Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Pharmacophore-based Identification of Potential Mutant Isocitrate Dehydrogenases I/2 Inhibitors: An Explorative Avenue in Cancer Drug Design

Author(s): Preantha Poonan, Xylia Q. Peters, Mahmoud E.S. Soliman*, Mohamed I. Alahmdi and Nader E. Abo-Dya

Volume 23, Issue 8, 2023

Published on: 11 January, 2023

Page: [953 - 966] Pages: 14

DOI: 10.2174/1871520623666221129163001

Price: $65

Abstract

Background: Heterozygous mutations in the cytoplasmic and mitochondrial isoforms of isocitrate dehydrogenase enzymes 1 and 2 subtypes have been extensively exploited as viable druggable targets, as they decrease the affinity of isocitrate and higher affinity of D-2-hydroxyglutarate, an oncometabolite.

Objective: Vorasidenib (AG-881) has recently been reported as a promising dual inhibitor of mutant isocitrate dehydrogenase 1 and 2 with the ability to penetrate the blood-brain barrier towards the treatment of low-grade glioma. In order to combat drug resistance and toxicity levels, this compelled us to further investigate this substance as a basis for the creation of potential selective inhibitors of mutant isocitrate dehydrogenases 1 and 2.

Methods: By employing a wide range of computational techniques, binding moieties of AG-881 that contributed towards its selective binding to isocitrate dehydrogenase enzymes 1 and 2 were identified and subsequently used to generate pharmacophore models for the screening of potential inhibitor drugs that were further assessed by their pharmacokinetics and physicochemical properties.

Results: AG-881 was identified as the most favorable candidate for isocitrate dehydrogenase enzyme 1, exhibiting a binding free energy of -28.69 kcal/mol. ZINC93978407 was the most favorable candidatefor isocitrate dehydrogenase enzyme 2, displaying a strong binding free energy of -27.10 kcal/mol. ZINC9449923 and ZINC93978407 towards isocitrate dehydrogenase enzyme 1 and 2 showed good protein structural stability with a low radius of gyration values relative to AG-881.

Conclusion: We investigated that ZINC9449923 of isocitrate dehydrogenase enzyme 1 and ZINC 93978407 of isocitrate dehydrogenase enzyme 2 could serve as promising candidates for the treatment of lower-grade glioma as they cross the blood-brain barrier, and present with lower toxicity levels relative to AG-881.

Graphical Abstract

[1]
Lee, S.; Urman, A.; Desai, P. Emerging drug profile: Krebs cycle and cancer: IDH mutations and therapeutic implications. Leuk. Lymphoma, 2019, 60(11), 2635-2645.
[http://dx.doi.org/10.1080/10428194.2019.1602260] [PMID: 30958073]
[2]
Reitman, Z.J.; Yan, H. Isocitrate dehydrogenase 1 and 2 mutations in cancer: Alterations at a crossroads of cellular metabolism. J. Natl. Cancer Inst., 2010, 102(13), 932-941.
[http://dx.doi.org/10.1093/jnci/djq187] [PMID: 20513808]
[3]
Cohen, A.L.; Holmen, S.L.; Colman, H. IDH1 and IDH2 mutations in gliomas. Curr. Neurol. Neurosci. Rep., 2013, 13(5), 345.
[http://dx.doi.org/10.1007/s11910-013-0345-4] [PMID: 23532369]
[4]
Deng, G.; Shen, J.; Yin, M.; McManus, J.; Mathieu, M.; Gee, P.; He, T.; Shi, C.; Bedel, O.; McLean, L.R.; Le-Strat, F.; Zhang, Y.; Marquette, J.P.; Gao, Q.; Zhang, B.; Rak, A.; Hoffmann, D.; Rooney, E.; Vassort, A.; Englaro, W.; Li, Y.; Patel, V.; Adrian, F.; Gross, S.; Wiederschain, D.; Cheng, H.; Licht, S. Selective inhibition of mutant isocitrate dehydrogenase 1 (IDH1) via disruption of a metal binding network by an allosteric small molecule. J. Biol. Chem., 2015, 290(2), 762-774.
[http://dx.doi.org/10.1074/jbc.M114.608497] [PMID: 25391653]
[5]
Mondesir, J.; Willekens, C.; Touat, M.; de Botton, S. IDH1 and IDH2 mutations as novel therapeutic targets: Current perspectives. J. Blood Med., 2016, 7(7), 171-180.
[PMID: 27621679]
[6]
Golub, D.; Iyengar, N.; Dogra, S.; Wong, T.; Bready, D.; Tang, K.; Modrek, A.S.; Placantonakis, D.G. Mutant isocitrate dehydrogenase inhibitors as targeted cancer therapeutics. Front. Oncol., 2019, 9(9), 417.
[http://dx.doi.org/10.3389/fonc.2019.00417] [PMID: 31165048]
[7]
Huang, J.; Yu, J.; Tu, L.; Huang, N.; Li, H.; Luo, Y. Isocitrate dehydrogenase mutations in glioma: From basic discovery to therapeutics development. Front. Oncol., 2019, 9(9), 506.
[http://dx.doi.org/10.3389/fonc.2019.00506] [PMID: 31263678]
[8]
Venneti, S.; Huse, J.T. The evolving molecular genetics of low-grade glioma. Adv. Anat. Pathol., 2015, 22(2), 94-101.
[http://dx.doi.org/10.1097/PAP.0000000000000049] [PMID: 25664944]
[9]
Wen, P.Y.; Huse, J.T. World health organization classification of central nervous system tumors. Continuum, 2017, 23(6), 1531-1547.
[http://dx.doi.org/10.1212/CON.0000000000000536] [PMID: 29200109]
[10]
Gupta, A.; Dwivedi, T. A simplified overview of WHO classification update. J. Neurosci. Rural Pract., 2017, 8(1), 4103.
[PMID: 28149080]
[11]
Konteatis, Z.; Artin, E.; Nicolay, B.; Straley, K.; Padyana, A.K.; Jin, L.; Chen, Y.; Narayaraswamy, R.; Tong, S.; Wang, F.; Zhou, D.; Cui, D.; Cai, Z.; Luo, Z.; Fang, C.; Tang, H.; Lv, X.; Nagaraja, R.; Yang, H.; Su, S.S.M.; Sui, Z.; Dang, L.; Yen, K.; Popovici-Muller, J.; Codega, P.; Campos, C.; Mellinghoff, I.K.; Biller, S.A. Vorasidenib (AG-881): A first-in-class, brain-penetrant dual inhibitor of mutant IDH1 and 2 for treatment of glioma. ACS Med. Chem. Lett., 2020, 11(2), 101-107.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00509] [PMID: 32071674]
[12]
Poonan, P.; Agoni, C.; Soliman, M.E.S. Dual-knockout of mutant isocitrate dehydrogenase 1 and 2 subtypes towards glioma therapy: Structural mechanistic insights on the role of vorasidenib. Chem. Biodivers., 2021, 18(7), 1-37.
[http://dx.doi.org/10.1002/cbdv.202100110] [PMID: 33982420]
[13]
Fiorentini, A.; Capelli, D.; Saraceni, F.; Menotti, D.; Poloni, A.; Olivieri, A. The time has come for targeted therapies for AML: Lights and shadows. Oncol. Ther., 2020, 8(1), 13-32.
[http://dx.doi.org/10.1007/s40487-019-00108-x] [PMID: 32700072]
[14]
Stein, E.M.; DiNardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, J.K.; Stone, R.M.; DeAngelo, D.J.; Levine, R.L.; Flinn, I.W.; Kantarjian, H.M.; Collins, R.; Patel, M.R.; Frankel, A.E.; Stein, A.; Sekeres, M.A.; Swords, R.T.; Medeiros, B.C.; Willekens, C.; Vyas, P.; Tosolini, A.; Xu, Q.; Knight, R.D.; Yen, K.E.; Agresta, S.; de Botton, S.; Tallman, M.S. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood, 2017, 130(6), 722-731.
[http://dx.doi.org/10.1182/blood-2017-04-779405] [PMID: 28588020]
[15]
Maia, E.H.B.; Assis, L.C.; de Oliveira, T.A.; da Silva, A.M.; Taranto, A.G. Structure-based virtual screening: From classical to artificial intelligence. Front Chem., 2020, 8(8), 343.
[http://dx.doi.org/10.3389/fchem.2020.00343] [PMID: 32411671]
[16]
Qing, X.; Lee, X.Y.; De Raeymaecker, J.; Tame, J.; Zhang, K.; De Maeyer, M.; Voet, A. Pharmacophore modeling: Advances, limitations, and current utility in drug discovery. J. Receptor Ligand Channel Res., 2014, 7, 81-92.
[17]
Yu, W.; MacKerell, A.D. Jr Computer-aided drug design methods. Methods Mol. Biol., 2017, 1520, 85-106.
[http://dx.doi.org/10.1007/978-1-4939-6634-9_5]
[18]
Yildirim, O.; Gottwald, M.; Schüler, P.; Michel, M.C. Opportunities and challenges for drug development: Public-private partnerships, adaptive designs and big data. Front. Pharmacol., 2016, 7, 461.
[http://dx.doi.org/10.3389/fphar.2016.00461] [PMID: 27999543]
[19]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera? A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[20]
Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4(1), 17.
[http://dx.doi.org/10.1186/1758-2946-4-17] [PMID: 22889332]
[21]
Allouche, A.R. Gabedit-A graphical user interface for computational chemistry softwares. J. Comput. Chem., 2011, 32(1), 174-182.
[http://dx.doi.org/10.1002/jcc.21600] [PMID: 20607691]
[22]
Koes, D.R.; Camacho, C.J. ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Res., 2012, 40(W1), W409-W414.
[http://dx.doi.org/10.1093/nar/gks378] [PMID: 22553363]
[23]
Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods, 2000, 44(1), 235-249.
[http://dx.doi.org/10.1016/S1056-8719(00)00107-6] [PMID: 11274893]
[24]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[25]
Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 2006, 22(2), 195-201.
[http://dx.doi.org/10.1093/bioinformatics/bti770] [PMID: 16301204]
[26]
Benet, L.Z.; Hosey, C.M.; Ursu, O.; Oprea, T.I. BDDCS, the rule of 5 and drugability. Adv. Drug Deliv. Rev., 2016, 101(1), 89-98.
[http://dx.doi.org/10.1016/j.addr.2016.05.007] [PMID: 27182629]
[27]
Ya’u Ibrahim, Z.; Uzairu, A.; Shallangwa, G.; Abechi, S. Molecular docking studies, drug-likeness and in-silico ADMET prediction of some novel β-Amino alcohol grafted 1,4,5-trisubstituted 1,2,3-triazoles derivatives as elevators of p53 protein levels. Sci. Am., 2020, 10e00570
[http://dx.doi.org/10.1016/j.sciaf.2020.e00570]
[28]
Drwal, M.N.; Banerjee, P.; Dunkel, M.; Wettig, M.R.; Preissner, R. ProTox: A web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res., 2014, 42(W1), W53-W58.
[http://dx.doi.org/10.1093/nar/gku401] [PMID: 24838562]
[29]
Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model., 2015, 55(2), 460-473.
[http://dx.doi.org/10.1021/ci500588j] [PMID: 25558886]
[30]
Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688.
[http://dx.doi.org/10.1002/jcc.20290] [PMID: 16200636]
[31]
Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174.
[http://dx.doi.org/10.1002/jcc.20035] [PMID: 15116359]
[32]
Kräutler, V.; Van Gunsteren, W.F.; Hünenberger, P.H. A fast shake algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem., 2001, 22(5), 501-508.
[http://dx.doi.org/10.1002/1096-987X(20010415)22:5<501:AID-JCC1021>3.0.CO;2-V]
[33]
Gonnet, P. P-SHAKE: A quadratically convergent SHAKE in. J. Comput. Phys., 2007, 220(2), 740-750.
[http://dx.doi.org/10.1016/j.jcp.2006.05.032]
[34]
Roe, D.R.; Cheatham, T.E., III Ptraj and cpptraj: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[35]
Deschenes, L.A. Origin 6.0: Scientific data analysis and graphing software origin lab corporation (formerly microcal software, Inc.). Web site: www.originlab.comCommercial price: $595. Academic price: $446. J. Am. Chem. Soc., 2000, 122(39), 9567-9568.
[http://dx.doi.org/10.1021/ja004761d]
[36]
Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 27(3), 221-234.
[37]
Ferreira, L.L.G.; Andricopulo, A.D. ADMET modeling approaches in drug discovery. Drug Discov. Today, 2019, 24(5), 1157-1165.
[http://dx.doi.org/10.1016/j.drudis.2019.03.015] [PMID: 30890362]
[38]
Waring, M.J. Lipophilicity in drug discovery. Expert Opin. Drug Discov., 2010, 5(3), 235-248.
[http://dx.doi.org/10.1517/17460441003605098] [PMID: 22823020]
[39]
Arnott, J.A.; Planey, S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov., 2012, 7(10), 863-875.
[http://dx.doi.org/10.1517/17460441.2012.714363] [PMID: 22992175]
[40]
Ertl, P.; Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform., 2009, 1(1), 1-11.
[41]
Kenny, P.W. The nature of ligand efficiency. J. Cheminform., 2019, 11(1), 8.
[http://dx.doi.org/10.1186/s13321-019-0330-2] [PMID: 30706294]
[42]
Hopkins, A.L.; Keserü, G.M.; Leeson, P.D.; Rees, D.C.; Reynolds, C.H. The role of ligand efficiency metrics in drug discovery. Nat. Rev. Drug Discov., 2014, 13(2), 105-121.
[http://dx.doi.org/10.1038/nrd4163] [PMID: 24481311]
[43]
Pitera, J.W. Expected distributions of root-mean-square positional deviations in proteins. J. Phys. Chem. B, 2014, 118(24), 6526-6530.
[http://dx.doi.org/10.1021/jp412776d] [PMID: 24655018]
[44]
Brüschweiler, R. Efficient RMSD measures for the comparison of two molecular ensembles. Proteins, 2003, 50(1), 26-34.
[http://dx.doi.org/10.1002/prot.10250] [PMID: 12471596]
[45]
Król, M.; Roterman, I.; Piekarska, B.; Konieczny, L.; Rybarska, J.; Stopa, B.; Spólnik, P. Analysis of correlated domain motions in IgG light chain reveals possible mechanisms of immunological signal transduction. Proteins, 2005, 59(3), 545-554.
[http://dx.doi.org/10.1002/prot.20434] [PMID: 15778960]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy