Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Integrating Bioinformatics and Network Pharmacology to Explore the Therapeutic Target and Molecular Mechanisms of Schisandrin on Hypertrophic Cardiomyopathy

Author(s): Chaozhuang Shen, Pingping Shen, Xiaohu Wang, Xingwen Wang, Wenxin Shao, Kuo Geng and Haitang Xie*

Volume 19, Issue 3, 2023

Published on: 28 December, 2022

Page: [192 - 201] Pages: 10

DOI: 10.2174/1573409919666221124144713

Price: $65

Abstract

Background: Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and is currently the leading cause of sudden death in adolescent athletes. Schisandrin is a quality marker of the traditional Chinese medicine Schisandra chinensis, which has an excellent therapeutic effect on HCM, but its pharmacological mechanism remains unclear.

Objective: This study aimed to explore the potential and provide scientific evidence for schisandrin as a lead compound against hypertrophic cardiomyopathy.

Methods: The drug-like properties of schisandrin were predicted using the SwissADME website. Then, the PharmMapper database was used to predict potential drug targets and match gene names in the Uniprot database. HCM targets were collected from NCBI, OMIM, and Genecards databases and intersected with drug targets. The intersection targets were imported into the STRING database for PPI analysis, and core targets were identified. KEGG and GO enrichment analysis was performed on the core targets through the DAVID database, and all network maps were imported into Cytoscape software for visualization optimization. HCM-related datasets were downloaded from the GEO database to analyze core targets and screen differentially expressed target genes for molecular docking.

Results: After the PPI network analysis of the intersection targets of drugs and diseases, 12 core targets were screened out. The KEGG analysis results showed that they were mainly involved in Rap1, TNF, FoxO, PI3K-Akt, and other signaling pathways. After differential analysis, PPARG, EGFR, and MMP3 targets were also screened. The molecular docking results showed that schisandrin was well bound to the protein backbone of each target.

Conclusion: This study used network pharmacology combined with differential expression and molecular docking to predict that schisandrin may treat HCM by acting on PPARG, EGFR, and MMP3 targets, and the regulatory process may involve signaling pathways, such as Rap1, TNF, FoxO, and PI3K-Akt, which may provide a valuable reference for subsequent studies.

Graphical Abstract

[1]
Maron, B.J.; Maron, M.S. Hypertrophic cardiomyopathy. Lancet, 2013, 381(9862), 242-255.
[http://dx.doi.org/10.1016/S0140-6736(12)60397-3] [PMID: 22874472]
[2]
Bai, X.; Song, L.; Zheng, Y.; Wu, B.; Lai, Q.; Tang, J. Research progress on pharmacology of schisandrin A. Journal of Practical Chinese Internal Medicine., 2021, 35(02), 18-20.
[http://dx.doi.org/10.13729/j.issn.1671-7813.Z20200245]
[3]
Hopkins, A.L. Network pharmacology. Nat. Biotechnol., 2007, 25(10), 1110-1111.
[http://dx.doi.org/10.1038/nbt1007-1110] [PMID: 17921993]
[4]
Kim, S. Exploring chemical information in PubChem. Curr. Protoc., 2021, 1(8), e217.
[http://dx.doi.org/10.1002/cpz1.217] [PMID: 34370395]
[5]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[6]
Wang, X.; Shen, Y.; Wang, S.; Li, S.; Zhang, W.; Liu, X.; Lai, L.; Pei, J.; Li, H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res., 2017, 45(W1), W356-W360.
[http://dx.doi.org/10.1093/nar/gkx374] [PMID: 28472422]
[7]
Bateman, A.; Martin, M-J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bursteinas, B.; Bye-A-Jee, H.; Coetzee, R.; Cukura, A.; Da Silva, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Castro, L.G.; Garmiri, P.; Georghiou, G.; Gonzales, L.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Jokinen, P.; Joshi, V.; Jyothi, D.; Lock, A.; Lopez, R.; Luciani, A.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Menchi, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Oliveira, C.S.; Pundir, S.; Qi, G.; Raj, S.; Rice, D.; Lopez, M.R.; Saidi, R.; Sampson, J.; Sawford, T.; Speretta, E.; Turner, E.; Tyagi, N.; Vasudev, P.; Volynkin, V.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Bridge, A.; Poux, S.; Redaschi, N.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.; Axelsen, K.; Bansal, P.; Baratin, D.; Blatter, M-C.; Bolleman, J.; Boutet, E.; Breuza, L.; Casals-Casas, C.; de Castro, E.; Echioukh, K.C.; Coudert, E.; Cuche, B.; Doche, M.; Dornevil, D.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz-Gumowski, N.; Hinz, U.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Keller, G.; Kerhornou, A.; Lara, V.; Le Mercier, P.; Lieberherr, D.; Lombardot, T.; Martin, X.; Masson, P.; Morgat, A.; Neto, T.B.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pour-cel, L.; Pozzato, M.; Pruess, M.; Rivoire, C.; Sigrist, C.; Sonesson, K.; Stutz, A.; Sundaram, S.; Tognolli, M.; Verbregue, L.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Garavelli, J.S.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y.; Yeh, L-S.; Zhang, J.; Ruch, P.; Teodoro, D. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res., 2021, 49(D1), D480-D489.
[http://dx.doi.org/10.1093/nar/gkaa1100] [PMID: 33237286]
[8]
Amberger, J.S.; Bocchini, C.A.; Scott, A.F.; Hamosh, A. OMIM.org: Leveraging knowledge across phenotypegene relationships. Nucleic Acids Res., 2019, 47(D1), D1038-D1043.
[http://dx.doi.org/10.1093/nar/gky1151] [PMID: 30445645]
[9]
Safran, M.; Rosen, N.; Twik, M.; BarShir, R.; Stein, T.I.; Dahary, D. The genecards suite. In: Practical Guide to Life Science Databases; Abugessaisa, I.; Kasukawa, T., Eds.; Springer Nature Singapore: Singapore, 2021; pp. 27-56.
[http://dx.doi.org/10.1007/978-981-16-5812-9_2]
[10]
Brown, G.R.; Hem, V.; Katz, K.S.; Ovetsky, M.; Wallin, C.; Ermolaeva, O.; Tolstoy, I.; Tatusova, T.; Pruitt, K.D.; Maglott, D.R.; Murphy, T.D. Gene: A gene-centered information resource at NCBI. Nucleic Acids Res., 2015, 43(D1), D36-D42.
[http://dx.doi.org/10.1093/nar/gku1055] [PMID: 25355515]
[11]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[12]
Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res., 2022, 50(W1), W216-W221.
[http://dx.doi.org/10.1093/nar/gkac194] [PMID: 35325185]
[13]
Clough, E.; Barrett, T. The gene expression omnibus, 2016, 93-110.
[14]
Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Hol-ko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res., 2013, 41(Database issue), D991-D995.
[http://dx.doi.org/10.1093/nar/gks1193] [PMID: 23193258]
[15]
Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; Dutta, S.; Feng, Z.; Ganesan, S.; Goodsell, D.S.; Ghosh, S.; Green, R.K.; Guranović, V.; Guzenko, D.; Hudson, B.P.; Lawson, C.L.; Liang, Y.; Lowe, R.; Namkoong, H.; Peisach, E.; Persikova, I.; Randle, C.; Rose, A.; Rose, Y.; Sali, A.; Segura, J.; Sekharan, M.; Shao, C.; Tao, Y.P.; Voigt, M.; Westbrook, J.D.; Young, J.Y.; Zardecki, C.; Zhuravleva, M. RCSB protein data bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res., 2021, 49(D1), D437-D451.
[http://dx.doi.org/10.1093/nar/gkaa1038] [PMID: 33211854]
[16]
Yang, M.; Jiang, X.; Feng, H.; Wang, L.; Zhang, K.; Pang, H. Effects of schisandrin on cT-I, cT-T and ET-1 regulation of norepinephrine induced myocardial hypertrophy. Chin. J. Vet. Med., 2020, 40(08), 1553-1559.
[http://dx.doi.org/10.16303/j.cnki.1005-4545.2020.08.20]
[17]
Gong, S.; Liu, J.; Wan, S.; Yang, W.; Zhang, Y.; Yu, B.; Li, F.; Kou, J. Schisandrol A attenuates myocardial ischemia/reperfusion-induced myocardial apoptosis through upregulation of 14-3-3θ. Oxid. Med. Cell. Longev., 2021, 2021, 1-15.
[http://dx.doi.org/10.1155/2021/5541753] [PMID: 34257806]
[18]
Yang, M.; Jiang, X.C.; Wang, L.; Cui, D.A.; Zhang, J.Y.; Wang, X.R.; Feng, H.P.; Zhang, K.; Zhang, K.; Li, J.X.; Wang, X.Z. Schisandrin protects against norepinephrine-induced myocardial hypertrophic injury by inhibiting the JAK2/STAT3 signaling pathway. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-8.
[http://dx.doi.org/10.1155/2021/8129512] [PMID: 34221090]
[19]
Chen, K.; Li, D.; Zhang, X.; Hermonat, P.L.; Mehta, J.L. Anoxia-reoxygenation stimulates collagen type-I and MMP-1 expression in cardiac fibroblasts: Modulation by the PPAR-gamma ligand pioglitazone. J. Cardiovasc. Pharmacol., 2004, 44(6), 682-687.
[http://dx.doi.org/10.1097/00005344-200412000-00010] [PMID: 15550788]
[20]
Ma, T.; Ma, Z.Q.; Du, X.H.; Yu, Q.S.; Wang, R.; Liu, L. Effect of valsartan on ACAT-1 and PPAR-γ expression in intima with carotid artery endothelial balloon injury in rabbit. Int. J. Clin. Exp. Med., 2015, 8(4), 5527-5533.
[PMID: 26131133]
[21]
Prathab Balaji, S.; Vijay Chand, C.; Justin, A.; Ramanathan, M. Telmisartan mediates anti-inflammatory and not cognitive function through PPAR-γ agonism via SARM and MyD88 signaling. Pharmacol. Biochem. Behav., 2015, 137, 60-68.
[http://dx.doi.org/10.1016/j.pbb.2015.08.007] [PMID: 26264163]
[22]
Jin, H.; Gebska, M.A.; Blokhin, I.O.; Wilson, K.M.; Ketsawatsomkron, P.; Chauhan, A.K.; Keen, H.L.; Sigmund, C.D.; Lentz, S.R. Endo-thelial PPAR-γ protects against vascular thrombosis by downregulating P-selectin expression. Arterioscler. Thromb. Vasc. Biol., 2015, 35(4), 838-844.
[http://dx.doi.org/10.1161/ATVBAHA.115.305378] [PMID: 25675995]
[23]
Schreier, B.; Gekle, M.; Grossmann, C. Role of epidermal growth factor receptor in vascular structure and function. Curr. Opin. Nephrol. Hypertens., 2014, 23(2), 113-121.
[http://dx.doi.org/10.1097/01.mnh.0000441152.62943.29] [PMID: 24401788]
[24]
Peng, K.; Tian, X.; Qian, Y.; Skibba, M.; Zou, C.; Liu, Z.; Wang, J.; Xu, Z.; Li, X.; Liang, G. Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II. J. Cell. Mol. Med., 2016, 20(3), 482-494.
[http://dx.doi.org/10.1111/jcmm.12763] [PMID: 26762600]
[25]
Li, Y.; Zhang, H.; Liao, W.; Song, Y.; Ma, X.; Chen, C.; Lu, Z.; Li, Z.; Zhang, Y. Transactivated EGFR mediates α 1 -AR-induced STAT3 activation and cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol., 2011, 301(5), H1941-H1951.
[http://dx.doi.org/10.1152/ajpheart.00338.2011] [PMID: 21856923]
[26]
Li, H.; Zhao, Y.; Zhang, Q. MMP1 and MMP3 expression in cardiac hypertrophy in rats and olmesartan influence. Zhongguo Laonianxue Zazhi, 2013, 33(06), 1333-1335.
[http://dx.doi.org/10.3969/j.issn.1005-9202.2013.06.046]
[27]
Lee, Y.H.; Kim, T.Y.; Hong, Y.M. Metalloproteinase-3 genotype as a predictor of cardiovascular risk in hypertensive adolescents. Korean Circ. J., 2009, 39(8), 328-334.
[http://dx.doi.org/10.4070/kcj.2009.39.8.328] [PMID: 19949639]
[28]
Privalova, E.V.P.; Kaplunova, V.Y.K.; Kozhevnikova, M.V.K.; Khabarova, N.V.K.; Shakaryants, G.A.S.; Belenkov, Y.N.B. Matrix metalloproteinases and hypertrophic cardiomyopathy. Kardiologiia, 2014, 5_2014(5), 4-7.
[http://dx.doi.org/10.18565/cardio.2014.5.4-7] [PMID: 25177880]
[29]
Métrich, M.; Lucas, A.; Gastineau, M.; Samuel, J.L.; Heymes, C.; Morel, E.; Lezoualc’h, F. Epac mediates beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Circ. Res., 2008, 102(8), 959-965.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.164947] [PMID: 18323524]
[30]
Fang, L.; Ellims, A.H.; Beale, A.L.; Taylor, A.J.; Murphy, A.; Dart, A.M. Systemic inflammation is associated with myocardial fibrosis, diastolic dysfunction, and cardiac hypertrophy in patients with hypertrophic cardiomyopathy. Am. J. Transl. Res., 2017, 9(11), 5063-5073.
[PMID: 29218105]
[31]
Yan, T.; Sun, Y.; Gong, G.; Li, Y.; Fan, K.; Wu, B.; Bi, K.; Jia, Y. The neuroprotective effect of schisandrol A on 6-OHDA-induced PD mice may be related to PI3K/AKT and IKK/IκBα/NF-κB pathway. Exp. Gerontol., 2019, 128, 110743.
[http://dx.doi.org/10.1016/j.exger.2019.110743] [PMID: 31629801]
[32]
Cheng, Y.; Shen, A.; Wu, X.; Shen, Z.; Chen, X.; Li, J.; Liu, L.; Lin, X.; Wu, M.; Chen, Y.; Chu, J.; Peng, J. Qingda granule attenuates angiotensin II-induced cardiac hypertrophy and apoptosis and modulates the PI3K/AKT pathway. Biomed. Pharmacother., 2021, 133, 111022.
[http://dx.doi.org/10.1016/j.biopha.2020.111022] [PMID: 33378940]
[33]
Ba, L.; Gao, J.; Chen, Y.; Qi, H.; Dong, C.; Pan, H.; Zhang, Q.; Shi, P.; Song, C.; Guan, X.; Cao, Y.; Sun, H. Allicin attenuates pathological cardiac hypertrophy by inhibiting autophagy via activation of PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways. Phytomedicine, 2019, 58, 152765.
[http://dx.doi.org/10.1016/j.phymed.2018.11.025] [PMID: 31005720]
[34]
Ferdous, A.; Battiprolu, P.K.; Ni, Y.G.; Rothermel, B.A.; Hill, J.A. FoxO, autophagy, and cardiac remodeling. J. Cardiovasc. Transl. Res., 2010, 3(4), 355-364.
[http://dx.doi.org/10.1007/s12265-010-9200-z] [PMID: 20577843]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy