Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Diindolylmethane Ameliorates Ischemic Stroke-Induced Brain Injury by Peripheral and Central Mechanisms

Author(s): Kakarla Ramakrishna, Sushil Kumar Singh and Sairam Krishnamurthy*

Volume 19, Issue 5, 2022

Published on: 28 November, 2022

Page: [462 - 475] Pages: 14

DOI: 10.2174/1567202620666221116161128

Price: $65

Abstract

Introduction: Diindolylmethane (DIM), a major acid condensation product of Indole-3- carbinol, is known to inhibit platelet aggregation and thrombosis. The drugs with antiplatelet and antithrombotic activities are used to treat ischemic stroke.

Objective: The present study investigated the role of DIM on platelet aggregation inhibitory properties in middle cerebral artery occluded (MCAO) rats.

Methods: DIM (12.5, 25, and 50 mg/kg) was orally administered to MCAO rats for 3 days. Platelet aggregation, platelet cyclic adenosine monophosphate (cAMP), reactive oxygen species (ROS), hydrogen peroxide (H2O2), and serum cyclooxygenase (COX-1), thromboxane B2 (TXB2), and prostaglandin E2 (PGE2), and inflammatory markers were estimated. Further brain structural and functional recovery was evaluated by measuring cerebral blood flow, neurological deficits, brain infarction, blood-brain barrier (BBB) leakage, brain water content, and histological abnormalities.

Results: DIM significantly ameliorated adenosine diphosphate (ADP), collagen, thrombin, and arachidonic acid-induced platelet aggregation by inhibiting COX-1, TXB2, and PGE2 and elevating cAMP. Further, DIM also alleviated platelet-mediated oxidative stress (ROS and H2O2) and reduced the serum inflammatory markers, tumor necrosis factor-α (TNF-α) and interleukin -6 (IL-6), and increased anti-inflammatory cytokine, IL-10, in MCAO rats.

Conclusion: DIM treatment confers neuroprotection in MCAO rats by inhibition of platelet aggregation, platelet-mediated oxidative stress, and inflammation. Correspondingly, DIM improved cerebral blood flow and reduced neurological deficits, brain infarction, BBB leakage, brain water content, and histopathological abnormalities indicating the preservation of brain structural integrity. Thus, the present study provided preclinical evidence of DIM neuroprotection against ischemic stroke.

[1]
Bradlow HL, Zeligs MA. Diindolylmethane (DIM) spontaneously forms from indole-3-carbinol (I3C) during cell culture experiments. In vivo 2010; 24(4): 387-91.
[PMID: 20668304]
[2]
Kim S. Cellular and molecular mechanisms of 3,3′-diindolylmethane in gastrointestinal cancer. Int J Mol Sci 2016; 17(7): 1155.
[http://dx.doi.org/10.3390/ijms17071155] [PMID: 27447608]
[3]
Du H, Zhang X, Zeng Y, et al. A novel phytochemical, DIM, inhibits proliferation, migration, invasion and TNF-α induced inflammatory cytokine production of synovial fibroblasts from rheumatoid arthritis patients by targeting MAPK and AKT/mTOR signal pathway. Front Immunol 2019; 10: 1620.
[http://dx.doi.org/10.3389/fimmu.2019.01620] [PMID: 31396207]
[4]
Yang H, Seo SG, Shin SH, et al. 3,3′-Diindolylmethane suppresses high-fat diet-induced obesity through inhibiting adipogenesis of pre-adipocytes by targeting USP2 activity. Mol Nutr Food Res 2017; 61(10): 1700119.
[http://dx.doi.org/10.1002/mnfr.201700119] [PMID: 28586165]
[5]
López-Vázquez A, Garcia-Bañuelos JJ, González-Garibay AS, et al. IRS-1 pY612 and Akt-1/PKB pT308 phosphorylation and antiinflammatory effect of diindolylmethane in adipocytes cocultured with macrophages. Med Chem 2017; 13(8): 727-33.
[PMID: 28934926]
[6]
Jayakumar P, Pugalendi KV, Sankaran M. Attenuation of hyperglycemia-mediated oxidative stress by indole-3-carbinol and its metabolite 3, 3′- diindolylmethane in C57BL/6J mice. J Physiol Biochem 2014; 70(2): 525-34.
[http://dx.doi.org/10.1007/s13105-014-0332-5] [PMID: 24715233]
[7]
Munakarmi S, Chand L, Shin HB, Jang KY, Jeong YJ. Indole-3-carbinol derivative DIM mitigates carbon tetrachloride-induced acute liver injury in mice by inhibiting inflammatory response, apoptosis and regulating oxidative stress. Int J Mol Sci 2020; 21(6): 2048.
[http://dx.doi.org/10.3390/ijms21062048] [PMID: 32192079]
[8]
Rzemieniec J, Wnuk A, Lasoń W, Bilecki W, Kajta M. The neuroprotective action of 3,3′-diindolylmethane against ischemia involves an inhibition of apoptosis and autophagy that depends on HDAC and AhR/CYP1A1 but not ERα/CYP19A1 signaling. Apoptosis 2019; 24(5-6): 435-52.
[http://dx.doi.org/10.1007/s10495-019-01522-2] [PMID: 30778709]
[9]
Zong J, Deng W, Zhou H, et al. 3,3′-Diindolylmethane protects against cardiac hypertrophy via 5′-adenosine monophosphate-activated protein kinase-α2. PLoS One 2013; 8(1): e53427.
[http://dx.doi.org/10.1371/journal.pone.0053427] [PMID: 23326427]
[10]
Park MK, Rhee Y-H, Lee H-J, et al. Antiplatelet and antithrombotic activity of indole-3-carbinol in vitro and in vivo. Phytother Res 2008; 22(1): 58-64.
[http://dx.doi.org/10.1002/ptr.2260]
[11]
Ramakrishna K, Krishnamurthy S. Indole-3-carbinol ameliorated the isoproterenol-induced myocardial infarction via multimodal mechanisms in Wistar rats. Nat Prod Res 2022; 2041632.
[http://dx.doi.org/10.1080/14786419.2022.2041632] [PMID: 35175868]
[12]
Ramakrishna K, Singh N, Krishnamurthy S. Diindolylmethane ameliorates platelet aggregation and thrombosis: In silico, in vitro, and in vivo studies. Eur J Pharmacol 2022; 919: 174812.
[http://dx.doi.org/10.1016/j.ejphar.2022.174812] [PMID: 35151647]
[13]
Paliwal P, Chauhan G, Gautam D, Dash D, Patne SCU, Krishnamurthy S. Indole-3-carbinol improves neurobehavioral symptoms in a cerebral ischemic stroke model. Naunyn Schmiedebergs Arch Pharmacol 2018; 391(6): 613-25.
[http://dx.doi.org/10.1007/s00210-018-1488-2] [PMID: 29602953]
[14]
Ramakrishna K, Jain SK, Krishnamurthy S. Pharmacokinetic and pharmacodynamic properties of indole-3-carbinol in experimental focal ischemic injury. Eur J Drug Metab Pharmacokinet 2022; 47(4): 593-605.
[http://dx.doi.org/10.1007/s13318-022-00771-y] [PMID: 35482227]
[15]
Dhir N, Jain A, Sharma AR, Prakash A, Bhatia A, Medhi B. Neuroprotective effect of 3,3′-diindolylmethane and ɑ-naphthoflavone, aryl hydrocarbon receptor modulators in an experimental model of ischemic stroke. CNS Neurol Disord Drug Targets 2022; 21: 1871527321666220418120224.
[http://dx.doi.org/10.2174/1871527321666220418120224] [PMID: 35440324]
[16]
Kleinschnitz C, Pozgajova M, Pham M, Bendszus M, Nieswandt B, Stoll G. Targeting platelets in acute experimental stroke: Impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. Circulation 2007; 115(17): 2323-30.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.691279] [PMID: 17438148]
[17]
Stegner D, Klaus V, Nieswandt B. Platelets as modulators of cerebral ischemia/reperfusion injury. Front Immunol 2019; 10: 2505.
[http://dx.doi.org/10.3389/fimmu.2019.02505] [PMID: 31736950]
[18]
Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989; 20(1): 84-91.
[19]
Ramakrishna K, Srinivasan K, Sharma SS. Chronic treatment of 4-phenylbutyric acid ameliorates cognitive impairment after focal cerebral ischemia/reperfusion injury in rats. Indian J Physiol Pharmacol 2021; 64(3): 188-94.
[http://dx.doi.org/10.25259/IJPP_172_2020]
[20]
Irfan M, Kwon T-H, Kwon H-W, Rhee MH. Pharmacological actions of Dieckol on the modulation of platelet functions and thrombus formation via integrin αIIbβ3 and cAMP signaling. Pharmacol Res 2022; 2022: 106088.
[http://dx.doi.org/10.22541/au.159248857.72994533]
[21]
Li X, Wang J-W, Huang B, Peng Z-X, Zhang Y-Y, Zhao S-Y. Synthesis of 3, 15-disuccinate-12-coumarin substituted andrographolide derivatives and their antiplatelet aggregation activities in vitro. Nat Prod Commun 2020; 15(5): 1934578X20910863.
[22]
Cheng TF, Zhao J, Wu QL, et al. Compound Dan Zhi tablet attenuates experimental ischemic stroke via inhibiting platelet activation and thrombus formation. Phytomedicine 2020; 79: 153330.
[http://dx.doi.org/10.1016/j.phymed.2020.153330] [PMID: 32932202]
[23]
Guo Q, Wang G, Namura S. Fenofibrate improves cerebral blood flow after middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 2010; 30(1): 70-8.
[http://dx.doi.org/10.1038/jcbfm.2009.185] [PMID: 19724288]
[24]
Mishra A, Chandravanshi LP, Trigun SK, Krishnamurthy S. Ambroxol modulates 6-Hydroxydopamine-induced temporal reduction in Glucocerebrosidase (GCase) enzymatic activity and Parkinson’s disease symptoms. Biochem Pharmacol 2018; 155: 479-93.
[http://dx.doi.org/10.1016/j.bcp.2018.07.028] [PMID: 30040928]
[25]
Meyer OA, Tilson HA, Byrd WC, Riley MT. A method for the routine assessment of fore and hindlimb grip strength of rats and mice. Neurobehav Toxicol 1979; 1(3): 233-6.
[PMID: 551317]
[26]
Shah FA, Liu G, Al Kury LT, et al. Melatonin protects MCAO-induced neuronal loss via NR2A mediated prosurvival pathways. Front Pharmacol 2019; 10: 297.
[http://dx.doi.org/10.3389/fphar.2019.00297] [PMID: 31024297]
[27]
Zhang W, Zhang H, Mu H, et al. Omega-3 polyunsaturated fatty acids mitigate blood–brain barrier disruption after hypoxic–ischemic brain injury. Neurobiol Dis 2016; 91: 37-46.
[http://dx.doi.org/10.1016/j.nbd.2016.02.020] [PMID: 26921472]
[28]
Maleki SN, Aboutaleb N, Souri F. Berberine confers neuroprotection in coping with focal cerebral ischemia by targeting inflammatory cytokines. J Chem Neuroanat 2018; 87: 54-9.
[http://dx.doi.org/10.1016/j.jchemneu.2017.04.008] [PMID: 28495517]
[29]
Bednar B, Condra C, Gould RJ, Connolly TM. Platelet aggregation monitored in a 96 well microplate reader is useful for evaluation of platelet agonists and antagonists. Thromb Res 1995; 77(5): 453-63.
[http://dx.doi.org/10.1016/0049-3848(95)93881-Y] [PMID: 7778060]
[30]
Kim ES, Lee J-S, Lee HG. Improvement of antithrombotic activity of red ginseng extract by nanoencapsulation using chitosan and antithrombotic cross-linkers: Polyglutamic acid and fucodian. J Ginseng Res 2021; 2021: 236-45.
[PMID: 33841004]
[31]
Liu C, Guo H, DaSilva NA, et al. Pomegranate (Punica granatum) phenolics ameliorate hydrogen peroxide-induced oxidative stress and cytotoxicity in human keratinocytes. J Funct Foods 2019; 54: 559-67.
[http://dx.doi.org/10.1016/j.jff.2019.02.015] [PMID: 34079588]
[32]
Pan S, Li S, Hu Y, et al. Resveratrol post-treatment protects against neonatal brain injury after hypoxia-ischemia. Oncotarget 2016; 7(48): 79247-61.
[http://dx.doi.org/10.18632/oncotarget.13018] [PMID: 27811363]
[33]
Liu F, Lu J, Manaenko A, Tang J, Hu Q. Mitochondria in ischemic stroke: New insight and implications. Aging Dis 2018; 9(5): 924-37.
[http://dx.doi.org/10.14336/AD.2017.1126] [PMID: 30271667]
[34]
Fisher M, Feuerstein G, Howells DW, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 2009; 40(6): 2244-50.
[http://dx.doi.org/10.1161/STROKEAHA.108.541128] [PMID: 19246690]
[35]
Stair. Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 1999; 30(12): 2752-8.
[http://dx.doi.org/10.1161/01.STR.30.12.2752] [PMID: 10583007]
[36]
Abdullahi W, Tripathi D, Ronaldson PT. Blood-brain barrier dysfunction in ischemic stroke: Targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol 2018; 315(3): C343-56.
[http://dx.doi.org/10.1152/ajpcell.00095.2018] [PMID: 29949404]
[37]
Liu T, Zhang T, Yu H, Shen H, Xia W. Adjudin protects against cerebral ischemia reperfusion injury by inhibition of neuroinflammation and blood-brain barrier disruption. J Neuroinflammat 2014; 11(1): 107.
[http://dx.doi.org/10.1186/1742-2094-11-107] [PMID: 24927761]
[38]
Goldim MPS, Della Giustina A, Petronilho F. Using evans blue dye to determine blood‐brain barrier integrity in rodents. Curr Protoc Immunol 2019; 126(1): e83.
[http://dx.doi.org/10.1002/cpim.83] [PMID: 31483106]
[39]
Jin G, Arai K, Murata Y, et al. Protecting against cerebrovascular injury: Contributions of 12/15-lipoxygenase to edema formation after transient focal ischemia. Stroke 2008; 39(9): 2538-43.
[http://dx.doi.org/10.1161/STROKEAHA.108.514927] [PMID: 18635843]
[40]
Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 2008; 32(2): 200-19.
[http://dx.doi.org/10.1016/j.nbd.2008.08.005] [PMID: 18790057]
[41]
Ioannides K, Tadi P, Naqvi IA. Cerebellar Infarct. Stat Pearls publishing 2017.
[42]
Srinivasan K, Sharma SS. Sodium phenylbutyrate ameliorates focal cerebral ischemic/reperfusion injury associated with comorbid type 2 diabetes by reducing endoplasmic reticulum stress and DNA fragmentation. Behav Brain Res 2011; 225(1): 110-6.
[http://dx.doi.org/10.1016/j.bbr.2011.07.004] [PMID: 21767572]
[43]
Onselaer MB, Nagy M, Pallini C, et al. Comparison of the GPVI inhibitors losartan and honokiol. Platelets 2020; 31(2): 187-97.
[http://dx.doi.org/10.1080/09537104.2019.1585526] [PMID: 30849265]
[44]
Li X, Liu P, Xu Z, et al. A pharmacodynamic study of CN-218, a novel antiplatelet and antithrombotic agent primarily targeting the P2Y12 receptor. Cardiovasc Drugs Ther 2020; 34(1): 15-23.
[http://dx.doi.org/10.1007/s10557-019-06930-9] [PMID: 32062793]
[45]
Sakata C, Kawasaki T, Kato Y, et al. ASP6537, a novel highly selective cyclooxygenase-1 inhibitor, exerts potent antithrombotic effect without “aspirin dilemma”. Thromb Res 2013; 132(1): 56-62.
[http://dx.doi.org/10.1016/j.thromres.2013.03.005] [PMID: 23522855]
[46]
Xu Z, Xu Y, Xie X, et al. Anti-platelet aggregation of Panax notoginseng triol saponins by regulating GP1BA for ischemic stroke therapy. Chin Med 2021; 16(1): 12.
[http://dx.doi.org/10.1186/s13020-021-00424-3] [PMID: 33468191]
[47]
Shin J-H, Kwon H-W, Irfan M, Rhee MH, Lee D-H. Ginsenoside Rk1 suppresses platelet mediated thrombus formation by downregulation of granule release and αIIbβ3 activation. J Ginseng Res 2021; 45(4): 490-7.
[PMID: 34295209]
[48]
Nieswandt B, Varga-Szabo D, Elvers M. Integrins in platelet activation. J Thromb Haemost 2009; 7 (Suppl. 1): 206-9.
[http://dx.doi.org/10.1111/j.1538-7836.2009.03370.x] [PMID: 19630801]
[49]
Huang J, Li X, Shi X, et al. Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol 2019; 12(1): 26.
[http://dx.doi.org/10.1186/s13045-019-0709-6] [PMID: 30606227]
[50]
Seiffert D, Pedicord DL, Kieras CJ, He B, Stern AM, Billheimer JT. Regulation of clot retraction by glycoprotein IIb/IIIa antagonists. Thromb Res 2002; 108(2-3): 181-9.
[http://dx.doi.org/10.1016/S0049-3848(02)00395-X] [PMID: 12590956]
[51]
Kim S, Kunapuli SP. P2Y12 receptor in platelet activation. Platelets 2011; 22(1): 54-8.
[http://dx.doi.org/10.3109/09537104.2010.497231] [PMID: 21231822]
[52]
Dorsam RT, Kunapuli SP. Central role of the P2Y12 receptor in platelet activation. J Clin Invest 2004; 113(3): 340-5.
[http://dx.doi.org/10.1172/JCI20986] [PMID: 14755328]
[53]
Qiao J, Arthur JF, Gardiner EE, Andrews RK, Zeng L, Xu K. Regulation of platelet activation and thrombus formation by reactive oxygen species. Redox Biol 2018; 14: 126-30.
[http://dx.doi.org/10.1016/j.redox.2017.08.021] [PMID: 28888895]
[54]
Fu K, Chen M, Zheng H, Li C, Yang F, Niu Q. Pelargonidin ameliorates MCAO-induced cerebral ischemia/reperfusion injury in rats by the action on the Nrf2/HO-1 pathway. Transl Neurosci 2021; 12(1): 20-31.
[55]
Jang JY, Min JH, Chae YH, et al. Reactive oxygen species play a critical role in collagen-induced platelet activation via SHP-2 oxidation. Antioxid Redox Signal 2014; 20(16): 2528-40.
[http://dx.doi.org/10.1089/ars.2013.5337] [PMID: 24093153]
[56]
Stokes KY, Granger DN. Platelets: A critical link between inflammation and microvascular dysfunction. J Physiol 2012; 590(5): 1023-34.
[http://dx.doi.org/10.1113/jphysiol.2011.225417] [PMID: 22183721]
[57]
Rabinovici R, Yue TL, Farhat M, et al. Platelet activating factor (PAF) and tumor necrosis factor-alpha (TNF alpha) interactions in endotoxemic shock: Studies with BN 50739, a novel PAF antagonist. J Pharmacol Exp Ther 1990; 255(1): 256-63.
[PMID: 2213560]
[58]
Pignatelli P, De Biase L, Lenti L, et al. Tumor necrosis factor-α as trigger of platelet activation in patients with heart failure. Blood 2005; 106(6): 1992-4.
[http://dx.doi.org/10.1182/blood-2005-03-1247] [PMID: 15956282]
[59]
Peng J, Friese P, George JN, Dale GL, Burstein SA. Alteration of platelet function in dogs mediated by interleukin-6. Blood 1994; 83(2): 398-403.
[60]
Mutlu GM, Green D, Bellmeyer A, et al. Ambient particulate matter accelerates coagulation via an IL-6–dependent pathway. J Clin Invest 2007; 117(10): 2952-61.
[http://dx.doi.org/10.1172/JCI30639] [PMID: 17885684]
[61]
Zhu H, Hu S, Li Y, et al. Interleukins and Ischemic Stroke. Front Immunol 2022; 13: 828447.
[http://dx.doi.org/10.3389/fimmu.2022.828447] [PMID: 35173738]
[62]
Kim HW, Kim J, Kim J, et al. 3,3′-Diindolylmethane inhibits lipopolysaccharide-induced microglial hyperactivation and attenuates brain inflammation. Toxicol Sci 2014; 137(1): 158-67.
[http://dx.doi.org/10.1093/toxsci/kft240] [PMID: 24162184]
[63]
Luo Q, Yang A, Cao Q, Guan H. 3,3′-Diindolylmethane protects cardiomyocytes from LPS-induced inflammatory response and apoptosis. BMC Pharmacol Toxicol 2018; 19(1): 71.
[http://dx.doi.org/10.1186/s40360-018-0262-x] [PMID: 30413180]
[64]
Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2019; 50(12): e344-418.
[http://dx.doi.org/10.1161/STR.0000000000000211] [PMID: 31662037]
[65]
Del Brutto VJ, Chaturvedi S, Diener HC, Romano JG, Sacco RL. Antithrombotic therapy to prevent recurrent strokes in ischemic cerebrovascular disease: JACC scientific expert panel. J Am Coll Cardiol 2019; 74(6): 786-803.
[http://dx.doi.org/10.1016/j.jacc.2019.06.039] [PMID: 31395130]
[66]
Chang RC-C, Ho Y-S. Introductory Chapter: Concept of Neuroprotection-A New Perspective. In: Neuroprotection. London: IntechOpen 2019.
[67]
Bansal S, Sangha KS, Khatri P. Drug treatment of acute ischemic stroke. Am J Cardiovasc Drugs 2013; 13(1): 57-69.
[http://dx.doi.org/10.1007/s40256-013-0007-6] [PMID: 23381911]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy