Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Treatment of Autism Spectrum Disorders by Mitochondrial-targeted Drug: Future of Neurological Diseases Therapeutics

Author(s): Showkat Ul Nabi, Muneeb U. Rehman*, Azher Arafah, Syed Taifa, Iqra Shafi Khan, Andleeb Khan*, Summya Rashid, Fatimah Jan, Hilal Ahmad Wani and Sheikh Fayaz Ahmad

Volume 21, Issue 5, 2023

Published on: 14 February, 2023

Page: [1042 - 1064] Pages: 23

DOI: 10.2174/1570159X21666221121095618

Price: $65

Abstract

Autism is a neurodevelopmental disorder with a complex etiology that might involve environmental and genetic variables. Recently, some epidemiological studies conducted in various parts of the world have estimated a significant increase in the prevalence of autism, with 1 in every 59 children having some degree of autism. Since autism has been associated with other clinical abnormalities, there is every possibility that a sub-cellular component may be involved in the progression of autism. The organelle remains a focus based on mitochondria's functionality and metabolic role in cells. Furthermore, the mitochondrial genome is inherited maternally and has its DNA and organelle that remain actively involved during embryonic development; these characteristics have linked mitochondrial dysfunction to autism. Although rapid stride has been made in autism research, there are limited studies that have made particular emphasis on mitochondrial dysfunction and autism. Accumulating evidence from studies conducted at cellular and sub-cellular levels has indicated that mitochondrial dysfunction's role in autism is more than expected. The present review has attempted to describe the risk factors of autism, the role of mitochondria in the progression of the disease, oxidative damage as a trigger point to initiate mitochondrial damage, genetic determinants of the disease, possible pathogenic pathways and therapeutic regimen in vogue and the developmental stage. Furthermore, in the present review, an attempt has been made to include the novel therapeutic regimens under investigation at different clinical trial stages and their potential possibility to emerge as promising drugs against ASD.

Graphical Abstract

[1]
Reddy, P.H.; Reddy, T.P. Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr. Alzheimer Res., 2011, 8(4), 393-409.
[http://dx.doi.org/10.2174/156720511795745401] [PMID: 21470101]
[2]
Hayakawa, K.; Bruzzese, M.; Chou, S.H.Y.; Ning, M.; Ji, X.; Lo, E.H. Extracellular mitochondria for therapy and diagnosis in acute central nervous system injury. JAMA Neurol., 2018, 75(1), 119-122.
[http://dx.doi.org/10.1001/jamaneurol.2017.3475] [PMID: 29159397]
[3]
Duchen, M.R. Mitochondria in health and disease: Perspectives on a new mitochondrial biology. Mol. Aspects Med., 2004, 25(4), 365-451.
[http://dx.doi.org/10.1016/j.mam.2004.03.001] [PMID: 15302203]
[4]
Gollihue, J.L.; Patel, S.P.; Eldahan, K.C.; Cox, D.H.; Donahue, R.R.; Taylor, B.K.; Sullivan, P.G.; Rabchevsky, A.G. Effects of mitochondrial transplantation on bioenergetics, cellular incorporation, and functional recovery after spinal cord injury. J. Neurotrauma, 2018, 35(15), 1800-1818.
[http://dx.doi.org/10.1089/neu.2017.5605] [PMID: 29648982]
[5]
Pitceathly, R.D.S.; McFarland, R. Mitochondrial myopathies in adults and children. Curr. Opin. Neurol., 2014, 27(5), 576-582.
[http://dx.doi.org/10.1097/WCO.0000000000000126] [PMID: 25188013]
[6]
Miliotis, S.; Nicolalde, B.; Ortega, M.; Yepez, J.; Caicedo, A. Forms of extracellular mitochondria and their impact in health. Mitochondrion, 2019, 48, 16-30.
[http://dx.doi.org/10.1016/j.mito.2019.02.002] [PMID: 30771504]
[7]
Evans, A.; Neuman, N. The mighty mitochondria. Mol. Cell, 2016, 61(5), 641.
[http://dx.doi.org/10.1016/j.molcel.2016.02.002] [PMID: 26942665]
[8]
Chou, S.H.Y.; Lan, J.; Esposito, E.; Ning, M.; Balaj, L.; Ji, X.; Lo, E.H.; Hayakawa, K. Extracellular mitochondria in cerebrospinal fluid and neurological recovery after subarachnoid haemorrhage. Stroke, 2017, 48(8), 2231-2237.
[http://dx.doi.org/10.1161/STROKEAHA.117.017758] [PMID: 28663512]
[9]
Carelli, V.; Chan, D.C. Mitochondrial DNA: Impacting central and peripheral nervous systems. Neuron, 2014, 84(6), 1126-1142.
[http://dx.doi.org/10.1016/j.neuron.2014.11.022] [PMID: 25521375]
[10]
Beckervordersandforth, R. Mitochondrial metabolism-mediated regulation of adult neurogenesis. Brain Plast., 2017, 3(1), 73-87.
[http://dx.doi.org/10.3233/BPL-170044] [PMID: 29765861]
[12]
Rose, S.; Niyazov, D.M.; Rossignol, D.A.; Goldenthal, M.; Kahler, S.G.; Frye, R.E. Clinical and molecular characteristics of mitochondrial dysfunction in autism spectrum disorder. Mol. Diagn. Ther., 2018, 22(5), 571-593.
[http://dx.doi.org/10.1007/s40291-018-0352-x] [PMID: 30039193]
[13]
Frye, R.E.; Rossignol, D.A. Treatments for biomedical abnormalities associated with autism spectrum disorder. Front Pediatr., 2014, 2, 66.
[http://dx.doi.org/10.3389/fped.2014.00066] [PMID: 25019065]
[14]
Rossignol, D.A.; Frye, R.E. Mitochondrial dysfunction in autism spectrum disorders: A systematic review and meta-analysis. Mol. Psychiatry, 2012, 17(3), 290-314.
[http://dx.doi.org/10.1038/mp.2010.136] [PMID: 21263444]
[15]
Frye, R.E.; Melnyk, S.; MacFabe, D.F. Unique acyl-carnitine profiles are potential biomarkers for acquired mitochondrial disease in autism spectrum disorder. Transl. Psychiatry, 2013, 3(1), e220.
[http://dx.doi.org/10.1038/tp.2012.143] [PMID: 23340503]
[16]
Frye, R.E. Mitochondrial dysfunction in autism spectrum disorder: Unique abnormalities and targeted treatments. Semin. Pediatr. Neurol., 2020, 35, 100829.
[http://dx.doi.org/10.1016/j.spen.2020.100829] [PMID: 32892956]
[17]
Zussman, B.; Weiner, G.; Ducruet, A. Mitochondrial transfer into the cerebrospinal fluid in the setting of subarachnoid haemorrhage. Neurosurgery, 2018, 82(1), N11-N13.
[http://dx.doi.org/10.1093/neuros/nyx528] [PMID: 29244132]
[18]
Pinkoski, M.J.; Waterhouse, N.J.; Green, D.R. Mitochondria, apoptosis and autoimmunity. Curr. Dir. Autoimmun., 2006, 9, 55-73.
[PMID: 16394655]
[19]
Abbas, A.; Lichtman, A.H.; Pillai, S. Cellular and Molecular Immunology, 9th ed; Elsevier Health Sciences, 2017.
[20]
Refolo, G.; Vescovo, T.; Piacentini, M.; Fimia, G.M.; Ciccosanti, F. Mitochondrial interactome: A focus on antiviral signaling pathways. Front. Cell Dev. Biol., 2020, 8, 8.
[http://dx.doi.org/10.3389/fcell.2020.00008] [PMID: 32117959]
[21]
Cooper, G.M. The mechanism of oxidative phosphorylation. The Cell: A Molecular Approach, 2000, 396-402.
[22]
Michou, L. Genetics of Dupuytren’s disease. Jt. Bone spine, 2012, 79, 7-12.
[23]
Ylikallio, E.; Suomalainen, A. Mechanisms of mitochondrial diseases. Ann. Med., 2012, 44(1), 41-59.
[http://dx.doi.org/10.3109/07853890.2011.598547] [PMID: 21806499]
[24]
Suomalainen, A. Therapy for mitochondrial disorders: Little proof, high research activity, some promise. Semin. Fetal Neonatal Med., 2011, 16(4), 236-240.
[http://dx.doi.org/10.1016/j.siny.2011.05.003] [PMID: 21676668]
[25]
Euro, L.; Farnum, G.A.; Palin, E.; Suomalainen, A.; Kaguni, L.S. Clustering of Alpers disease mutations and catalytic defects in biochemical variants reveal new features of molecular mechanism of the human mitochondrial replicase, Pol γ. Nucleic Acids Res., 2011, 39(21), 9072-9084.
[http://dx.doi.org/10.1093/nar/gkr618] [PMID: 21824913]
[26]
Valenti, D.; Vacca, R.A.; Moro, L.; Atlante, A. Mitochondria can cross cell boundaries: An overview of the biological relevance, pathophysiological implications and therapeutic perspectives of intercellular mitochondrial transfer. Int. J. Mol. Sci., 2021, 22(15), 8312.
[http://dx.doi.org/10.3390/ijms22158312] [PMID: 34361078]
[27]
Boudreau, L.H.; Duchez, A.C.; Cloutier, N.; Soulet, D.; Martin, N.; Bollinger, J.; Paré, A.; Rousseau, M.; Naika, G.S.; Lévesque, T.; Laflamme, C.; Marcoux, G.; Lambeau, G.; Farndale, R.W.; Pouliot, M.; Hamzeh-Cognasse, H.; Cognasse, F.; Garraud, O.; Nigrovic, P.A.; Guderley, H.; Lacroix, S.; Thibault, L.; Semple, J.W.; Gelb, M.H.; Boilard, E. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood, 2014, 124(14), 2173-2183.
[http://dx.doi.org/10.1182/blood-2014-05-573543] [PMID: 25082876]
[28]
Lindqvist, D.; Wolkowitz, O.M.; Picard, M.; Ohlsson, L.; Bersani, F.S.; Fernström, J.; Westrin, Å.; Hough, C.M.; Lin, J.; Reus, V.I.; Epel, E.S.; Mellon, S.H. Circulating cell-free mitochondrial DNA, but not leukocyte mitochondrial DNA copy number, is elevated in major depressive disorder. Neuropsychopharmacology, 2018, 43(7), 1557-1564.
[http://dx.doi.org/10.1038/s41386-017-0001-9] [PMID: 29453441]
[29]
Ramirez-Barbieri, G.; Moskowitzova, K.; Shin, B.; Blitzer, D.; Orfany, A.; Guariento, A.; Iken, K.; Friehs, I.; Zurakowski, D.; del Nido, P.J.; McCully, J.D. Alloreactivity and allorecognition of syngeneic and allogeneic mitochondria. Mitochondrion, 2019, 46, 103-115.
[http://dx.doi.org/10.1016/j.mito.2018.03.002] [PMID: 29588218]
[30]
Shockett, P.E.; Khanal, J.; Sitaula, A.; Oglesby, C.; Meachum, W.A.; Castracane, V.D.; Kraemer, R.R. Plasma cell-free mitochondrial DNA declines in response to prolonged moderate aerobic exercise. Physiol. Rep., 2016, 4(1), e12672.
[http://dx.doi.org/10.14814/phy2.12672] [PMID: 26755735]
[31]
Torralba, D.; Baixauli, F.; Sánchez-Madrid, F. Mitochondria know no boundaries: Mechanisms and functions of intercellular mitochondrial transfer. Front. Cell Dev. Biol., 2016, 4, 107.
[http://dx.doi.org/10.3389/fcell.2016.00107] [PMID: 27734015]
[32]
Liu, J.; Cai, X.; Xie, L.; Tang, Y.; Cheng, J.; Wang, J.; Wang, L.; Gong, J. Circulating cell free mitochondrial DNA is a biomarker in the development of coronary heart disease in the patients with type 2 diabetes. Clin. Lab., 2015, 61(07/2015), 661-667.
[http://dx.doi.org/10.7754/Clin.Lab.2014.141132] [PMID: 26299063]
[33]
Pyle, A.; Brennan, R.; Kurzawa-Akanbi, M.; Yarnall, A.; Thouin, A.; Mollenhauer, B.; Burn, D.; Chinnery, P.F.; Hudson, G. Reduced cerebrospinal fluid mitochondrial DNA is a biomarker for early-stage Parkinson’s disease. Ann. Neurol., 2015, 78(6), 1000-1004.
[http://dx.doi.org/10.1002/ana.24515] [PMID: 26343811]
[34]
Cowan, D.B.; Yao, R.; Akurathi, V.; Snay, E.R.; Thedsanamoorthy, J.K.; Zurakowski, D.; Ericsson, M.; Friehs, I.; Wu, Y.; Levitsky, S.; del Nido, P.J.; Packard, A.B.; McCully, J.D. Intracoronary delivery of mitochondria to the ischemic heart for cardioprotection. PLoS One, 2016, 11(8), e0160889.
[http://dx.doi.org/10.1371/journal.pone.0160889] [PMID: 27500955]
[35]
Picard, M.; Wallace, D.C.; Burelle, Y. The rise of mitochondria in medicine. Mitochondrion, 2016, 30, 105-116.
[http://dx.doi.org/10.1016/j.mito.2016.07.003] [PMID: 27423788]
[36]
McCully, J.D.; Levitsky, S.; Nido, P.J.; Cowan, D.B. Mitochondrial transplantation for therapeutic use. Clin. Transl. Med., 2016, 5(1), 16.
[http://dx.doi.org/10.1186/s40169-016-0095-4] [PMID: 27130633]
[37]
Masuzawa, A.; Black, K.M.; Pacak, C.A.; Ericsson, M.; Barnett, R.J.; Drumm, C.; Seth, P.; Bloch, D.B.; Levitsky, S.; Cowan, D.B.; McCully, J.D. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol., 2013, 304(7), H966-H982.
[http://dx.doi.org/10.1152/ajpheart.00883.2012] [PMID: 23355340]
[38]
López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell, 2013, 153(6), 1194-1217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[39]
Mattson, M.P.; Arumugam, T.V. Hallmarks of brain aging: Adaptive and pathological modification by metabolic states. Cell Metab., 2018, 27(6), 1176-1199.
[http://dx.doi.org/10.1016/j.cmet.2018.05.011] [PMID: 29874566]
[40]
Bantug, G.R.; Galluzzi, L.; Kroemer, G.; Hess, C. The spectrum of T cell metabolism in health and disease. Nat. Rev. Immunol., 2018, 18(1), 19-34.
[http://dx.doi.org/10.1038/nri.2017.99] [PMID: 28944771]
[41]
Monzio Compagnoni, G.; Di Fonzo, A.; Corti, S.; Comi, G.P.; Bresolin, N.; Masliah, E. The role of mitochondria in neurodegenerative diseases: the lesson from Alzheimer’s disease and Parkinson’s disease. Mol. Neurobiol., 2020, 57(7), 2959-2980.
[http://dx.doi.org/10.1007/s12035-020-01926-1] [PMID: 32445085]
[42]
Ishii, K.; Kitagaki, H.; Kono, M.; Mori, E. Decreased medial temporal oxygen metabolism in Alzheimer’s disease shown by PET. J. Nucl. Med., 1996, 37(7), 1159-1165.
[PMID: 8965188]
[43]
Tohgi, H.; Yonezawa, H.; Takahashi, S.; Sato, N.; Kato, E.; Kudo, M.; Hatano, K.; Sasaki, T. Cerebral blood flow and oxygen metabolism in senile dementia of Alzheimer’s type and vascular dementia with deep white matter changes. Neuroradiology, 1998, 40(3), 131-137.
[http://dx.doi.org/10.1007/s002340050553] [PMID: 9561514]
[44]
Larsen, S.B.; Hanss, Z.; Krüger, R. The genetic architecture of mitochondrial dysfunction in Parkinson’s disease. Cell Tissue Res., 2018, 373(1), 21-37.
[http://dx.doi.org/10.1007/s00441-017-2768-8] [PMID: 29372317]
[45]
Pickrell, A.M.; Fukui, H.; Wang, X.; Pinto, M.; Moraes, C.T. The striatum is highly susceptible to mitochondrial oxidative phosphorylation dysfunctions. J. Neurosci., 2011, 31(27), 9895-9904.
[http://dx.doi.org/10.1523/JNEUROSCI.6223-10.2011] [PMID: 21734281]
[46]
Song, W.; Chen, J.; Petrilli, A.; Liot, G.; Klinglmayr, E.; Zhou, Y.; Poquiz, P.; Tjong, J.; Pouladi, M.A.; Hayden, M.R.; Masliah, E.; Ellisman, M.; Rouiller, I.; Schwarzenbacher, R.; Bossy, B.; Perkins, G.; Bossy-Wetzel, E. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat. Med., 2011, 17(3), 377-382.
[http://dx.doi.org/10.1038/nm.2313] [PMID: 21336284]
[47]
Costa, V.; Giacomello, M.; Hudec, R.; Lopreiato, R.; Ermak, G.; Lim, D.; Malorni, W.; Davies, K.J.A.; Carafoli, E.; Scorrano, L. Mitochondrial fission and cristae disruption increase the response of cell models of Huntington’s disease to apoptotic stimuli. EMBO Mol. Med., 2010, 2(12), 490-503.
[http://dx.doi.org/10.1002/emmm.201000102] [PMID: 21069748]
[48]
Fernández-Checa, J.C.; García-Ruiz, C.; Colell, A.; Morales, A.; Marí, M.; Miranda, M.; Ardite, E. Oxidative stress: Role of mitochondria and protection by glutathione. Biofactors, 1998, 8(1-2), 7-11.
[http://dx.doi.org/10.1002/biof.5520080102] [PMID: 9699001]
[49]
James, S.J.; Melnyk, S.; Jernigan, S.; Cleves, M.A.; Halsted, C.H.; Wong, D.H.; Cutler, P.; Bock, K.; Boris, M.; Bradstreet, J.J.; Baker, S.M.; Gaylor, D.W. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2006, 141B(8), 947-956.
[http://dx.doi.org/10.1002/ajmg.b.30366] [PMID: 16917939]
[50]
James, S.J.; Rose, S.; Melnyk, S.; Jernigan, S.; Blossom, S.; Pavliv, O.; Gaylor, D.W. Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism. FASEB J., 2009, 23(8), 2374-2383.
[http://dx.doi.org/10.1096/fj.08-128926] [PMID: 19307255]
[51]
Giulivi, C.; Zhang, Y.F.; Omanska-Klusek, A.; Ross-Inta, C.; Wong, S.; Hertz-Picciotto, I.; Tassone, F.; Pessah, I.N. Mitochondrial dysfunction in autism. JAMA, 2010, 304(21), 2389-2396.
[http://dx.doi.org/10.1001/jama.2010.1706] [PMID: 21119085]
[52]
Graf, W.D.; Marin-Garcia, J.; Gao, H.G.; Pizzo, S.; Naviaux, R.K.; Markusic, D.; Barshop, B.A.; Courchesne, E.; Haas, R.H. Autism associated with the mitochondrial DNA G8363A transfer RNA(Lys) mutation. J. Child Neurol., 2000, 15(6), 357-361.
[http://dx.doi.org/10.1177/088307380001500601] [PMID: 10868777]
[53]
Weissman, J.R.; Kelley, R.I.; Bauman, M.L.; Cohen, B.H.; Murray, K.F.; Mitchell, R.L.; Kern, R.L.; Natowicz, M.R. Mitochondrial disease in autism spectrum disorder patients: A cohort analysis. PLoS One, 2008, 3(11), e3815.
[http://dx.doi.org/10.1371/journal.pone.0003815] [PMID: 19043581]
[54]
Frye, R.E. Biomarkers of abnormal energy metabolism in children with autism spectrum disorder. N. Am. J. Med. Sci., 2012, 5(3), 141.
[http://dx.doi.org/10.7156/v5i3p141]
[55]
Shoffner, J.; Hyams, L.; Langley, G.N.; Cossette, S.; Mylacraine, L.; Dale, J.; Ollis, L.; Kuoch, S.; Bennett, K.; Aliberti, A.; Hyland, K. Fever plus mitochondrial disease could be risk factors for autistic regression. J. Child Neurol., 2010, 25(4), 429-434.
[http://dx.doi.org/10.1177/0883073809342128] [PMID: 19773461]
[56]
Filiano, J.J.; Goldenthal, M.J.; Harker Rhodes, C.; Marín-García, J. Mitochondrial dysfunction in patients with hypotonia, epilepsy, autism, and developmental delay: HEADD syndrome. J. Child Neurol., 2002, 17(6), 435-439.
[http://dx.doi.org/10.1177/088307380201700607] [PMID: 12174964]
[57]
Hara, H. Autism and epilepsy: A retrospective follow-up study. Brain Dev., 2007, 29(8), 486-490.
[http://dx.doi.org/10.1016/j.braindev.2006.12.012] [PMID: 17321709]
[58]
Sun, M.; Zhao, B.; He, S.; Weng, R.; Wang, B.; Ding, Y.; Huang, X.; Luo, Q. The alteration of carnitine metabolism in second trimester in GDM and a nomogram for predicting macrosomia. J. Diabetes Res., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/4085757] [PMID: 32851095]
[59]
Wan, H.; Zhang, C.; Li, H.; Luan, S.; Liu, C. Association of maternal diabetes with autism spectrum disorders in offspring. Medicine, 2018, 97(2), e9438.
[http://dx.doi.org/10.1097/MD.0000000000009438] [PMID: 29480832]
[60]
Hollowood, K.; Melnyk, S.; Pavliv, O.; Evans, T.; Sides, A.; Schmidt, R.J.; Hertz-Picciotto, I.; Elms, W.; Guerrero, E.; Kruger, U.; Hahn, J.; James, S.J. Maternal metabolic profile predicts high or low risk of an autism pregnancy outcome. Res. Autism Spectr. Disord., 2018, 56, 72-82.
[http://dx.doi.org/10.1016/j.rasd.2018.09.003] [PMID: 31086561]
[61]
Jill James, S.; Melnyk, S.; Jernigan, S.; Hubanks, A.; Rose, S.; Gaylor, D.W. Abnormal transmethylation/transsulfuration metabolism and DNA hypomethylation among parents of children with autism. J. Autism Dev. Disord., 2008, 38(10), 1966-1975.
[http://dx.doi.org/10.1007/s10803-008-0591-5] [PMID: 18512136]
[62]
Bauman, M.D.; Van de Water, J. Translational opportunities in the prenatal immune environment: Promises and limitations of the maternal immune activation model. Neurobiol. Dis., 2020, 141, 104864.
[http://dx.doi.org/10.1016/j.nbd.2020.104864] [PMID: 32278881]
[63]
Chen, J.; Xin, K.; Wei, J.; Zhang, K.; Xiao, H. Lower maternal serum 25(OH) D in first trimester associated with higher autism risk in Chinese offspring. J. Psychosom. Res., 2016, 89, 98-101.
[http://dx.doi.org/10.1016/j.jpsychores.2016.08.013] [PMID: 27663117]
[64]
Vinkhuyzen, A.A.E.; Eyles, D.W.; Burne, T.H.J.; Blanken, L.M.E.; Kruithof, C.J.; Verhulst, F.; White, T.; Jaddoe, V.W.; Tiemeier, H.; McGrath, J.J. Gestational vitamin D deficiency and autism spectrum disorder. BJPsych Open, 2017, 3(2), 85-90.
[http://dx.doi.org/10.1192/bjpo.bp.116.004077] [PMID: 28446959]
[65]
Magnusson, C.; Kosidou, K.; Dalman, C.; Lundberg, M.; Lee, B.K.; Rai, D.; Karlsson, H.; Gardner, R.; Arver, S. Maternal vitamin D deficiency and the risk of autism spectrum disorders: Population-based study. BJPsych Open, 2016, 2(2), 170-172.
[http://dx.doi.org/10.1192/bjpo.bp.116.002675] [PMID: 27703770]
[66]
Coleman, M.; Blass, J.P. Autism and lactic acidosis. J. Autism Dev. Disord., 1985, 15(1), 1-8.
[http://dx.doi.org/10.1007/BF01837894] [PMID: 3980425]
[67]
Haas, R.H. Autism and mitochondrial disease. Dev. Disabil. Res. Rev., 2010, 16(2), 144-153.
[http://dx.doi.org/10.1002/ddrr.112] [PMID: 20818729]
[68]
Legido, A.; Goldenthal, M.; Garvin, B.; Damle, S.; Corrigan, K.; Connell, J.; Thao, D.; Valencia, I.; Melvin, J.; Khurana, D.; Grant, M. Effect of a combination of carnitine, coenzyme Q10 and alpha-lipoic acid (MitoCocktail) on mitochondrial function and neurobehavioral performance in children with autism spectrum disorder. Neurology, 2018, 90(15)
[69]
Correia, C.; Coutinho, A.M.; Diogo, L.; Grazina, M.; Marques, C.; Miguel, T.; Ataíde, A.; Almeida, J.; Borges, L.; Oliveira, C.; Oliveira, G.; Vicente, A.M. Brief report: High frequency of biochemical markers for mitochondrial dysfunction in autism: no association with the mitochondrial aspartate/glutamate carrier SLC25A12 gene. J. Autism Dev. Disord., 2006, 36(8), 1137-1140.
[http://dx.doi.org/10.1007/s10803-006-0138-6] [PMID: 17151801]
[70]
László, A.; Horváth, E.; Eck, E.; Fekete, M. Serum serotonin, lactate and pyruvate levels in infantile autistic children. Clin. Chim. Acta, 1994, 229(1-2), 205-207.
[http://dx.doi.org/10.1016/0009-8981(94)90243-7] [PMID: 7988051]
[71]
Arnold, G.L.; Hyman, S.L.; Mooney, R.A.; Kirby, R.S. Plasma amino acids profiles in children with autism: Potential risk of nutritional deficiencies. J. Autism Dev. Disord., 2003, 33(4), 449-454.
[http://dx.doi.org/10.1023/A:1025071014191] [PMID: 12959424]
[72]
Goh, S.; Dong, Z.; Zhang, Y.; DiMauro, S.; Peterson, B.S. Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: Evidence from brain imaging. JAMA Psychiatry, 2014, 71(6), 665-671.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.179] [PMID: 24718932]
[73]
Chugani, D.C.; Sundram, B.S.; Behen, M.; Lee, M.L.; Moore, G.J. Evidence of altered energy metabolism in autistic children. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1999, 23(4), 635-641.
[http://dx.doi.org/10.1016/S0278-5846(99)00022-6] [PMID: 10390722]
[74]
García-Peñas, J.J. Autism, epilepsy and mitochondrial disease: Points of contact. Rev. Neurol., 2008, 46(Suppl. 1), S79-S85.
[PMID: 18302129]
[75]
Legido, A.; Jethva, R.; Goldenthal, M.J. Mitochondrial dysfunction in autism. Semin. Pediatr. Neurol., 2013, 20(3), 163-175.
[http://dx.doi.org/10.1016/j.spen.2013.10.008] [PMID: 24331358]
[76]
Clark-Taylor, T.; Clark-Taylor, B.E. Is autism a disorder of fatty acid metabolism? Possible dysfunction of mitochondrial β-oxidation by long chain acyl-CoA dehydrogenase. Med. Hypotheses, 2004, 62(6), 970-975.
[http://dx.doi.org/10.1016/j.mehy.2004.01.011] [PMID: 15142659]
[77]
Frye, R.E.; James, S.J. Metabolic pathology of autism in relation to redox metabolism. Biomarkers Med., 2014, 8(3), 321-330.
[http://dx.doi.org/10.2217/bmm.13.158] [PMID: 24712422]
[78]
Boddaert, N.; Zilbovicius, M.; Philipe, A.; Robel, L.; Bourgeois, M.; Barthélemy, C.; Seidenwurm, D.; Meresse, I.; Laurier, L.; Desguerre, I.; Bahi-Buisson, N.; Brunelle, F.; Munnich, A.; Samson, Y.; Mouren, M.C.; Chabane, N. MRI findings in 77 children with non-syndromic autistic disorder. PLoS One, 2009, 4(2), e4415.
[http://dx.doi.org/10.1371/journal.pone.0004415] [PMID: 19204795]
[79]
Gu, F.; Chauhan, V.; Kaur, K.; Brown, W.T.; LaFauci, G.; Wegiel, J.; Chauhan, A. Alterations in mitochondrial DNA copy number and the activities of electron transport chain complexes and pyruvate dehydrogenase in the frontal cortex from subjects with autism. Transl. Psychiatry, 2013, 3(9), e299.
[http://dx.doi.org/10.1038/tp.2013.68] [PMID: 24002085]
[80]
Chauhan, A.; Chauhan, V. Oxidative stress in autism. Pathophysiology, 2006, 13(3), 171-181.
[http://dx.doi.org/10.1016/j.pathophys.2006.05.007] [PMID: 16766163]
[81]
Chauhan, A.; Gu, F.; Essa, M.M.; Wegiel, J.; Kaur, K.; Brown, W.T.; Chauhan, V. Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism. J. Neurochem., 2011, 117(2), 209-220.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07189.x] [PMID: 21250997]
[82]
Chauhan, A.; Audhya, T.; Chauhan, V. Brain region-specific glutathione redox imbalance in autism. Neurochem. Res., 2012, 37(8), 1681-1689.
[http://dx.doi.org/10.1007/s11064-012-0775-4] [PMID: 22528835]
[83]
Anitha, A.; Nakamura, K.; Thanseem, I.; Matsuzaki, H.; Miyachi, T.; Tsujii, M.; Iwata, Y.; Suzuki, K.; Sugiyama, T.; Mori, N. Downregulation of the expression of mitochondrial electron transport complex genes in autism brains. Brain Pathol., 2013, 23(3), 294-302.
[http://dx.doi.org/10.1111/bpa.12002] [PMID: 23088660]
[84]
Anitha, A.; Nakamura, K.; Thanseem, I.; Yamada, K.; Iwayama, Y.; Toyota, T.; Matsuzaki, H.; Miyachi, T.; Yamada, S.; Tsujii, M.; Tsuchiya, K.J.; Matsumoto, K.; Iwata, Y.; Suzuki, K.; Ichikawa, H.; Sugiyama, T.; Yoshikawa, T.; Mori, N. Brain region-specific altered expression and association of mitochondria-related genes in autism. Mol. Autism, 2012, 3(1), 12.
[http://dx.doi.org/10.1186/2040-2392-3-12] [PMID: 23116158]
[85]
Filipek, P.A.; Juranek, J.; Smith, M.; Mays, L.Z.; Ramos, E.R.; Bocian, M.; Masser-Frye, D.; Laulhere, T.M.; Modahl, C.; Spence, M.A.; Gargus, J.J. Mitochondrial dysfunction in autistic patients with 15q inverted duplication. Ann. Neurol., 2003, 53(6), 801-804.
[http://dx.doi.org/10.1002/ana.10596] [PMID: 12783428]
[86]
Iqbal, M.; Bashir, S.; Al-Ayadhi, L. Prevalence of antimitochondrial antibodies in autism spectrum subjects. Future Neurol., 2015, 10(3), 203-209.
[http://dx.doi.org/10.2217/fnl.15.11]
[87]
Frackowiak, J.; Mazur-Kolecka, B.; Schanen, N.C.; Brown, W.T.; Wegiel, J. The link between intraneuronal N-truncated amyloid-β peptide and oxidatively modified lipids in idiopathic autism and dup(15q11.2-q13)/autism. Acta Neuropathol. Commun., 2013, 1(1), 61.
[http://dx.doi.org/10.1186/2051-5960-1-61] [PMID: 24252310]
[88]
Beaudet, A.L. Brain carnitine deficiency causes nonsyndromic autism with an extreme male bias: A hypothesis. BioEssays, 2017, 39(8), 1700012.
[http://dx.doi.org/10.1002/bies.201700012] [PMID: 28703319]
[89]
Filipek, P.A.; Juranek, J.; Nguyen, M.T.; Cummings, C.; Gargus, J.J. Relative carnitine deficiency in autism. J. Autism Dev. Disord., 2004, 34(6), 615-623.
[http://dx.doi.org/10.1007/s10803-004-5283-1] [PMID: 15679182]
[90]
Tsao, C.Y.; Mendell, J.R. Autistic disorder in 2 children with mitochondrial disorders. J. Child Neurol., 2007, 22(9), 1121-1123.
[http://dx.doi.org/10.1177/0883073807306266] [PMID: 17890412]
[91]
Celestino-Soper, P.B.S.; Violante, S.; Crawford, E.L.; Luo, R.; Lionel, A.C.; Delaby, E.; Cai, G.; Sadikovic, B.; Lee, K.; Lo, C.; Gao, K.; Person, R.E.; Moss, T.J.; German, J.R.; Huang, N.; Shinawi, M.; Treadwell-Deering, D.; Szatmari, P.; Roberts, W.; Fernandez, B.; Schroer, R.J.; Stevenson, R.E.; Buxbaum, J.D.; Betancur, C.; Scherer, S.W.; Sanders, S.J.; Geschwind, D.H.; Sutcliffe, J.S.; Hurles, M.E.; Wanders, R.J.A.; Shaw, C.A.; Leal, S.M.; Cook, E.H., Jr; Goin-Kochel, R.P.; Vaz, F.M.; Beaudet, A.L. A common X-linked inborn error of carnitine biosynthesis may be a risk factor for nondysmorphic autism. Proc. Natl. Acad. Sci. USA, 2012, 109(21), 7974-7981.
[http://dx.doi.org/10.1073/pnas.1120210109] [PMID: 22566635]
[92]
Geier, D.A.; Kern, J.K.; Davis, G.; King, P.G.; Adams, J.B.; Young, J.L.; Geier, M.R. A prospective double-blind, randomized clinical trial of levocarnitine to treat autism spectrum disorders. Med. Sci. Monit., 2011, 17(6), PI15-PI23.
[http://dx.doi.org/10.12659/MSM.881792] [PMID: 21629200]
[93]
Ezugha, H.; Goldenthal, M.; Valencia, I.; Anderson, C.E.; Legido, A.; Marks, H. 5q14.3 deletion manifesting as mitochondrial disease and autism: Case report. J. Child Neurol., 2010, 25(10), 1232-1235.
[http://dx.doi.org/10.1177/0883073809361165] [PMID: 20179003]
[94]
Guevara-Campos, J.; González-Guevara, L.; Puig-Alcaraz, C.; Cauli, O. Autism spectrum disorders associated to a deficiency of the enzymes of the mitochondrial respiratory chain. Metab. Brain Dis., 2013, 28(4), 605-612.
[http://dx.doi.org/10.1007/s11011-013-9419-x] [PMID: 23839164]
[95]
Guevara-Campos, J.; González-Guevara, L.; Briones, P.; López-Gallardo, E.; Bulán, N.; Ruiz-Pesini, E.; Ramnarine, D.; Montoya, J. Autism associated to a deficiency of complexes III and IV of the mitochondrial respiratory chain. Invest. Clin., 2010, 51(3), 423-431.
[PMID: 21302592]
[96]
Guevara-Campos, J.; González-Guevara, L.; Cauli, O. Autism and intellectual disability associated with mitochondrial disease and hyperlactacidemia. Int. J. Mol. Sci., 2015, 16(2), 3870-3884.
[http://dx.doi.org/10.3390/ijms16023870] [PMID: 25679448]
[97]
Goldenthal, M.J.; Damle, S.; Sheth, S.; Shah, N.; Melvin, J.; Jethva, R.; Hardison, H.; Marks, H.; Legido, A. Mitochondrial enzyme dysfunction in autism spectrum disorders; A novel biomarker revealed from buccal swab analysis. Biomarkers Med., 2015, 9(10), 957-965.
[http://dx.doi.org/10.2217/bmm.15.72] [PMID: 26439018]
[98]
Khemakhem, A.M.; Frye, R.E.; El-Ansary, A.; Al-Ayadhi, L.; Bacha, A.B. Novel biomarkers of metabolic dysfunction is autism spectrum disorder: Potential for biological diagnostic markers. Metab. Brain Dis., 2017, 32(6), 1983-1997.
[http://dx.doi.org/10.1007/s11011-017-0085-2] [PMID: 28831647]
[99]
El-Ansary, A.K.; Ben, B.A.G.; Al-Ayadhi, L.Y. Proinflammatory and proapoptotic markers in relation to mono and di-cations in plasma of autistic patients from Saudi Arabia. J. Neuroinflammation, 2011, 8(1), 142.
[http://dx.doi.org/10.1186/1742-2094-8-142] [PMID: 21999440]
[100]
El-Ansary, A.; Bjørklund, G.; Khemakhem, A.M.; Al-Ayadhi, L.; Chirumbolo, S.; Ben Bacha, A. Metabolism-associated markers and childhood autism rating scales (CARS) as a measure of autism severity. J. Mol. Neurosci., 2018, 65(3), 265-276.
[http://dx.doi.org/10.1007/s12031-018-1091-5] [PMID: 29931502]
[101]
El-Ansary, A.; Bjørklund, G.; Chirumbolo, S.; Alnakhli, O.M. Predictive value of selected biomarkers related to metabolism and oxidative stress in children with autism spectrum disorder. Metab. Brain Dis., 2017, 32(4), 1209-1221.
[http://dx.doi.org/10.1007/s11011-017-0029-x] [PMID: 28497358]
[102]
El-Ansary, A.; Al-Daihan, S.; Al-Dabas, A.; Al-Ayadhi, L. Activities of key glycolytic enzymes in the plasma of Saudi autistic patients. Open Access J. Clin. Trials, 2010, 2, 49-57.
[http://dx.doi.org/10.2147/OAJCT.S8074]
[103]
Al-Mosalem, O.A.; El-Ansary, A.; Attas, O.; Al-Ayadhi, L. Metabolic biomarkers related to energy metabolism in Saudi autistic children. Clin. Biochem., 2009, 42(10-11), 949-957.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.04.006] [PMID: 19376103]
[104]
Finsterer, J.; Zarrouk-Mahjoub, S. Biomarkers for detecting mitochondrial disorders. J. Clin. Med., 2018, 7(2), 16.
[http://dx.doi.org/10.3390/jcm7020016]
[105]
Chen, X.; Guo, C.; Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen. Res., 2012, 7(5), 376-385.
[PMID: 25774178]
[106]
Bessis, A.; Béchade, C.; Bernard, D.; Roumier, A. Microglial control of neuronal death and synaptic properties. Glia, 2007, 55(3), 233-238.
[http://dx.doi.org/10.1002/glia.20459] [PMID: 17106878]
[107]
Kim, S.U.; de Vellis, J. Microglia in health and disease. J. Neurosci. Res., 2005, 81(3), 302-313.
[http://dx.doi.org/10.1002/jnr.20562] [PMID: 15954124]
[108]
Garbett, K.; Ebert, P.J.; Mitchell, A.; Lintas, C.; Manzi, B.; Mirnics, K.; Persico, A.M. Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol. Dis., 2008, 30(3), 303-311.
[http://dx.doi.org/10.1016/j.nbd.2008.01.012] [PMID: 18378158]
[109]
Ashwood, P.; Corbett, B.A.; Kantor, A.; Schulman, H.; Van de Water, J.; Amaral, D.G. In search of cellular immunophenotypes in the blood of children with autism. PLoS One, 2011, 6(5), e19299.
[http://dx.doi.org/10.1371/journal.pone.0019299] [PMID: 21573236]
[110]
Ashwood, P.; Krakowiak, P.; Hertz-Picciotto, I.; Hansen, R.; Pessah, I.; Van de Water, J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav. Immun., 2011, 25(1), 40-45.
[http://dx.doi.org/10.1016/j.bbi.2010.08.003] [PMID: 20705131]
[111]
Ashwood, P.; Krakowiak, P.; Hertz-Picciotto, I.; Hansen, R.; Pessah, I.N.; Van de Water, J. Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. J. Neuroimmunol., 2011, 232(1-2), 196-199.
[http://dx.doi.org/10.1016/j.jneuroim.2010.10.025] [PMID: 21095018]
[112]
Ashwood, P.; Krakowiak, P.; Hertz-Picciotto, I.; Hansen, R.; Pessah, I.N.; Van de Water, J. Altered T cell responses in children with autism. Brain Behav. Immun., 2011, 25(5), 840-849.
[http://dx.doi.org/10.1016/j.bbi.2010.09.002] [PMID: 20833247]
[113]
Grigorenko, E.L.; Han, S.S.; Yrigollen, C.M.; Leng, L.; Mizue, Y.; Anderson, G.M.; Mulder, E.J.; de Bildt, A.; Minderaa, R.B.; Volkmar, F.R.; Chang, J.T.; Bucala, R. Macrophage migration inhibitory factor and autism spectrum disorders. Pediatrics, 2008, 122(2), e438-e445.
[http://dx.doi.org/10.1542/peds.2007-3604] [PMID: 18676531]
[114]
Kajizuka, M.; Miyachi, T.; Matsuzaki, H.; Iwata, K.; Shinmura, C.; Suzuki, K.; Suda, S.; Tsuchiya, K.J.; Matsumoto, K.; Iwata, Y.; Nakamura, K.; Tsujii, M.; Sugiyama, T.; Takei, N.; Mori, N. Serum levels of platelet-derived growth factor BB homodimers are increased in male children with autism. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, 34(1), 154-158.
[http://dx.doi.org/10.1016/j.pnpbp.2009.10.017] [PMID: 19879307]
[115]
Djukic, M.; Mildner, A.; Schmidt, H.; Czesnik, D.; Brück, W.; Priller, J.; Nau, R.; Prinz, M. Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice. Brain, 2006, 129(9), 2394-2403.
[http://dx.doi.org/10.1093/brain/awl206] [PMID: 16891321]
[116]
Enstrom, A.M.; Onore, C.E.; Van de Water, J.A.; Ashwood, P. Differential monocyte responses to TLR ligands in children with autism spectrum disorders. Brain Behav. Immun., 2010, 24(1), 64-71.
[http://dx.doi.org/10.1016/j.bbi.2009.08.001] [PMID: 19666104]
[117]
Bjørklund, G.; Kern, J.K.; Urbina, M.A.; Saad, K.; El-Houfey, A.A.; Geier, D.A.; Chirumbolo, S.; Geier, M.R.; Mehta, J.A.; Aaseth, J. Cerebral hypoperfusion in autism spectrum disorder. Acta Neurobiol. Exp., 2018, 78(1), 21-29.
[http://dx.doi.org/10.21307/ane-2018-005] [PMID: 29694338]
[118]
Costanzo, M.; Boschi, F.; Carton, F.; Conti, G.; Covi, V.; Tabaracci, G.; Sbarbati, A.; Malatesta, M. Low ozone concentrations promote adipogenesis in human adipose-derived adult stem cells. Eur. J. Histochem., 2018, 62(3), 2969.
[http://dx.doi.org/10.4081/ejh.2018.2969] [PMID: 30176704]
[119]
Galiè, M.; Costanzo, M.; Nodari, A.; Boschi, F.; Calderan, L.; Mannucci, S.; Covi, V.; Tabaracci, G.; Malatesta, M. Mild ozonisation activates antioxidant cell response by the Keap1/Nrf2 dependent pathway. Free Radic. Biol. Med., 2018, 124, 114-121.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.093] [PMID: 29864481]
[120]
Bjørklund, G.; Chirumbolo, S. Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition, 2017, 33, 311-321.
[http://dx.doi.org/10.1016/j.nut.2016.07.018] [PMID: 27746034]
[121]
Bjørklund, G.; Saad, K.; Chirumbolo, S.; Kern, J.K.; Geier, D.A.; Geier, M.R.; Urbina, M.A. Immune dysfunction and neuroinflammation in autism spectrum disorder. Acta Neurobiol. Exp., 2016, 76(4), 257-268.
[http://dx.doi.org/10.21307/ane-2017-025] [PMID: 28094817]
[122]
Dmitriev, L.F. The involvement of lipid radical cycles and the adenine nucleotide translocator in neurodegenerative diseases. J. Alzheimers Dis., 2007, 11(2), 183-190.
[http://dx.doi.org/10.3233/JAD-2007-11206] [PMID: 17522443]
[123]
Gandhi, S.; Abramov, A.Y. Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev., 2012, 2012, 428010.
[http://dx.doi.org/10.1155/2012/428010]
[124]
Boris, M.; Goldblatt, A.; Galanko, J.; James, S.J. Association of MTHFR gene variants with autism. J. Am. Phys. Surg., 2004, 9(4), 106-108.
[125]
Goin-Kochel, R.P.; Porter, A.E.; Peters, S.U.; Shinawi, M.; Sahoo, T.; Beaudet, A.L. The MTHFR 677 C→T polymorphism and behaviors in children with autism: exploratory genotype-phenotype correlations. Autism Res., 2009, 2(2), 98-108.
[http://dx.doi.org/10.1002/aur.70] [PMID: 19455642]
[126]
Gorrindo, P.; Lane, C.J.; Lee, E.B.; McLaughlin, B.; Levitt, P. Enrichment of elevated plasma F2t-isoprostane levels in individuals with autism who are stratified by presence of gastrointestinal dysfunction. PLoS One, 2013, 8(7), e68444.
[http://dx.doi.org/10.1371/journal.pone.0068444] [PMID: 23844202]
[127]
Adams, J.B.; Baral, M.; Geis, E.; Mitchell, J.; Ingram, J.; Hensley, A.; Zappia, I.; Newmark, S.; Gehn, E.; Rubin, R.A.; Mitchell, K.; Bradstreet, J.; El-Dahr, J.M. The severity of autism is associated with toxic metal body burden and red blood cell glutathione levels. J. Toxicol., 2009, 2009, 1-7.
[http://dx.doi.org/10.1155/2009/532640] [PMID: 20107587]
[128]
Borrás, C.; Sastre, J.; García-Sala, D.; Lloret, A.; Pallardó, F.V.; Viña, J. Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radic. Biol. Med., 2003, 34(5), 546-552.
[http://dx.doi.org/10.1016/S0891-5849(02)01356-4] [PMID: 12614843]
[129]
Kern, J.K.; Geier, D.A.; Sykes, L.K.; Haley, B.E.; Geier, M.R. The relationship between mercury and autism: A comprehensive review and discussion. J. Trace Elem. Med. Biol., 2016, 37, 8-24.
[http://dx.doi.org/10.1016/j.jtemb.2016.06.002] [PMID: 27473827]
[130]
Siddiqui, M.F.; Elwell, C.; Johnson, M.H. Mitochondrial dysfunction in autism spectrum disorders. Autism Open Access, 2016, 6(5), 1000190.
[PMID: 27928515]
[131]
Endres, D.; Tebartz van Elst, L.; Meyer, S.A.; Feige, B.; Nickel, K.; Bubl, A.; Riedel, A.; Ebert, D.; Lange, T.; Glauche, V.; Biscaldi, M.; Philipsen, A.; Maier, S.J.; Perlov, E. Glutathione metabolism in the prefrontal brain of adults with high-functioning autism spectrum disorder: an MRS study. Mol. Autism, 2017, 8(1), 10.
[http://dx.doi.org/10.1186/s13229-017-0122-3] [PMID: 28316774]
[132]
Kałużna-Czaplińska, J.; Żurawicz, E.; Michalska, M.; Rynkowski, J. A focus on homocysteine in autism. Acta Biochim. Pol., 2013, 60(2), 137-142.
[http://dx.doi.org/10.18388/abp.2013_1963] [PMID: 23741716]
[133]
Wang, Y.; Picard, M.; Gu, Z. Genetic evidence for elevated pathogenicity of mitochondrial DNA Heteroplasmy in autism Spectrum disorder. PLoS Genet., 2016, 12(10), e1006391.
[http://dx.doi.org/10.1371/journal.pgen.1006391] [PMID: 27792786]
[134]
Klein, J.A.; Ackerman, S.L. Oxidative stress, cell cycle, and neurodegeneration. J. Clin. Invest., 2003, 111(6), 785-793.
[http://dx.doi.org/10.1172/JCI200318182] [PMID: 12639981]
[135]
Guo, T.; Chen, H.; Liu, B.; Ji, W.; Yang, C. Methylenetetrahydrofolate reductase polymorphisms C677T and risk of autism in the Chinese Han population. Genet. Test. Mol. Biomarkers, 2012, 16(8), 968-973.
[http://dx.doi.org/10.1089/gtmb.2012.0091] [PMID: 22775456]
[136]
Fitzjohn, S.M.; Collingridge, G.L. Calcium stores and synaptic plasticity. Cell Calcium, 2002, 32(5-6), 405-411.
[http://dx.doi.org/10.1016/S0143416002001999] [PMID: 12543099]
[137]
Bezprozvanny, I.; Hayden, M.R. Deranged neuronal calcium signaling and Huntington disease. Biochem. Biophys. Res. Commun., 2004, 322(4), 1310-1317.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.035] [PMID: 15336977]
[138]
Ivannikov, M.V.; Macleod, G.T. Mitochondrial free Ca2+ levels and their effects on energy metabolism in Drosophila motor nerve terminals. Biophys. J., 2013, 104(11), 2353-2361.
[http://dx.doi.org/10.1016/j.bpj.2013.03.064] [PMID: 23746507]
[139]
Celsi, F.; Pizzo, P.; Brini, M.; Leo, S.; Fotino, C.; Pinton, P.; Rizzuto, R. Mitochondria, calcium and cell death: A deadly triad in neurodegeneration. Biochim. Biophys. Acta Bioenerg., 2009, 1787(5), 335-344.
[http://dx.doi.org/10.1016/j.bbabio.2009.02.021] [PMID: 19268425]
[140]
Brini, M.; Calì, T.; Ottolini, D.; Carafoli, E. Intracellular calcium homeostasis and signaling. Met. Ions Life Sci., 2013, 12, 119-168.
[http://dx.doi.org/10.1007/978-94-007-5561-1_5]
[141]
Jamain, S.; Betancur, C.; Quach, H.; Philippe, A.; Fellous, M.; Giros, B.; Gillberg, C.; Leboyer, M.; Bourgeron, T. Linkage and association of the glutamate receptor 6 gene with autism. Mol. Psychiatry, 2002, 7(3), 302-310.
[http://dx.doi.org/10.1038/sj.mp.4000979] [PMID: 11920157]
[142]
Segurado, R.; Conroy, J.; Meally, E.; Fitzgerald, M.; Gill, M.; Gallagher, L. Confirmation of association between autism and the mitochondrial aspartate/glutamate carrier SLC25A12 gene on chromosome 2q31. Am. J. Psychiatry, 2005, 162(11), 2182-2184.
[http://dx.doi.org/10.1176/appi.ajp.162.11.2182] [PMID: 16263864]
[143]
Lepagnol-Bestel, A-M.; Maussion, G.; Boda, B.; Cardona, A.; Iwayama, Y.; Delezoide, A-L.; Moalic, J-M.; Muller, D.; Dean, B.; Yoshikawa, T.; Gorwood, P.; Buxbaum, J.D.; Ramoz, N.; Simonneau, M. SLC25A12 expression is associated with neurite outgrowth and is upregulated in the prefrontal cortex of autistic subjects. Mol. Psychiatry, 2008, 13(4), 385-397.
[http://dx.doi.org/10.1038/sj.mp.4002120] [PMID: 18180767]
[144]
Inoue, T.; Kato, K.; Kohda, K.; Mikoshiba, K. Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. J. Neurosci., 1998, 18(14), 5366-5373.
[http://dx.doi.org/10.1523/JNEUROSCI.18-14-05366.1998] [PMID: 9651219]
[145]
Stutzmann, G.E.; LaFerla, F.M.; Parker, I. Ca2+ signaling in mouse cortical neurons studied by two-photon imaging and photoreleased inositol triphosphate. J. Neurosci., 2003, 23(3), 758-765.
[http://dx.doi.org/10.1523/JNEUROSCI.23-03-00758.2003] [PMID: 12574404]
[146]
Hernández-López, S.; Tkatch, T.; Perez-Garci, E.; Galarraga, E.; Bargas, J.; Hamm, H.; Surmeier, D.J. D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[β]1-IP3-calcineurin-signaling cascade. J. Neurosci., 2000, 20(24), 8987-8995.
[http://dx.doi.org/10.1523/JNEUROSCI.20-24-08987.2000] [PMID: 11124974]
[147]
Li, Y.X.; Zhang, Y.; Lester, H.A.; Schuman, E.M.; Davidson, N. Enhancement of neurotransmitter release induced by brain-derived neurotrophic factor in cultured hippocampal neurons. J. Neurosci., 1998, 18(24), 10231-10240.
[http://dx.doi.org/10.1523/JNEUROSCI.18-24-10231.1998] [PMID: 9852560]
[148]
Diamant, S.; Schwartz, L.; Atlas, D. Potentiation of neurotransmitter release coincides with potentiation of phosphatidyl inositol turnover. A possible in vitro model for long term potentiation. Neurosci. Lett., 1990, 109(1-2), 140-145.
[http://dx.doi.org/10.1016/0304-3940(90)90552-K] [PMID: 1969129]
[149]
Rose, C.R.; Konnerth, A. Stores not just for storage intracellular calcium release and synaptic plasticity. Neuron, 2001, 31(4), 519-522.
[http://dx.doi.org/10.1016/S0896-6273(01)00402-0] [PMID: 11545711]
[150]
Nguyen, R.L.; Medvedeva, Y.V.; Ayyagari, T.E.; Schmunk, G.; Gargus, J.J. Intracellular calcium dysregulation in autism spectrum disorder: An analysis of converging organelle signaling pathways. Biochimica et Biophysica Acta (BBA)-. Molecular Cell Research, 1865, (11), 1718-1732.
[151]
Naviaux, R.K. Mitochondria and autism Spectrum disorders. In: The Neuroscience of Autism Spectrum Disorders; Academic Press, Elsevier: Waltham, MA, 2013; pp. 179-193.
[http://dx.doi.org/10.1016/B978-0-12-391924-3.00012-0]
[152]
Ramoz, N.; Reichert, J.G.; Smith, C.J.; Silverman, J.M.; Bespalova, I.N.; Davis, K.L.; Buxbaum, J.D. Linkage and association of the mitochondrial aspartate/glutamate carrier SLC25A12 gene with autism. Am. J. Psychiatry, 2004, 161(4), 662-669.
[http://dx.doi.org/10.1176/appi.ajp.161.4.662] [PMID: 15056512]
[153]
Chien, W.H.; Wu, Y.Y.; Gau, S.S.F.; Huang, Y.S.; Soong, W.T.; Chiu, Y.N.; Chen, C.H. Association study of the SLC25A12 gene and autism in Han Chinese in Taiwan. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, 34(1), 189-192.
[http://dx.doi.org/10.1016/j.pnpbp.2009.11.004] [PMID: 19913066]
[154]
Weuring, W.; Geerligs, J.; Koeleman, B.P.C. Gene therapies for monogenic autism spectrum disorders. Genes, 2021, 12(11), 1667.
[http://dx.doi.org/10.3390/genes12111667] [PMID: 34828273]
[155]
Marui, T.; Funatogawa, I.; Koishi, S.; Yamamoto, K.; Matsumoto, H.; Hashimoto, O.; Jinde, S.; Nishida, H.; Sugiyama, T.; Kasai, K.; Watanabe, K.; Kano, Y.; Kato, N. The NADH-ubiquinone oxidoreductase 1 alpha subcomplex 5 (NDUFA5) gene variants are associated with autism. Acta Psychiatr. Scand., 2011, 123(2), 118-124.
[http://dx.doi.org/10.1111/j.1600-0447.2010.01600.x] [PMID: 20825370]
[156]
Pons, R.; Andreu, A.L.; Checcarelli, N.; Vilà, M.R.; Engelstad, K.; Sue, C.M.; Shungu, D.; Haggerty, R.; De Vivo, D.C.; DiMauro, S. Mitochondrial DNA abnormalities and autistic spectrum disorders. J. Pediatr., 2004, 144(1), 81-85.
[http://dx.doi.org/10.1016/j.jpeds.2003.10.023] [PMID: 14722523]
[157]
Sue, C.M.; Bruno, C.; Andreu, A.L.; Cargan, A.; Mendell, J.R.; Tsao, C.Y.; Luquette, M.; Paolicchi, J.; Shanske, S.; DiMauro, S.; De Vivo, D.C. Infantile encephalopathy associated with the MELAS A3243G mutation. J. Pediatr., 1999, 134(6), 696-700.
[http://dx.doi.org/10.1016/S0022-3476(99)70283-0] [PMID: 10356136]
[158]
Connolly, B.S.; Feigenbaum, A.S.J.; Robinson, B.H.; Dipchand, A.I.; Simon, D.K.; Tarnopolsky, M.A. MELAS syndrome, cardiomyopathy, rhabdomyolysis, and autism associated with the A3260G mitochondrial DNA mutation. Biochem. Biophys. Res. Commun., 2010, 402(2), 443-447.
[http://dx.doi.org/10.1016/j.bbrc.2010.10.060] [PMID: 20965148]
[159]
Levinger, L.; Giegé, R.; Florentz, C. Pathology-related substitutions in human mitochondrial tRNAIle reduce precursor 3′ end processing efficiency in vitro. Nucleic Acids Res., 2003, 31(7), 1904-1912.
[http://dx.doi.org/10.1093/nar/gkg282] [PMID: 12655007]
[160]
Napoli, E.; Wong, S.; Giulivi, C. Evidence of reactive oxygen species-mediated damage to mitochondrial DNA in children with typical autism. Mol. Autism, 2013, 4(1), 2.
[http://dx.doi.org/10.1186/2040-2392-4-2] [PMID: 23347615]
[161]
Hadjixenofontos, A.; Schmidt, M.A.; Whitehead, P.L.; Konidari, I.; Hedges, D.J.; Wright, H.H.; Abramson, R.K.; Menon, R.; Williams, S.M.; Cuccaro, M.L.; Haines, J.L.; Gilbert, J.R.; Pericak-Vance, M.A.; Martin, E.R.; McCauley, J.L. Evaluating mitochondrial DNA variation in autism spectrum disorders. Ann. Hum. Genet., 2013, 77(1), 9-21.
[http://dx.doi.org/10.1111/j.1469-1809.2012.00736.x] [PMID: 23130936]
[162]
Frye, R.E.; Sreenivasula, S.; Adams, J.B. Traditional and non-traditional treatments for autism spectrum disorder with seizures: an on-line survey. BMC Pediatr., 2011, 11(1), 37.
[http://dx.doi.org/10.1186/1471-2431-11-37] [PMID: 21592359]
[163]
Evangeliou, A.; Vlachonikolis, I.; Mihailidou, H.; Spilioti, M.; Skarpalezou, A.; Makaronas, N.; Prokopiou, A.; Christodoulou, P.; Liapi-Adamidou, G.; Helidonis, E.; Sbyrakis, S.; Smeitink, J. Application of a ketogenic diet in children with autistic behavior: Pilot study. J. Child Neurol., 2003, 18(2), 113-118.
[http://dx.doi.org/10.1177/08830738030180020501] [PMID: 12693778]
[164]
Lee, R.W.Y.; Corley, M.J.; Pang, A.; Arakaki, G.; Abbott, L.; Nishimoto, M.; Miyamoto, R.; Lee, E.; Yamamoto, S.; Maunakea, A.K.; Lum-Jones, A.; Wong, M. A modified ketogenic gluten-free diet with MCT improves behavior in children with autism spectrum disorder. Physiol. Behav., 2018, 188, 205-211.
[http://dx.doi.org/10.1016/j.physbeh.2018.02.006] [PMID: 29421589]
[165]
Mu, C.; Corley, M.J.; Lee, R.W.Y.; Wong, M.; Pang, A.; Arakaki, G.; Miyamoto, R.; Rho, J.M.; Mickiewicz, B.; Dowlatabadi, R.; Vogel, H.J.; Korchemagin, Y.; Shearer, J. Metabolic framework for the improvement of autism spectrum disorders by a modified ketogenic diet: A pilot study. J. Proteome Res., 2020, 19(1), 382-390.
[http://dx.doi.org/10.1021/acs.jproteome.9b00581] [PMID: 31696714]
[166]
El-Rashidy, O.; El-Baz, F.; El-Gendy, Y.; Khalaf, R.; Reda, D.; Saad, K. Ketogenic diet versus gluten free casein free diet in autistic children: A case-control study. Metab. Brain Dis., 2017, 32(6), 1935-1941.
[http://dx.doi.org/10.1007/s11011-017-0088-z] [PMID: 28808808]
[167]
Masino, S.A.; Kawamura, M., Jr; Plotkin, L.M.; Svedova, J.; DiMario, F.J., Jr; Eigsti, I.M. The relationship between the neuromodulator adenosine and behavioral symptoms of autism. Neurosci. Lett., 2011, 500(1), 1-5.
[http://dx.doi.org/10.1016/j.neulet.2011.06.007] [PMID: 21693172]
[168]
Napoli, E.; Dueñas, N.; Giulivi, C. Potential therapeutic use of the ketogenic diet in autism spectrum disorders. Front Pediatr., 2014, 2, 69.
[http://dx.doi.org/10.3389/fped.2014.00069] [PMID: 25072037]
[169]
Noakes, M.; Foster, P.R.; Keogh, J.B.; James, A.P.; Mamo, J.C.; Clifton, P.M. Comparison of isocaloric very low carbohydrate/high saturated fat and high carbohydrate/low saturated fat diets on body composition and cardiovascular risk. Nutr. Metab., 2006, 3(1), 7.
[http://dx.doi.org/10.1186/1743-7075-3-7] [PMID: 16403234]
[170]
Nuttall, F.Q.; Almokayyad, R.M.; Gannon, M.C. Comparison of a carbohydrate-free diet vs. fasting on plasma glucose, insulin and glucagon in type 2 diabetes. Metabolism, 2015, 64(2), 253-262.
[http://dx.doi.org/10.1016/j.metabol.2014.10.004] [PMID: 25458830]
[171]
Currais, A.; Farrokhi, C.; Dargusch, R.; Goujon-Svrzic, M.; Maher, P. Dietary glycemic index modulates the behavioral and biochemical abnormalities associated with autism spectrum disorder. Mol. Psychiatry, 2016, 21(3), 426-436.
[http://dx.doi.org/10.1038/mp.2015.64] [PMID: 26055422]
[172]
Zilkha, N.; Kuperman, Y.; Kimchi, T. High-fat diet exacerbates cognitive rigidity and social deficiency in the BTBR mouse model of autism. Neuroscience, 2017, 345, 142-154.
[http://dx.doi.org/10.1016/j.neuroscience.2016.01.070] [PMID: 26855190]
[173]
Pennesi, C.M.; Klein, L.C. Effectiveness of the gluten-free, casein-free diet for children diagnosed with autism spectrum disorder: Based on parental report. Nutr. Neurosci., 2012, 15(2), 85-91.
[http://dx.doi.org/10.1179/1476830512Y.0000000003] [PMID: 22564339]
[174]
Palmieri, L.; Persico, A.M. Mitochondrial dysfunction in autism spectrum disorders: Cause or effect? Biochim. Biophys. Acta Bioenerg., 2010, 1797(6-7), 1130-1137.
[http://dx.doi.org/10.1016/j.bbabio.2010.04.018] [PMID: 20441769]
[175]
Bobrowski-Khoury, N.; Ramaekers, V.T.; Sequeira, J.M.; Quadros, E.V. Folate receptor alpha autoantibodies in autism spectrum disorders: Diagnosis, treatment and prevention. J. Pers. Med., 2021, 11(8), 710.
[http://dx.doi.org/10.3390/jpm11080710] [PMID: 34442354]
[176]
Bennuri, S.C.; Rose, S.; Frye, R.E. Mitochondrial dysfunction is inducible in lymphoblastoid cell lines from children with autism and may involve the TORC1 pathway. Front. Psychiatry, 2019, 10, 269.
[http://dx.doi.org/10.3389/fpsyt.2019.00269] [PMID: 31133888]
[177]
Frye, R.E.; Cakir, J.; Rose, S.; Palmer, R.F.; Austin, C.; Curtin, P.; Arora, M. Mitochondria may mediate prenatal environmental influences in autism spectrum disorder. J. Pers. Med., 2021, 11(3), 218.
[http://dx.doi.org/10.3390/jpm11030218] [PMID: 33803789]
[178]
Duan, L.; Xu, L.; Xu, X.; Qin, Z.; Zhou, X.; Xiao, Y.; Liang, Y.; Xia, J. Exosome-mediated delivery of gene vectors for gene therapy. Nanoscale, 2021, 13(3), 1387-1397.
[http://dx.doi.org/10.1039/D0NR07622H] [PMID: 33350419]
[179]
Finn, J.D.; Smith, A.R.; Patel, M.C.; Shaw, L.; Youniss, M.R.; van Heteren, J.; Dirstine, T.; Ciullo, C.; Lescarbeau, R.; Seitzer, J.; Shah, R.R.; Shah, A.; Ling, D.; Growe, J.; Pink, M.; Rohde, E.; Wood, K.M.; Salomon, W.E.; Harrington, W.F.; Dombrowski, C.; Strapps, W.R.; Chang, Y.; Morrissey, D.V. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep., 2018, 22(9), 2227-2235.
[http://dx.doi.org/10.1016/j.celrep.2018.02.014] [PMID: 29490262]
[180]
Gaj, T.; Gersbach, C.A.; Barbas, C.F. III ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol., 2013, 31(7), 397-405.
[http://dx.doi.org/10.1016/j.tibtech.2013.04.004] [PMID: 23664777]
[181]
Gee, P.; Lung, M.S.Y.; Okuzaki, Y.; Sasakawa, N.; Iguchi, T.; Makita, Y.; Hozumi, H.; Miura, Y.; Yang, L.F.; Iwasaki, M.; Wang, X.H.; Waller, M.A.; Shirai, N.; Abe, Y.O.; Fujita, Y.; Watanabe, K.; Kagita, A.; Iwabuchi, K.A.; Yasuda, M.; Xu, H.; Noda, T.; Komano, J.; Sakurai, H.; Inukai, N.; Hotta, A. Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. Nat. Commun., 2020, 11(1), 1334.
[http://dx.doi.org/10.1038/s41467-020-14957-y] [PMID: 32170079]
[182]
Yip, B. Recent advances in CRISPR/Cas9 delivery strategies. Biomolecules, 2020, 10(6), 839.
[http://dx.doi.org/10.3390/biom10060839] [PMID: 32486234]
[183]
Zhang, X.; Li, B.; Luo, X.; Zhao, W.; Jiang, J.; Zhang, C.; Gao, M.; Chen, X.; Dong, Y. Biodegradable amino-ester nanomaterials for Cas9 mRNA delivery in vitro and in vivo. ACS Appl. Mater. Interfaces, 2017, 9(30), 25481-25487.
[http://dx.doi.org/10.1021/acsami.7b08163] [PMID: 28685575]
[184]
Zhang, X.; Xu, Q.; Zi, Z.; Liu, Z.; Wan, C.; Crisman, L.; Shen, J.; Liu, X. Programmable extracellular vesicles for macromolecule delivery and genome modifications. Dev. Cell, 2020, 55(6), 784-801.e9.
[http://dx.doi.org/10.1016/j.devcel.2020.11.007] [PMID: 33296682]
[185]
Zincarelli, C.; Soltys, S.; Rengo, G.; Rabinowitz, J.E. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol. Ther., 2008, 16(6), 1073-1080.
[http://dx.doi.org/10.1038/mt.2008.76] [PMID: 18414476]
[186]
Zuris, J.A.; Thompson, D.B.; Shu, Y.; Guilinger, J.P.; Bessen, J.L.; Hu, J.H.; Maeder, M.L.; Joung, J.K.; Chen, Z.Y.; Liu, D.R. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol., 2015, 33(1), 73-80.
[http://dx.doi.org/10.1038/nbt.3081] [PMID: 25357182]
[187]
Ferreira, M.L.; Loyacono, N. Rationale of an advanced integrative approach applied to autism spectrum disorder: Review, discussion and proposal. J. Pers. Med., 2021, 11(6), 514.
[http://dx.doi.org/10.3390/jpm11060514] [PMID: 34199906]
[188]
Mesleh, A.G.; Abdulla, S.A.; El-Agnaf, O. Paving the way toward personalized medicine: Current advances and challenges in Multi-OMICS approach in autism spectrum disorder for biomarkers discovery and patient stratification. J. Pers. Med., 2021, 11(1), 41.
[http://dx.doi.org/10.3390/jpm11010041] [PMID: 33450950]
[189]
Calderoni, S.; Ricca, I.; Balboni, G.; Cagiano, R.; Cassandrini, D.; Doccini, S.; Cosenza, A.; Tolomeo, D.; Tancredi, R.; Santorelli, F.M.; Muratori, F. Evaluation of chromosome microarray analysis in a large cohort of females with autism spectrum disorders: A single center Italian study. J. Pers. Med., 2020, 10(4), 160.
[http://dx.doi.org/10.3390/jpm10040160] [PMID: 33050239]
[190]
Vanzo, R.; Prasad, A.; Staunch, L.; Hensel, C.; Serrano, M.; Wassman, E.; Kaplun, A.; Grandin, T.; Boles, R. The temple grandin genome: Comprehensive analysis in a scientist with high-functioning autism. J. Pers. Med., 2020, 11(1), 21.
[http://dx.doi.org/10.3390/jpm11010021] [PMID: 33383702]
[191]
Way, H.; Williams, G.; Hausman-Cohen, S.; Reeder, J. Genomics as a clinical decision support tool: Successful proof of concept for improved ASD outcomes. J. Pers. Med., 2021, 11(7), 596.
[http://dx.doi.org/10.3390/jpm11070596] [PMID: 34202628]
[192]
Casanova, E.L.; Baeza-Velasco, C.; Buchanan, C.B.; Casanova, M.F. The relationship between autism and ehlers-danlos syndromes/hypermobility spectrum disorders. J. Pers. Med., 2020, 10(4), 260.
[http://dx.doi.org/10.3390/jpm10040260] [PMID: 33271870]
[193]
Rossignol, D.A.; Frye, R.E. A systematic review and meta-analysis of immunoglobulin G abnormalities and the therapeutic use of Intravenous Immunoglobulins (IVIG) in autism spectrum disorder. J. Pers. Med., 2021, 11(6), 488.
[http://dx.doi.org/10.3390/jpm11060488] [PMID: 34070826]
[194]
Theoharides, T.C. Ways to address perinatal mast cell activation and focal brain inflammation, including response to SARS-CoV-2, in autism spectrum disorder. J. Pers. Med., 2021, 11(9), 860.
[http://dx.doi.org/10.3390/jpm11090860] [PMID: 34575637]
[195]
Jardim, F.R.; de Rossi, F.T.; Nascimento, M.X.; da Silva Barros, R.G.; Borges, P.A.; Prescilio, I.C.; de Oliveira, M.R. Resveratrol and brain mitochondria: A review. Mol. Neurobiol., 2018, 55(3), 2085-2101.
[http://dx.doi.org/10.1007/s12035-017-0448-z] [PMID: 28283884]
[196]
Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. Eur. J. Nutr., 2015, 54(3), 325-341.
[http://dx.doi.org/10.1007/s00394-015-0852-y] [PMID: 25672526]
[197]
Pangrazzi, L.; Balasco, L.; Bozzi, Y. Natural antioxidants: A novel therapeutic approach to autism spectrum disorders? Antioxidants, 2020, 9(12), 1186.
[http://dx.doi.org/10.3390/antiox9121186] [PMID: 33256243]
[198]
Skibsted, L.H. Carotenoids in antioxidant networks. Colorants or radical scavengers. J. Agric. Food Chem., 2012, 60(10), 2409-2417.
[http://dx.doi.org/10.1021/jf2051416] [PMID: 22339058]
[199]
Mayne, S.T. Beta‐carotene, carotenoids, and disease prevention in humans. FASEB J., 1996, 10(7), 690-701.
[http://dx.doi.org/10.1096/fasebj.10.7.8635686] [PMID: 8635686]
[200]
Kesse-Guyot, E.; Andreeva, V.A.; Ducros, V.; Jeandel, C.; Julia, C.; Hercberg, S.; Galan, P. Carotenoid-rich dietary patterns during midlife and subsequent cognitive function. Br. J. Nutr., 2014, 111(5), 915-923.
[http://dx.doi.org/10.1017/S0007114513003188] [PMID: 24073964]
[201]
Krajcovicova-Kudlackova, M.; Valachovicova, M.; Mislanova, C.; Hudecova, Z.; Sustrova, M.; Ostatnikova, D. Plasma concentrations of selected antioxidants in autistic children and adolescents. Bratisl. Lek Listy, 2009, 110(4), 247-250.
[PMID: 19507654]
[202]
Grimmig, B.; Hudson, C.; Moss, L.; Peters, M.; Subbarayan, M.; Weeber, E.J.; Bickford, P.C. Astaxanthin supplementation modulates cognitive function and synaptic plasticity in young and aged mice. Geroscience, 2019, 41(1), 77-87.
[http://dx.doi.org/10.1007/s11357-019-00051-9] [PMID: 30739297]
[203]
Wibrand, K.; Berge, K.; Messaoudi, M.; Duffaud, A.; Panja, D.; Bramham, C.R.; Burri, L. Enhanced cognitive function and antidepressant-like effects after krill oil supplementation in rats. Lipids Health Dis., 2013, 12(1), 6.
[http://dx.doi.org/10.1186/1476-511X-12-6] [PMID: 23351783]
[204]
Al-Amin, M.M.; Rahman, M.M.; Khan, F.R.; Zaman, F.; Mahmud Reza, H. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism. Behav. Brain Res., 2015, 286, 112-121.
[http://dx.doi.org/10.1016/j.bbr.2015.02.041] [PMID: 25732953]
[205]
Banji, D.; Banji, O.J.F.; Abbagoni, S.; Hayath, M.S.; Kambam, S.; Chiluka, V.L. Amelioration of behavioral aberrations and oxidative markers by green tea extract in valproate induced autism in animals. Brain Res., 2011, 1410, 141-151.
[http://dx.doi.org/10.1016/j.brainres.2011.06.063] [PMID: 21820650]
[206]
Pragnya, B.; Kameshwari, J.S.L.; Veeresh, B. Ameliorating effect of piperine on behavioral abnormalities and oxidative markers in sodium valproate induced autism in BALB/C mice. Behav. Brain Res., 2014, 270, 86-94.
[http://dx.doi.org/10.1016/j.bbr.2014.04.045] [PMID: 24803211]
[207]
Wattanathorn, J.; Chonpathompikunlert, P.; Muchimapura, S.; Priprem, A.; Tankamnerdthai, O. Piperine, the potential functional food for mood and cognitive disorders. Food Chem. Toxicol., 2008, 46(9), 3106-3110.
[http://dx.doi.org/10.1016/j.fct.2008.06.014] [PMID: 18639606]
[208]
Anderson, G.; Maes, M. Gut dysbiosis dysregulates central and systemic homeostasis via suboptimal mitochondrial function: Assessment, treatment and classification implications. Curr. Top. Med. Chem., 2020, 20(7), 524-539.
[http://dx.doi.org/10.2174/1568026620666200131094445] [PMID: 32003689]
[209]
Hanley, H.G.; Stahl, S.M.; Freedman, D.X. Hyperserotonemia and amine metabolites in autistic and retarded children. Arch. Gen. Psychiatry, 1977, 34(5), 521-531.
[http://dx.doi.org/10.1001/archpsyc.1977.01770170031002] [PMID: 860890]
[210]
Seo, M.; Anderson, G. Gut-amygdala interactions in autism spectrum disorders: Developmental roles via regulating mitochondria, exosomes, immunity and microRNAs. Curr. Pharm. Des., 2020, 25(41), 4344-4356.
[http://dx.doi.org/10.2174/1381612825666191105102545] [PMID: 31692435]
[211]
Gevezova, M.; Sarafian, V.; Anderson, G.; Maes, M. Inflammation and mitochondrial dysfunction in autism spectrum disorder. CNS Neurol. Disord. Drug Targets, 2020, 19(5), 320-333.
[http://dx.doi.org/10.2174/1871527319666200628015039] [PMID: 32600237]
[212]
Jin, C.J.; Engstler, A.J.; Sellmann, C.; Ziegenhardt, D.; Landmann, M.; Kanuri, G.; Lounis, H.; Schröder, M.; Vetter, W.; Bergheim, I. Sodium butyrate protects mice from the development of the early signs of non-alcoholic fatty liver disease: role of melatonin and lipid peroxidation. Br. J. Nutr., 2016, 116(10), 1682-1693.
[http://dx.doi.org/10.1017/S0007114516004025] [PMID: 27876107]
[213]
Cucielo, M.S.; Cesário, R.C.; Silveira, H.S.; Gaiotte, L.B.; dos Santos, S.A.A.; de Campos, Z.D.A.P.; Seiva, F.R.F.; Reiter, R.J.; de Almeida Chuffa, L.G. Melatonin reverses the warburg-type metabolism and reduces mitochondrial membrane potential of ovarian cancer cells independent of MT1 receptor activation. Molecules, 2022, 27(14), 4350.
[http://dx.doi.org/10.3390/molecules27144350] [PMID: 35889222]
[214]
da Silveira Cruz-Machado, S.; Guissoni Campos, L.M.; Fadini, C.C.; Anderson, G.; Markus, R.P.; Pinato, L. Disrupted nocturnal melatonin in autism: Association with tumor necrosis factor and sleep disturbances. J. Pineal Res., 2021, 70(3), e12715.
[http://dx.doi.org/10.1111/jpi.12715] [PMID: 33421193]
[215]
Pagan, C.; Goubran-Botros, H.; Delorme, R.; Benabou, M.; Lemière, N.; Murray, K.; Amsellem, F.; Callebert, J.; Chaste, P.; Jamain, S.; Fauchereau, F.; Huguet, G.; Maronde, E.; Leboyer, M.; Launay, J.M.; Bourgeron, T. Disruption of melatonin synthesis is associated with impaired 14-3-3 and miR-451 levels in patients with autism spectrum disorders. Sci. Rep., 2017, 7(1), 2096.
[http://dx.doi.org/10.1038/s41598-017-02152-x] [PMID: 28522826]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy