29]
Wang, H.Y.; Shi, Y.H.; Liu, H.Y. J. Coord. Chem., 2012, 65(16), 2811-2819.
[http://dx.doi.org/10.1080/00958972.2012.704550]
[30]
Bai, Y.; Dang, D.; Cao, X.; Duan, C.; Meng, Q. Inorg. Chem. Commun., 2006, 9(1), 86-89.
[http://dx.doi.org/10.1016/j.inoche.2005.10.005]
[31]
Sangeetha, N.R.; Pal, S. J. Chem. Crystallogr., 1999, 29(3), 287-293.
[http://dx.doi.org/10.1023/A:1009517716964]
[32]
Siqueira, J.D.; de Pellegrin, S.F.; dos Santos, S.S.; Iglesias, B.A.; Piquini, P.C.; Arantes, L.P.; Soares, F.A.; Chaves, O.A.; Neves, A.; Back, D.F. J. Inorg. Biochem., 2020, 204, 110950.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110950] [PMID: 31835108]
[33]
Upadhyay, G.; Upadhyaya, P.; Devi, T.G. J. Raman Spectrosc., 2015, 46(12), 1291-1302.
[http://dx.doi.org/10.1002/jrs.4759]
[34]
Wang, Y.; Saebø, S.; Pittman, C.U., Jr J. Mol. Struct. THEOCHEM, 1993, 281(2-3), 91-98.
[http://dx.doi.org/10.1016/0166-1280(93)87064-K]
[35]
Dikmen, G. J. Mol. Struct., 2017, 1150, 299-306.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.097]
[36]
Abdallah, M.A.B.; Bacchi, A.; Parisini, A.; Canossae, S.; Bergamonti, L.; Balestri, D.; Kamoun, S. J. Mol. Struct., 2020, 1215, 128254.
[http://dx.doi.org/10.1016/j.molstruc.2020.128254]
[37]
Sharma, B.K. Spectroscopy, 11th ed; GOEL Publishing House: Meerut, 1996.
[38]
Puviarasan, N.; Arjunan, V.; Mohan, S. Turk. J. Chem., 2002, 26, 323-333.
[39]
Ramasamy, R. Armen. J. Phys., 2015, 8(1), 51-55.
[40]
Silverstein, M.; Basseler, G.C.; Morill, C. Spectrometric Identification of Organic Compounds; Wiley: New York, 2001.
[41]
Keresztury, G. Handbook of Vibrational Spectroscopy; Chalmers, G.M.; Griffith, P.R., Eds.; John Wiley and Sons Ltd.: New York, 2002, 1, pp. 71-87.
[42]
Kheirjou, S.; Abedin, A.; Fattahi, A. Comput. Theor. Chem., 2012, 1000, 1-5.
[http://dx.doi.org/10.1016/j.comptc.2012.08.012]
[43]
Kavitha, N.; Anantha Lakshmi, P.V. J. Saudi Chem. Soc., 2017, 21, S457-S466.
[http://dx.doi.org/10.1016/j.jscs.2015.01.003]
[44]
Gökce, H.; Bahçeli, S. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 114, 61-73.
[http://dx.doi.org/10.1016/j.saa.2013.04.112] [PMID: 23751221]
[45]
Teerasarunyanon, R.; Watchasit, S.; Suksai, C.; Tuntulani, T.; Ruangpornvisuti, V. Inorg. Chem. Commun., 2019, 108, 107502.
[http://dx.doi.org/10.1016/j.inoche.2019.107502]
[46]
Prabhaharan, M.; Prabakaran, A.R.; Gunasekaran, S.; Srinivasan, S. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136, 494-503.
[http://dx.doi.org/10.1016/j.saa.2014.09.062]
[47]
Vargas-Sánchez, R.D.; Mendoza-Wilson, A.M.; Balandrán-Quintana, R.R.; Torrescano-Urrutia, G.R.; Sánchez-Escalante, A. Comput. Theor. Chem., 2015, 1058, 21-27.
[http://dx.doi.org/10.1016/j.comptc.2015.01.014]
[48]
Gunasekaran, S.; Balaji, R.A.; Kumaresan, S.; Anand, G.; Srinivasan, S. Can. J. Anal. Sci. Spectrosc., 2008, 53, 149-160.
[49]
Karamanis, P.; Pouchan, C.; Maroulis, G. Phys. Rev. A, 2008, 77(1), 013201-013208.
[http://dx.doi.org/10.1103/PhysRevA.77.013201 ]
[50]
Dikmen, G.; Kani, İ. J. Mol. Struct., 2020, 1209, 127955.
[http://dx.doi.org/10.1016/j.molstruc.2020.127955]
[51]
Dikmen, G.; Ünver, H. J. Mol. Struct., 2021, 1225, 129139.
[http://dx.doi.org/10.1016/j.molstruc.2020.129139]
[52]
Requena, R.; Vargas, M.; Chiralt, A. Lebensm. Wiss. Technol., 2019, 101, 183-190.
[http://dx.doi.org/10.1016/j.lwt.2018.10.093]
[53]
Hegde, G.S.; Netalkar, S.P.; Revankar, V.K. Appl. Organomet. Chem., 2019, 33(7), 4840.
[http://dx.doi.org/10.1002/aoc.4840]
[54]
Sadhukhan, D.; Ray, A.; Pilet, G.; Rizzoli, C.; Rosair, G.M.; Gómez-García, C.J.; Signorella, S.; Bellú, S.; Mitra, S. Inorg. Chem., 2011, 50(17), 8326-8339.
[http://dx.doi.org/10.1021/ic200846j] [PMID: 21797196]
[55]
Sheldrick, G.M. Acta Crystallogr. A Found. Adv., 2015, 71(1), 3-8.
[http://dx.doi.org/10.1107/S2053273314026370] [PMID: 25537383]
[56]
Sheldrick, G.M. Acta Crystallogr. A, 2008, 64(1), 112-122.
[http://dx.doi.org/10.1107/S0108767307043930] [PMID: 18156677]
[57]
Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; van de Streek, J. J. Appl. Cryst., 2006, 39(3), 453-457.
[http://dx.doi.org/10.1107/S002188980600731X]
[58]
Frisch, M.J.; Trucks, G.; Schlegel, H.B.; Scuseria, G.E. Gaussian 09, Revision A. 1; Gaussian, Inc: Wallingford, CT, 2009.
[59]
Whittleton, S.R.; Boyd, R.J.; Grindley, T.B. J. Phys. Chem. A, 2006, 110(17), 5893-5896.
[http://dx.doi.org/10.1021/jp056996n] [PMID: 16640386]
[60]
Rauhut, G.; Pulay, P. J. Phys. Chem., 1995, 99(10), 3093-3100.
[http://dx.doi.org/10.1021/j100010a019]
[61]
Baker, J.; Jarzecki, A.A.; Pulay, P. J. Phys. Chem. A, 1998, 102(8), 1412-1424.
[http://dx.doi.org/10.1021/jp980038m]
[62]
Clinical and Laboratory Standards Institute; CLSI: Wayne, PA, USA, 2006. Available from: https://clsi.org/?gclid=Cj0KCQiAy racBhDoARIsACGFcS72LPCyllzdcrcERY81owvT6tuBsyAsCW dhSENgz9d0ltne5vn97LoaAkblE ALw_wcB
[63]
Avadi, M.R.; Sadeghi, A.M.M.; Tahzibi, A. Eur. Polym. J., 2004, 40(7), 1355-1361.
[http://dx.doi.org/10.1016/j.eurpolymj.2004.02.015]
[64]
Farrell, N. Coord. Chem. Rev., 2002, 232(1-2), 1-4.
[http://dx.doi.org/10.1016/S0010-8545(02)00100-5]
[65]
Li, M.X.; Zhang, D.; Zhang, L.Z.; Niu, J.Y.; Ji, B.S. J. Organomet. Chem., 2011, 696(4), 852-858.
[http://dx.doi.org/10.1016/j.jorganchem.2010.10.011]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy