Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

i4mC-CPXG: A Computational Model for Identifying DNA N4- methylcytosine Sites in Rosaceae Genome Using Novel Encoding Strategy

Author(s): Lichao Zhang, Ying Liang, Kang Xiao and Liang Kong*

Volume 18, Issue 1, 2023

Published on: 27 December, 2022

Page: [12 - 20] Pages: 9

DOI: 10.2174/1574893618666221124095411

Price: $65

Abstract

Background: N4-methylcytosine (4mC) is one of the most widespread DNA methylation modifications, which plays an important role in DNA replication and repair, epigenetic inheritance, gene expression levels and regulation of transcription. Although biological experiments can identify potential 4mC modification sites, they are limited due to the experimental environment and labor intensive. Therefore, it is crucial to construct a computational model to identify the 4mC sites.

Objective: Although some computational methods have been proposed to identify the 4mC sites, some problems should not be ignored, such as: (1) a large number of unknown nucleotides exist in the biological sequence; (2) a large number of zeros exist in the previous encoding technologies; (3) sequence distribution information is important to identify 4mC sites. Considering these aspects, we propose a computational model based on a novel encoding strategy with position specific information to identify 4mC sites.

Methods: We constructed an accurate computational model i4mC-CPXG based on extreme gradient boosting. Two aspects of feature vectors are extracted according to nucleotide information and position specific information. From the aspect of nucleotide information, we used prior information to identify the base type of unknown nucleotide and decrease the influence of invalid information caused by lots of zeros. From the aspect of position specific information, the vector was designed carefully to express the base distribution and arrangement. Then the feature vector fused by nucleotide information and position specific information was input into extreme gradient boosting to construct the model.

Results: The accuracy of i4mC-CPXG is 82.49% on independent dataset. The result was better than model i4mC-w2vec which was the best model in the imbalanced dataset with the ratio of 1:15. Meanwhile, our model achieved good performance on other species. These results validated the effectiveness of i4mC-CPXG.

Conclusion: Our method is effective to identify potential 4mC modification sites due to the proposed new encoding strategy fused position specific information. The satisfactory prediction results of balanced datasets, imbalanced datasets and other species datasets indicate that i4mC-CPXG is valuable to provide a reasonable supplement for biology research.

Graphical Abstract

[1]
Tahir M, Tayara H, Chong KT. iDNA6mA (5-step rule): Identification of DNA N6-methyladenine sites in the rice genome by intelligent computational model via Chou’s 5-step rule. Chemom Intell Lab Syst 2019; 189: 96-101.
[http://dx.doi.org/10.1016/j.chemolab.2019.04.007]
[2]
Akalin A, Garrett-Bakelman FE, Kormaksson M, et al. Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. PLoS Genet 2012; 8(6): e1002781.
[http://dx.doi.org/10.1371/journal.pgen.1002781] [PMID: 22737091]
[3]
Suzuki MM, Bird A. DNA methylation landscapes: Provocative insights from epigenomics. Nat Rev Genet 2008; 9(6): 465-76.
[http://dx.doi.org/10.1038/nrg2341] [PMID: 18463664]
[4]
Jones PA. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13(7): 484-92.
[http://dx.doi.org/10.1038/nrg3230] [PMID: 22641018]
[5]
Ling C, Groop L. Epigenetics: A molecular link between environmental factors and type 2 diabetes. Diabetes 2009; 58(12): 2718-25.
[http://dx.doi.org/10.2337/db09-1003] [PMID: 19940235]
[6]
Khanal J, Tayara H, Zou Q, Chong KT. Identifying DNA N4-methylcytosine sites in the rosaceae genome with a deep learning model relying on distributed feature representation. Comput Struct Biotechnol J 2021; 19: 1612-9.
[http://dx.doi.org/10.1016/j.csbj.2021.03.015] [PMID: 33868598]
[7]
Schweizer HP. Bacterial genetics: Past achievements, present state of the field, and future challenges. Biotechniques 2008; 44(5): 633-641-6-641.
[http://dx.doi.org/10.2144/000112807] [PMID: 18474038]
[8]
Ehrlich M, Wilson GG, Kuo KC, Gehrke CW. N4-methylcytosine as a minor base in bacterial DNA. J Bacteriol 1987; 169(3): 939-43.
[http://dx.doi.org/10.1128/jb.169.3.939-943.1987] [PMID: 3029036]
[9]
Glickman BW, Radman M. Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Proc Natl Acad Sci USA 1980; 77(2): 1063-7.
[http://dx.doi.org/10.1073/pnas.77.2.1063] [PMID: 6987663]
[10]
Lu AL, Clark S, Modrich P. Methyl-directed repair of DNA base-pair mismatches in vitro. Proc Natl Acad Sci USA 1983; 80(15): 4639-43.
[http://dx.doi.org/10.1073/pnas.80.15.4639] [PMID: 6308634]
[11]
Pukkila PJ, Peterson J, Herman G, Modrich P, Meselson M. Effects of high levels of DNA adenine methylation on methyl-directed mismatch repair in Escherichia coli. Genetics 1983; 104(4): 571-82.
[http://dx.doi.org/10.1093/genetics/104.4.571] [PMID: 6225697]
[12]
Chen K, Zhao BS, He C. Nucleic acid modifications in regulation of gene expression. Cell Chem Biol 2016; 23(1): 74-85.
[http://dx.doi.org/10.1016/j.chembiol.2015.11.007] [PMID: 26933737]
[13]
He S, Kong L, Chen J. iDNA6mA-Rice-DL: A local web server for identifying DNA N6-methyladenine sites in rice genome by deep learning method. J Bioinform Comput Biol 2021; 19(5): 2150019.
[http://dx.doi.org/10.1142/S0219720021500190] [PMID: 34291710]
[14]
Doherty R, Couldrey C. Exploring genome wide bisulfite sequencing for DNA methylation analysis in livestock: A technical assessment. Front Genet 2014; 5: 126.
[http://dx.doi.org/10.3389/fgene.2014.00126] [PMID: 24860595]
[15]
Flusberg BA, Webster DR, Lee JH, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 2010; 7(6): 461-5.
[http://dx.doi.org/10.1038/nmeth.1459] [PMID: 20453866]
[16]
Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: Discovery and function. Annu Rev Phytopathol 2010; 48(1): 419-36.
[http://dx.doi.org/10.1146/annurev-phyto-080508-081936] [PMID: 19400638]
[17]
Buryanov YI, Shevchuk TV. DNA methyltransferases and structural-functional specificity of eukaryotic DNA modification. Biochemistry (Mosc) 2005; 70(7): 730-42.
[http://dx.doi.org/10.1007/s10541-005-0178-0] [PMID: 16097936]
[18]
Chen W, Yang H, Feng P, Ding H, Lin H. iDNA4mC: Identifying DNA N4-methylcytosine sites based on nucleotide chemical properties. Bioinformatics 2017; 33(22): 3518-23.
[http://dx.doi.org/10.1093/bioinformatics/btx479] [PMID: 28961687]
[19]
Wei L, Su R, Luan S, et al. Iterative feature representations improve N4-methylcytosine site prediction. Bioinformatics 2019; 35(23): 4930-7.
[http://dx.doi.org/10.1093/bioinformatics/btz408] [PMID: 31099381]
[20]
Manavalan B, Basith S, Shin TH, Wei L, Lee G. Meta-4mCpred: A sequence-based meta-predictor for accurate DNA 4mC site prediction using effective feature representation. Mol Ther Nucleic Acids 2019; 16: 733-44.
[http://dx.doi.org/10.1016/j.omtn.2019.04.019] [PMID: 31146255]
[21]
Hasan MM, Manavalan B, Khatun MS, Kurata H. i4mC-ROSE, a bioinformatics tool for the identification of DNA N4-methylcytosine sites in the Rosaceae genome. Int J Biol Macromol 2020; 157: 752-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.009] [PMID: 31805335]
[22]
Wahab A, Mahmoudi O, Kim J, Chong KT. DNC4mC-Deep: Identification and analysis of DNA N4-methylcytosine sites based on different encoding schemes by using deep learning. Cells 2020; 9(8): 1756.
[http://dx.doi.org/10.3390/cells9081756] [PMID: 32707969]
[23]
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28(23): 3150-2.
[http://dx.doi.org/10.1093/bioinformatics/bts565] [PMID: 23060610]
[24]
Zhang L, Huang Z, Kong L. CSBPI_Site:Multi-information sources of features to RNA binding sites prediction. Curr Bioinform 2021; 16(5): 691-9.
[http://dx.doi.org/10.2174/1574893615666210108093950]
[25]
Wang J, Gribskov M. IRESpy: An XGBoost model for prediction of internal ribosome entry sites. BMC Bioinformatics 2019; 20(1): 409.
[http://dx.doi.org/10.1186/s12859-019-2999-7] [PMID: 31362694]
[26]
Mishra A, Khanal R, Kabir WU, Hoque T. AIRBP: Accurate identification of RNA-binding proteins using machine learning techniques. Artif Intell Med 2021; 113: 102034.
[http://dx.doi.org/10.1016/j.artmed.2021.102034] [PMID: 33685590]
[27]
Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995; 20(3): 273-97.
[http://dx.doi.org/10.1007/BF00994018]
[28]
Zhang CJ, Tang H, Li WC, Lin H, Chen W, Chou KC. iOri-Human: Identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition. Oncotarget 2016; 7(43): 69783-93.
[http://dx.doi.org/10.18632/oncotarget.11975] [PMID: 27626500]
[29]
Sun Y, Liu Z, Todorovic S, Li J. Adaptive boosting for SAR automatic target recognition. IEEE Trans Aerosp Electron Syst 2007; 43(1): 112-25.
[http://dx.doi.org/10.1109/TAES.2007.357120]
[30]
Breiman L. Bagging predictors. Mach Learn 1996; 24(2): 123-40.
[http://dx.doi.org/10.1007/BF00058655]
[31]
Agatonovic-Kustrin S, Beresford R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal 2000; 22(5): 717-27.
[http://dx.doi.org/10.1016/S0731-7085(99)00272-1] [PMID: 10815714]
[32]
Graves A. Long short-term memory. In: Supervised sequence labelling with recurrent neural networks Berlin, Heidelberg: Springer. 2012; 385: pp. 37-45.
[http://dx.doi.org/10.1007/978-3-642-24797-2_4]
[33]
Wythoff BJ. Backpropagation neural networks. Chemom Intell Lab Syst 1993; 18(2): 115-55.
[http://dx.doi.org/10.1016/0169-7439(93)80052-J]
[34]
Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 2011; 12: 2825-30.
[35]
Pang B, Nijkamp E, Wu YN. Deep learning with tensorflow: A review. J Educ Behav Stat 2020; 45(2): 227-48.
[http://dx.doi.org/10.3102/1076998619872761]
[36]
Paszke A, Gross S, Massa F, et al. Pytorch: An imperative style, high-performance deep learning library. Adv Neural Inf Process Syst 2019; 32.
[37]
Vacic V, Iakoucheva LM, Radivojac P. Two sample logo: A graphical representation of the differences between two sets of sequence alignments. Bioinformatics 2006; 22(12): 1536-7.
[http://dx.doi.org/10.1093/bioinformatics/btl151] [PMID: 16632492]
[38]
Lv Z, Wang D, Ding H, Zhong B, Xu L. Escherichia coli DNA N- 4-methycytosine site prediction accuracy improved by light gradient boosting machine feature selection technology. IEEE Access 2020 8; 14851-9.
[http://dx.doi.org/10.1109/ACCESS.2020.2966576]
[39]
Wei L, Luan S, Nagai LAE, Su R, Zou Q. Exploring sequence-based features for the improved prediction of DNA N4-methylcytosine sites in multiple species. Bioinformatics 2019; 35(8): 1326-33.
[http://dx.doi.org/10.1093/bioinformatics/bty824] [PMID: 30239627]
[40]
Yang J, Lang K, Zhang G, Fan X, Chen Y, Pian C. SOMM4mC: A second-order Markov model for DNA N4-methylcytosine site prediction in six species. Bioinformatics 2020; 36(14): 4103-5.
[http://dx.doi.org/10.1093/bioinformatics/btaa507] [PMID: 32413127]
[41]
Alam W, Tayara H, Chong KT. i4mC-Deep: An intelligent predictor of n4-methylcytosine sites using a deep learning approach with chemical properties. Genes (Basel) 2021; 12(8): 1117.
[http://dx.doi.org/10.3390/genes12081117] [PMID: 34440291]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy