Generic placeholder image

Current Applied Polymer Science

Editor-in-Chief

ISSN (Print): 2452-2716
ISSN (Online): 2452-2724

Review Article

Review on the Importance of Chitosan in Different Pharmaceutical Applications

Author(s): Hourieh Alkadi* and Abdul Wahab Allaf

Volume 5, Issue 3, 2022

Published on: 21 December, 2022

Page: [173 - 189] Pages: 17

DOI: 10.2174/2452271606666221117163317

Price: $65

Abstract

Chitosan is an amino-polysaccharide polymer that has a unique structure, multi properties, highly sophisticated functionality and a wide range of applications in biomedical and pharmaceutical research as well as other industrial applications in connection with both pharmaceutical and medical fields. Additionally, it appears that this unique material can be emphasized as a good candidate for drugs variety carrier, drug release applications, and ocular and antimicrobial applications including treatment of diabetes. This review highlights the importance and pharmaceutical applications of chitosan in different fields of research and applications.

Graphical Abstract

[1]
Akakuru OU, Louis H, Amos PI, Akakuru OC, Nosike EI, Ogulewe EF. The chemistry of chitin and chitosan justifying their nanomedical utilities. Biochem Pharmacol 2018; 7(1): 1-6.
[2]
Ugraskan V. Chitosan: Structure, properties and applications. materials research forum LLC. Pub Mater Sci Engin 2018; 28.
[3]
Liu X, Ma L, Mao Z, Gao C. Chitosan based biomaterials for tissue repair and regeneration. Chitosan for biomaterials II. Advances. InPolymer Science. Heidelberg: Springer Berlin 2011; pp. 81-127.
[4]
Pillai O, Panchagnula R. Insulin therapies past, present and future. Drug Discov Today 2001; 6(20): 1056-61.
[http://dx.doi.org/10.1016/S1359-6446(01)01962-6] [PMID: 11590034]
[5]
Baldrick P. The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol 2010; 56(3): 290-9.
[http://dx.doi.org/10.1016/j.yrtph.2009.09.015] [PMID: 19788905]
[6]
Ravi Kumar MNV, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chem Rev Am Chem Society 2004; 104(12): 6017-84.
[7]
Kumirska J, Czerwicka M, Kaczyński Z, et al. Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs 2010; 8(5): 1567-636.
[http://dx.doi.org/10.3390/md8051567] [PMID: 20559489]
[8]
Dimzon IK, Knepper TP. Degree of deacetylation of chitosan by infrared spectroscopy and partial least squares. Int J Biol Macromol 2015; 72: 939-45.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.050] [PMID: 25316417]
[9]
Kasaai MR. Various methods for determination of the degree of N-acetylation of chitin and chitosan: A review. J Agric Food Chem 2009; 57(5): 1667-76.
[http://dx.doi.org/10.1021/jf803001m] [PMID: 19187020]
[10]
Sannan T, Kurita K, Iwakura Y, Makromolekulare D. Studies on Chitin, effect of deacetylation on solubility. Makromol Chem 1976; 177(12): 3589-600.
[http://dx.doi.org/10.1002/macp.1976.021771210]
[11]
Schatz C, Viton C, Delair T, Pichot C, Domard A. Typical physicochemical behaviors of chitosan in aqueous solution. Biomacromolecules 2003; 4(3): 641-8.
[http://dx.doi.org/10.1021/bm025724c] [PMID: 12741780]
[12]
Skolnick J, Fixman M. Electrostatic persistence length of a wormlike polyelectrolyte. Macromolecules 1977; 10(5): 944-8.
[http://dx.doi.org/10.1021/ma60059a011]
[13]
Khan R, Kaushik A, Solanki PR, Ansari AA, Pandey MK, Malhotra BD. Zinc oxide nanoparticles chitosan composite film for cholesterol biosensor. Anal Chim Acta 2008; 616(2): 207-13.
[http://dx.doi.org/10.1016/j.aca.2008.04.010] [PMID: 18482605]
[14]
Ogawa K, Yui T. Structure and function of chitosan. 3. Crystallinity of partially N-acetylated chitosans. Biosci Biotechnol Biochem 19930(57): 1466-9.
[15]
Badawy ME. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int J Carbohydr Chem 2011.
[16]
Rinaudo M. Chitin and chitosan: Properties and applications. Prog Polym Sci 2006; 31(7): 603-32.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001]
[17]
Kushwaha KS. RaiAwani K, Satyawan S. Chitosan: A platform for targeted drug delivery. Int J Pharm Tech Res 2010; 2(4): 2271-82.
[18]
Shukla SK, Mishra AK, Arotiba OA, Mamba BB. Chitosan based nanomaterials: A state of the art review. Int J Biol Macromol 2013; 59: 46-58.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.043] [PMID: 23608103]
[19]
Croisier F, Jérôme C. Chitosan based biomaterials for tissue engineering. Eur Polym J 2013; 49(4): 780-92.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.12.009]
[20]
Zargar V, Asghari M, Dashti A. A review on chitin and chitosan polymers: Structure,chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2015; 2(3): 204-26.
[http://dx.doi.org/10.1002/cben.201400025]
[21]
Thakur VK, Thakur MK. Recent advances in graft copolymerization and applications of chitosan: A Review. ACS Sust Chem Eng 2014; 2(12): 2637-52.
[http://dx.doi.org/10.1021/sc500634p]
[22]
Sánchez DI. Chitosan. Non vitamin and non mineral nutritional supplements 2019; 485-93.
[23]
Adbullin VF, Shipovskaya AB, Fomina VI, Artemenko SE, Ovchinikova GP, Pchelinyseva EV. Physicochemical properties of chitosan from different raw material sources. Fibre Chem 2008; 40(1): 33-6.
[24]
Crini G. Non conventional low cost adsorbents for dye removal: A review. Bioresour Technol 2006; 97(9): 1061-85.
[http://dx.doi.org/10.1016/j.biortech.2005.05.001] [PMID: 15993052]
[25]
Hefian EA, Nasef MM, Yahaya AH. Chitosan physical forms: A short review. Aust J Basic Appl Sci 2011; 5(5): 670-7.
[26]
Srinatha A, Pandit JK, Singh S. Ionic cross linked chitosan beads for extended release of ciprofloxacin: In vitro characterization. Indian J Pharm Sci 2008; 70: 1.
[27]
Kosaraju SL, D’ath L, Lawrence A. Preparation and characterisation of chitosan microspheres for antioxidant delivery. Carbohydr Polym 2006; 64(4): 163-7.
[http://dx.doi.org/10.1016/j.carbpol.2005.11.027]
[28]
Chang LB, Lin J. Swelling behavior and the release of protein from chitosan pectin composite particles. Carbohydr Polym 2000; 43(2): 43-163.
[http://dx.doi.org/10.1016/S0144-8617(00)00145-4]
[29]
Chornet E, Dumitriu S. Inclusion and release of proteins from polysaccharide based polyion complexes. Adv Drug Deliv Rev 1998; 31(3): 223-46.
[http://dx.doi.org/10.1016/S0169-409X(97)00120-8] [PMID: 10837627]
[30]
Alsarra IA, Neau SH, Howard MA. Effects of preparative parameters on the properties of chitosan hydrogel beads containing Candida rugosa lipase. Biomaterials 2004; 25(13): 2645-55.
[http://dx.doi.org/10.1016/j.biomaterials.2003.09.051] [PMID: 14751751]
[31]
Clasen C, Wilhelms T, Kulicke WM. Formation and characterization of chitosan membranes. Biomacromolecules 2006; 7: 3210-22.
[32]
Cui L, Gao S, Song X, et al. Preparation and characterization of chitosan membranes. RCS Adv J 2018; 8: 28433-9.
[33]
Yudin VE, Dobrovolskaya IP, Neelov IM, et al. Wet spinning of fibers made of chitosan and chitin nanofibrils. Carbohydr Polym 2014; 108: 176-82.
[http://dx.doi.org/10.1016/j.carbpol.2014.02.090] [PMID: 24751262]
[34]
Albanna MZ, Bou TH, Walters III HL, Matthewa HWT. Improving the mechanical properties of chitosan basedheart valve scaffolds using chitosan fibers. J Mech Behav Biomed Mater 2012; 5: 171-80.
[http://dx.doi.org/10.1016/j.jmbbm.2011.08.021] [PMID: 22100092]
[35]
Ikeda T, Ikeda K, Yamamoto K, et al. Fabrication and characteristics of chitosan sponge as a tissue engineering scaffold. BioMed Res Int 2014.
[http://dx.doi.org/10.1155/2014/786892]
[36]
Liu P, Meng W, Wang S, Sun Y, Ashraf MA. Quaternary ammonium salt of chitosan: Preparation and antimicrobial property for paper. Open Med 2015; 10(1): 473-8.
[http://dx.doi.org/10.1515/med-2015-0081] [PMID: 28352739]
[37]
Britto D, Goy RC, Filho SPC, Assis OBG. Quaternary salts of chitosan: History, antimicrobial features, and prospects. Int J Carbohydr Chem 2011.
[38]
Juárez J, Almada M, Ibarra J, Valdez MA. Synthesis and characterization of new thiolated chitosan nanoparticles obtained by ionic gelation method. Int J Polym Sci 2015.
[39]
Mourya VK, Inamdar NN, Tiwari A. Carboxymethyl chitosan and its applications. Adv Mater Lett 2010; 1(1): 11-33.
[http://dx.doi.org/10.5185/amlett.2010.3108]
[40]
Zhu A, Chan MB, Dai S, Li L. The aggregation behavior of O-carboxymethylchitosan in dilute aqueous solution. Colloids Surf B Biointerfaces 2005; 43(3-4): 143-9.
[http://dx.doi.org/10.1016/j.colsurfb.2005.04.009] [PMID: 15941653]
[41]
Philippova OE, Korchagina EV. Chitosan and its hydrophobic derivatives: Preparation and aggregation in dilute aqueous solutions. Polym Sci Ser A 2012; 54(7): 552-72.
[http://dx.doi.org/10.1134/S0965545X12060107]
[42]
Riccardo AA. Muzzarelli, PierlucaIlari. Chitosan carrying the methoxyphenyl functions typing of lignin. Carbohydrate polymers 1994; 23: 155-60.
[43]
Mourya VK, Inamdar NN. Highly cationic chitosans such as trimethyl chitosan and N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride. J Mater Sci: Mater Med 2008; 1-24.
[44]
Kai S, Baoqin H, Jinning G, Fulai S, Yan YA, Wanshun L. Synthesis and characterization of a hydroxyethyl deriva tiveof chitosan and evaluation of its biosafety. J Ocean Univ China 2015; 14(4): 703-9.
[http://dx.doi.org/10.1007/s11802-015-2544-x]
[45]
Yang J, Huang X, Luo F, et al. Preparation and functional studies of hydroxyethyl chitosan nanoparticles loaded with anti-human death receptor 5 single chain antibody. OncoTargets Ther 2014; 7: 779-87.
[http://dx.doi.org/10.2147/OTT.S59872] [PMID: 24899816]
[46]
Fang J, Zhang Y, Yan S, et al. Poly(L-glutamic a id)chitosan polyelectrolyte complex porous4 microspheres as cell microcarriers for cartilage regeneration. Acta Biomater 2014; 10(1): 276-88.
[47]
Li Z, Du Y, Zhang Z, Pang D. Preparation and characterization of CDS quantum dots chitosan Biocomposite. React Funct Polym 2003; 55(1): 35-43.
[http://dx.doi.org/10.1016/S1381-5148(02)00197-9]
[48]
Cao L, Wang J, Hou J, Xing W, Liu C. Vascularization and bone regeneration in a critical sized defect using 2-N,6-O-sulfated chitosan nanoparticles incorporating BMP-2. Biomaterials 2014; 35(2): 684-98.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.005] [PMID: 24140042]
[49]
Hall LD, Yalpani M. Formation of branched chain, soluble polysaccharides from chitosan. J Chem Soc Chem Commun 1980; 23(23): 1153-4.
[http://dx.doi.org/10.1039/c39800001153]
[50]
Chung TW, Yang J, Akaike T, et al. Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials 2002; 23(14): 2827-34.
[http://dx.doi.org/10.1016/S0142-9612(01)00399-4] [PMID: 12069321]
[51]
Morimoto M, Saimoto H, Usui H, Okamoto Y, Minami S, Shigemasa Y. Biological activities of carbohydrate branched chitosan derivatives. Biomacromolecules 2001; 2(4): 1133-6.
[http://dx.doi.org/10.1021/bm010063p] [PMID: 11777384]
[52]
Aiping Z, Tian C, Lanhua Y, Hao W, Ping L. Synthesis and characterization of N-succinyl-chitosan and its self assembly of nanospheres. Carbohydr Polym 2006; 66(2): 274-9.
[http://dx.doi.org/10.1016/j.carbpol.2006.03.014]
[53]
Zhu AP, Yuan L, Chen T, Wu H, Zhao F. Interactions between N succinyl chitosan and bovine serum albumin. Carbohydr Polym 2007; 69(2): 363-70.
[http://dx.doi.org/10.1016/j.carbpol.2006.11.023]
[54]
Sinha VR, Kumria R. Polysaccharides in colon specific drug delivery. Int J Pharm 2001; 224(1-2): 19-38, 19-38.
[http://dx.doi.org/10.1016/S0378-5173(01)00720-7] [PMID: 11472812]
[55]
Morin CN, Lichtfouse E, Torri G, Crini G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ Chem Lett 2019; 17(4): 1667-92.
[http://dx.doi.org/10.1007/s10311-019-00904-x]
[56]
Dodane V, Vilivalam V D. Pharmaceutical applications of chitosan. PSTT j 1998; 6: 246-53.
[http://dx.doi.org/10.1016/S1461-5347(98)00059-5]
[57]
Thanou M, Junginger HE. Pharmaceutical applications of chitosan and derivatives. Chemistry. Pub Med Cent 2004; 21(2): 487.
[http://dx.doi.org/10.1201/9781420030822.ch28]
[58]
Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non parenteral drug delivery. Pharmaceutics 2017; 9(4): 53.
[59]
Shariatinia Z, Jalali AM. Chitosan based hydrogels: Preparation, properties and applications. Int J Biol Macromol 2018; 115: 194-220.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.034] [PMID: 29660456]
[60]
Simões D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ. Recent advances on antimicrobial wound dressing: A review. Eur J Pharm Biopharm 2018; 127: 130-41.
[PMID: 29462687]
[61]
Arkoun M, Daigle F, Heuzey MC, Ajji A. Mechanism of action of electrospun Chitosan based nano fibers against meat spoilage and pathogenic bacteria. Molecules 2017; 4: 585.
[62]
Kohsari I, Shariatinia Z, Pourmortazavi SM. Antibacterial electrospun chitosan polyethylene oxide nanocomposite mats containing bioactive silver nanoparticles. Carbohydr Polym 2016; 140: 287-98.
[http://dx.doi.org/10.1016/j.carbpol.2015.12.075] [PMID: 26876856]
[63]
Tang F, Lv L, Lu F, et al. Preparation and characterization of N chitosan as a wound healing accelerator. Int J Biol Macromol 2016; 93(Pt A): 1295-303.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.101] [PMID: 27697487]
[64]
Devi N, Dutta J. Preparation and characterization of chitosan bentonite nanocomposite films for wound healing application. Int J Biol Macromol 2017; 104(Pt B): 1897-904.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.080] [PMID: 28242331]
[65]
Miguel SP, Moreira AF, Correia IJ. Chitosan based asymmetric membranes for wound healing: A review. Int J Biol Macromol 2019; 127: 460-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.072] [PMID: 30660567]
[66]
Adhikari HS. Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. Int J Biomater 2018; 2018: 2952085.
[67]
Zhong Z, Zhong Z, Xing R, Li P, Mo G. The preparation and antioxidant activity of 2-[phenylhydrazine (or hydrazine)-thiosemicarbazone] chitosan. Int J Biol Macromol 2010; 47(2): 93-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.05.016] [PMID: 20553752]
[68]
Zheng Y, Yi Y, Qi Y, Wang Y, Zhang W, Du M. Preparation of chitosan copper complexes and their anti-tumoractivity. Bioorganic Med Chem Lett 2006; 15: 4127-9.
[69]
Barbosa HFG, Attjioui M, Ferreira APG, et al. Synthesis, characterization and biological activities of biopolymeric schiff bases prepared with chitosan and salicyl aldehydes and their Pd(II) andPt(II) complexes. Molecules 2017; 22: 1-19.
[70]
Kato Y, Onishi H, Machida Y. Evaluation of N-succinylchitosanas a systemic long circulating polymer. Biomaterials 2000; 21(15): 1579-85.
[http://dx.doi.org/10.1016/S0142-9612(00)00044-2] [PMID: 10885730]
[71]
Kamiyama K, Onishi H, Machida Y. Biodispositioncharacteristics of N-succinyl-chitosan and glycol- chitosan innormal and tumor bearing mice. Biol Pharm Bull 1999; 22(2): 179-86.
[http://dx.doi.org/10.1248/bpb.22.179] [PMID: 10077438]
[72]
Yan C, Chen D, Gu J, Hu H, Zhao X, Qiao M. Preparationof N-succinyl chitosan and their physical chemical propertiesas a novel excipien. Yakugaku Zasshi 2006; 126(9): 789-93.
[73]
Hosoda J, Unezaki S, Maruyama K, Tsuchiya S, Iwatsuru M. Antitumor activity of doxorubicin encapsulated in poly(ethylene glycol) coated liposomes. Biol Pharma Bull 1995; 9: 1234-7.
[74]
Cheung RC, Ng TB, Wong JH, Chan WY. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar Drugs 2015; 13(8): 5156-86.
[http://dx.doi.org/10.3390/md13085156] [PMID: 26287217]
[75]
Chien HF, Chen CP, Chen YC, Chang PH, Tsai T, Chen CT. The use of Chitosan to enhance photodynamic inactivation against Candida albicans and its drug resistant clinical isolates. Int J Mol Sci 2013; 14(4): 7445-56.
[http://dx.doi.org/10.3390/ijms14047445] [PMID: 23552829]
[76]
Hosseinnejad M, Jafari SM. Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol 2016; 85: 467-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.022] [PMID: 26780706]
[77]
Pena A, Sanchez NS, Calahorra M. Effects of chitosan on Candida albicans: Conditions for its antifungal activity. Biomed Res Int 2013; 2013: 527549.
[78]
Lim SH, Hudson SM. Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J Macromo Sci Pol RC 2003; 43: 223-69.
[79]
Chirkov SN. The antiviral activity of chitosan (review). Prikl Biokhim Mikrobiol 2002; 38(1): 5-13.
[PMID: 11852567]
[80]
Kravanja G, Primožiˇc M, Knez Ž, Leitgeb M. Chitosan based (nano)materials for novel biomedical applications. Molecules 2019; 24: 1960: 1-23.
[81]
Shih PY, Liao YT, Tseng YK, Deng FS, Lin CH. A potential antifungal effect of chitosan against candida albicans is mediated via the inhibition of SAGA complex component expression and the subsequent alteration of cell surface integrity. Front Microbiol 2019; 26.
[82]
Rodríguez S. Insights into SAGA function during gene expression. EMBO Rep 2009; 10(8): 843-50.
[http://dx.doi.org/10.1038/embor.2009.168] [PMID: 19609321]
[83]
Goy RC, Morais STB, Assis OBG. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Rev Bras Farmacogn 2016; 26(1): 122-7.
[http://dx.doi.org/10.1016/j.bjp.2015.09.010]
[84]
Abdeltwab WM, Abdelaliem YF, Metry WA, Eldeghedy M. Antimicrobial effect of chitosan and nano-chitosan against some pathogens and spoilage microorganisms. J Adv Lab Res Bio 2019; 10(1): 8-15.
[85]
Donalisio M, Leone F, Civra A, et al. Acyclovir-loaded chitosan nanospheres from-emulsion templating for the topical treatment of herpesviruses infections. Pharmaceutics 2018; 10(46): 1-12.
[86]
Mori Y, Ono T, Miyahira Y, Nguyen VQ, Matsui T, Ishihara M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res Lett 2013; 8(1): 93.
[http://dx.doi.org/10.1186/1556-276X-8-93] [PMID: 23421446]
[87]
Milewska A, Ciejka J, Kaminski K, et al. Novel polymeric inhibitors of HCoV-NL63. Antiviral Res 2013; 97(2): 112-21.
[http://dx.doi.org/10.1016/j.antiviral.2012.11.006] [PMID: 23201315]
[88]
Milewska A, Kaminski K, Ciejka J, et al. HTCC: Broad range inhibitor of coronavirus entry. PLoS One J 2016; 11(6): 1-17.
[89]
Sun Q, Zhang JL, Han DQ, Yang YB, Zhu L, Yu L. Characterization and immunological evaluation of chitosan nanoparticles as adjuvants for bovine coronavirus N protein. Appl Mech Mater 2012; 161: 113-20.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.161.113]
[90]
Gu J, Al-Bayati K, Ho EA. Development of antibody-modified chitosan nanoparticles for the targeted delivery of sRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes. Drug Deliv Transl Res 2017; 7(4): 497-506.
[http://dx.doi.org/10.1007/s13346-017-0368-5] [PMID: 28315051]
[91]
Guo X, Huang L. Recent advances in nonviral vectors for gene delivery. Acc Chem Res 2012; 45(7): 971-9.
[http://dx.doi.org/10.1021/ar200151m] [PMID: 21870813]
[92]
Chen Y, Liu L. Modern methods for delivery of drugs across the blood brain barrier. Adv Drug Deliv Rev 2012; 64(7): 640-65.
[http://dx.doi.org/10.1016/j.addr.2011.11.010] [PMID: 22154620]
[93]
Saranya N, Moorthi A, Saravanan S, Devi MP, Selvamurugan N. Chitosan and its derivatives for gene delivery. Int J Biol Macromol 2011; 48(2): 234-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.11.013] [PMID: 21134396]
[94]
Kamalzare S, Noormohammadi Z, Rahimi P, et al. Carboxymethyl dextran-trimethyl chitosan coated superparamagnetic iron oxide nanoparticles: An effective siRNA delivery system for HIV-1 Nef. J Cell Physiol 2019; 234(11): 20554-65.
[http://dx.doi.org/10.1002/jcp.28655] [PMID: 31144311]
[95]
Iranpur Mobarakeh V, Modarressi MH, Rahimi P, et al. Optimization of chitosan nanoparticles as an anti-HIV siRNA delivery vehicle. Int J Biol Macromol 2019; 129: 305-15.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.036] [PMID: 30738164]
[96]
Mehrnoush SA, Sahar SB, Mahdieh AC, Rastegari MA, Ramin PD, Mostafa Haji MH. Chitin and chitosan as tools to combat COVID-19: A triple approach. Int J Biol Macromol 2021; 183: 235-44.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.157]
[97]
Irimia T, Dinu CE, Ghica MV, et al. Chitosan-based in situ gels for ocular delivery of therapeutics: A state of the art review. Mar Drugs 2018; 16: 373.
[http://dx.doi.org/10.3390/md16100373]
[98]
Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 2004; 100(1): 5-28.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.010] [PMID: 15491807]
[99]
Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK. Polymericnanoparticulate system: A potential approach for ocular drug delivery. J Control Release 2009; 136: 2-13.
[http://dx.doi.org/10.1016/j.jconrel.2008.12.018] [PMID: 19331856]
[100]
Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev 2005; 57(11): 1595-639.
[http://dx.doi.org/10.1016/j.addr.2005.07.005] [PMID: 16198021]
[101]
Felt O, Furrer P, Mayer JM, Plazonnet B, Buri P, Gurny R. Topical use of chitosan in ophthalmology: Tolerance assessment and evaluation of precorneal retention. Int J Pharm 1999; 180(2): 185-93.
[http://dx.doi.org/10.1016/S0378-5173(99)00003-4] [PMID: 10370189]
[102]
Gratieri T, Gelfuso GM, de Freitas O, Rocha EM, Lopez RF. Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. Eur J Pharm Biopharm 2011; 79(2): 320-7.
[http://dx.doi.org/10.1016/j.ejpb.2011.05.006] [PMID: 21641994]
[103]
Gupta H, Jain S, Mathur R, Mishra P, Mishra AK, Velpandian T. Sustained ocular drug delivery from atemperature and pH triggered novel in situ gel system. Drug Deliv 2007; 14: 507-15.
[http://dx.doi.org/10.1080/10717540701606426] [PMID: 18027180]
[104]
Varshosaz J, Tabbakhian M, Salmani Z. Designing of a thermosensitive chitosan/poloxamer in situ gel for ocular delivery of ciprofloxacin. Open Drug Deliv J 2008; 2: 61-70.
[105]
Fabiano A, Bizzarri R, Zambito Y. Thermosensitive hydrogel based on chitosan and its derivatives containing medicated nanoparticles for transcorneal administration of 5-fluorouracil. Int J Nanomedicine 2017; 12: 633-43.
[http://dx.doi.org/10.2147/IJN.S121642] [PMID: 28144144]
[106]
de Campos AM, Diebold Y, Carvalho EL, Sánchez A, Alonso MJ. Chitosan nanoparticles as new ocular drug delivery systems: In vitro stability, in vivo fate, and cellular toxicity. Pharm Res 2004; 21(5): 803-10.
[http://dx.doi.org/10.1023/B:PHAM.0000026432.75781.cb] [PMID: 15180338]
[107]
Xing L. Chemical modification of chitosan for efficient vaccine delivery. Molecules 2018; 2: 229.
[108]
Sahdev P, Ochyl LJ, Moon JJ. Biomaterials for nanoparticle vaccine delivery systems. Pharm Res 2014; 31(10): 2563-82.
[http://dx.doi.org/10.1007/s11095-014-1419-y] [PMID: 24848341]
[109]
Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res 1998; 15(9): 1326-31.
[http://dx.doi.org/10.1023/A:1011929016601] [PMID: 9755881]
[110]
Jiang HL, Park IK, Kang ML, et al. Immune stimulating activity of an atrophic rhinitis vaccine associated to pegylated chitosan microspheres in vitro. Polym Adv Technol 2007; 18(3): 220-5.
[http://dx.doi.org/10.1002/pat.861]
[111]
Monti M, Diano D, Allegrini F, et al. Bordetella bronchiseptica pneumonia in a patient with lung cancer; a case report of a rare infection. BMC Infect Dis 2017; 17(1): 644-8.
[http://dx.doi.org/10.1186/s12879-017-2736-7] [PMID: 28946850]
[112]
Malik A, Gupta M, Gupta V, Gogoi H, Bhatnagar R. Novel application of trimethyl chitosan as an adjuvant in vaccine delivery. Int J Nanomedicine 2018; 13: 7959-70.
[http://dx.doi.org/10.2147/IJN.S165876] [PMID: 30538470]
[113]
Subbiah R, Ramalingam P, Ramasundaram S, et al. N,N,N-Trimethyl chitosan nanoparticles for controlled intranasal delivery of HBV surface antigen. Carbohydr Polym 2012; 89(4): 1289-97.
[http://dx.doi.org/10.1016/j.carbpol.2012.04.056] [PMID: 24750944]
[114]
AbdelAllah NH, Gaber Y, Rashed ME, Azmy AF, Abou-Taleb HA, AbdelGhani S. Alginate-coated chitosan nanoparticles act as effective adjuvant for hepatitis A vaccine in mice. Int J Biol Macromol 2020; 152: 904-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.287] [PMID: 32114177]
[115]
Renu S, Han Y, Dhakal S, et al. Chitosan-adjuvanted Salmonella subunit nanoparticle vaccine for poultry delivered through drinking water and feed. Carbohydr Polym 2020; 243: 116434.
[116]
Bande F, Arshad SS, Bejo MH, et al. Development and immunogenic potentials of chitosan-saponin encapsulated DNA vaccine against avian infectious bronchitis coronavirus. Microb Pathog 2020; 149(149): 104560.
[http://dx.doi.org/10.1016/j.micpath.2020.104560] [PMID: 33068733]
[117]
Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. J Control Release 2003; 89(2): 151-65.
[http://dx.doi.org/10.1016/S0168-3659(03)00126-3] [PMID: 12711440]
[118]
Artursson P, Lindmark T, Davis SS, Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res 1994; 11(9): 1358-61.
[http://dx.doi.org/10.1023/A:1018967116988] [PMID: 7816770]
[119]
Gulbake A, Jain SK. Chitosan: A potential polymer for colon-specific drug delivery system. Expert Opin Drug Deliv 2012; 9(6): 713-29.
[http://dx.doi.org/10.1517/17425247.2012.682148] [PMID: 22530707]
[120]
Nigalaye AG, Adusumili P, Bolton S. Investigation of prolonged drug release from matrix formulations of chitosan. Drug Dev Ind Pharm 1990; 16(3): 449-67.
[http://dx.doi.org/10.3109/03639049009114897]
[121]
Ritthidej GC, Chomto P, Pummanggura S. Chitin and chitosan as disintegrants in paracetamol tablets. Drug Dev Ind Pharm 1990; 19(8): 915-27.
[122]
Upadrashta SM, Katikaneni PR, Nuessle NO. Chitosan as a tablet binder. Drug Dev Ind Pharm 1992; 18(15): 2701-8.
[http://dx.doi.org/10.3109/03639049209040896]
[123]
Huang BB, Li GF, Luo JH, Duan L, Nobuaki K, Akira Y. Permeabilities of rebamipide via rat intestinal membranes and its colon specific delivery using chitosan capsule as a carrier. World J Gastroenterol 2008; 14(31): 4928-37.
[http://dx.doi.org/10.3748/wjg.14.4928] [PMID: 18756602]
[124]
Fetih G, Lindberg S, Itoh K, et al. Improvement of absorption enhancing effects of n-dodecyl-beta-Dmaltopyranoside by its colon-specific delivery using chitosan capsules. Int J Pharm 2005; 293(1-2): 127-35.
[125]
Srinatha A, Pandit JK. Alternate polyelectrolyte coating of chitosan beads for extending drug release. Drug Deliv 2008; 15(3): 193-9.
[PMID: 18379932]
[126]
Elzatahry AA, Eldin MSM. Preparation and characterization of metronidazole loaded chitosan nanoparticles for drug delivery application. Polym Adv Technol 2008; 19(12): 1787-91.
[http://dx.doi.org/10.1002/pat.1195]
[127]
Jain A, Jain SK. In vitro and cell uptake studies for targeting of ligand anchored nanoparticles for colon tumors. Eur J Pharm Sci 2008; 35(5): 404-16.
[http://dx.doi.org/10.1016/j.ejps.2008.08.008] [PMID: 18824095]
[128]
Graham NB. Controlled drug delivery systems. Chem Ind 1990; 15: 482-6.
[129]
Zhou XH. Overcoming enzymatic and absorption barriers to nonparenterally administered protein and peptide drugs. J Control Release 1994; 29(3): 239-52.
[http://dx.doi.org/10.1016/0168-3659(94)90071-X]
[130]
Woodley JF. Enzymatic barriers for GI peptide and protein delivery. Crit Rev Ther Drug Carrier Syst 1994; 11(2-3): 61-95.
[PMID: 7600588]
[131]
Mumper RJ, Wang J, Rolland A. Novel polymeric condensing carriers for gene delivery. Proceedings of the International Symposiom on Controlled Release Bioactive Materials. 1995; 178-9.
[132]
Alhakamy AN, Fahmy UA, Ahmed OAA, et al. Chitosan coated microparticles enhance simvastatin colon targeting and pro-apoptotic activity. Mar Drugs 2020; 18: 226.
[133]
Nalinbenjapun S, Ovatlarnporn C. Chitosan-5-aminosalicylic acid conjugates for colon-specific drug delivery: Methods of preparation and in vitro evaluations 2020; 57: 101397.
[134]
Kerch G. The potential of chitosan and its derivatives in prevention and treatment of age-related diseases. Mar Drugs 2015; 13(4): 2158-82.
[http://dx.doi.org/10.3390/md13042158] [PMID: 25871293]
[135]
Karadeniz F, Kim SK. Antidiabetic activities of chitosan and its derivatives: A mini review Marine Carbohydrates: Fundamentals and Applications. Oxford, UK: Elsevier Inc. 2014; pp. 15-31.
[http://dx.doi.org/10.1016/B978-0-12-800268-1.00003-2]
[136]
Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev 2001; 52(2): 117-26.
[http://dx.doi.org/10.1016/S0169-409X(01)00231-9] [PMID: 11718935]
[137]
Jameela SR, Misra A, Jayakrishnan A. Cross linked chitosan microspheres as carriers for prolonged delivery of macromolecular drugs. J Biomater Sci Polym Ed 1994; 6(7): 621-32.
[http://dx.doi.org/10.1163/156856294X00563] [PMID: 7873513]
[138]
Neyrinck AM, Bindels LB, De Backer F, Pachikian BD, Cani PD, Delzenne NM. Dietary supplementation with chitosan derived from mushrooms changes adipocytokine profile in diet induced obese mice, a phenomenon linked to its lipid-lowering action. Int Immunopharmacol 2009; 9(6): 767-73.
[http://dx.doi.org/10.1016/j.intimp.2009.02.015] [PMID: 19286482]
[139]
Huang M, Khor E, Lim LY. Uptake and cytotoxicity of chitosan molecules and nanoparticles: Effects of molecular weight and degree of deacetylation. Pharm Res 2004; 21(2): 344-53.
[http://dx.doi.org/10.1023/B:PHAM.0000016249.52831.a5] [PMID: 15032318]
[140]
Nidheesh T, Salim C, Rajini PS, Suresh PV. Antioxidant and neuroprotective potential of chitooligomers in Caenorhabditis elegans exposed to Monocrotophos. Carbohydr Polym 2016; 135: 138-44.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.055] [PMID: 26453861]
[141]
Ouyang QQ, Zhao S, Li SD, Song C. Application of chitosan, chitooligosaccharide, and their derivatives in the treatment of Alzheimer’s disease. Mar Drugs 2017; 15(11): 322-37.
[http://dx.doi.org/10.3390/md15110322] [PMID: 29112116]
[142]
Hao C, Wang W, Wang S, Zhang L, Guo Y. An overview of the protective effects of chitosan and acetylated chitosan oligosaccharides against neuronal disorders. Mar Drugs 2017; 15(4): 89-104.
[http://dx.doi.org/10.3390/md15040089] [PMID: 28333077]
[143]
Wang X, Miao J, Yan C, et al. Chitosan attenuates dibutyltin-induced apoptosis in PC12 cells through inhibition of the mitochondria-dependent pathway. Carbohydr Polym 2016; 151: 996-1005.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.053] [PMID: 27474647]
[144]
Xue Y, Wang N, Zeng Z, Huang J, Xiang Z, Guan YQ. Neuroprotective effect of chitosan nanoparticle gene delivery system grafted with acteoside (ACT) in Parkinson’s disease models. J Mater Sci Technol 2020; 43: 197-207.
[http://dx.doi.org/10.1016/j.jmst.2019.10.013]
[145]
Cepeda C, Murphy KP, Parent M, Levine MS. The role of dopamine in Huntington’s disease. Prog Brain Res 2014; 211: 235-54.
[http://dx.doi.org/10.1016/B978-0-444-63425-2.00010-6] [PMID: 24968783]
[146]
Gaeta A, Hider RC. The crucial role of metal ions in neurodegeneration: The basis for a promising therapeutic strategy. Br J Pharmacol 2005; 146(8): 1041-59.
[http://dx.doi.org/10.1038/sj.bjp.0706416] [PMID: 16205720]
[147]
Gao HM, Liu B, Zhang W, Hong JS. Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol Sci 2003; 24: 395-401.
[http://dx.doi.org/10.1016/S0165-6147(03)00176-7]
[148]
Pellicciari R, Costantino G, Marinozzi M, Natalini B. Modulation of glutamate receptor pathways in the search for new neuroprotective agents. Farmaco 1998; 53(4): 255-61.
[http://dx.doi.org/10.1016/S0014-827X(98)00018-4] [PMID: 9658582]
[149]
Schwartz G, Fehlings MG. Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: Improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg 2001; 94(2) (Suppl.): 245-56.
[PMID: 11302627]
[150]
Woo MS, Park JS, Choi IY, Kim WK, Kim HS. Inhibition of MMP-3 or -9 suppresses lipopolysaccharide-induced expression of proinflammatory cytokines and iNOS in microglia. J Neurochem 2008; 106: 770-80.
[151]
Moalem G, Gdalyahu A, Shani Y, et al. Production of neurotrophins by activated T cells: Implications for neuroprotective autoimmunity. J Autoimmun 2000; 15(3): 331-45.
[http://dx.doi.org/10.1006/jaut.2000.0441] [PMID: 11040074]
[152]
Kietzmann T, Knabe W, Schmidt-Kastner R. Hypoxia and hypoxia-inducible factor modulated gene expression in brain: Involvement in neuroprotection and cell death. Eur Arch Psychiatry Clin Neurosci 2001; 251(4): 170-8.
[http://dx.doi.org/10.1007/s004060170037] [PMID: 11697581]
[153]
Volbracht C, van Beek J, Zhu C, Blomgren K, Leist M. Neuroprotective properties of memantine in different in vitro and in vivo models of excitotoxicity. Eur J Neurosci 2006; 23(10): 2611-22.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04787.x] [PMID: 16817864]
[154]
Yu X, An L, Wang Y, Zhao H, Gao C. Neuroprotective effect of Alpinia oxyphylla Miq. fruits against glutamate-induced apoptosis in cortical neurons. Toxicol Lett 2003; 144(2): 205-12.
[http://dx.doi.org/10.1016/S0378-4274(03)00219-4] [PMID: 12927364]
[155]
Ruiz GAM, Corrales HFZ. Chitosan, chitosan derivatives and their biomedical applications Biological Activities and Applications pf Marine Polysauharides. London: IntechOpen 2017; pp. 87-106.
[156]
Sivanesan I, Hasan N, Muthu M, et al. Exploring the impact of chitosan composites as artificial organs. Polymers 2022; 14(8): 1587.
[http://dx.doi.org/10.3390/polym14081587] [PMID: 35458335]
[157]
Ojeda DD, Canales AA, Matias J, Gomez U, Mateos JC. Applications in the central nervous system. Front Bioeng Biotechnol 2020; 8: 1-15.
[http://dx.doi.org/10.3389/fbioe.2020.00001] [PMID: 32039188]
[158]
Ebrahimi-Barough S, Hoveizi E, Norouzi Javidan A, Ai J. Investigating the neuroglial differentiation effect of neuro-blastoma conditionedmedium in human endometrial stem cells cultured on 3D nanofibrousscaffold. J Biomed Mater Res 2015; A 103: 2621-7.
[159]
Abasi S, Aggas JR, Guiseppi-Elie A. Physiochemical and morphological dependent growth of NIH/3T3 and PC-12 on polyaniline-chloride/chitosan bionanocomposites. Mater Sci Eng C 2019; 99: 1304-12.
[http://dx.doi.org/10.1016/j.msec.2019.02.018] [PMID: 30889665]
[160]
Shariatinia Z. Pharmaceutical applications of chitosan. Adv Colloid Interface Sci 2019; 263: 131-94.
[PMID: 30530176]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy