Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Sensorimotor Alterations Induced by Novel Fentanyl Analogs in Mice: Possible Impact on Human Driving Performances

Author(s): Sabrine Bilel, Arianna Giorgetti, Micaela Tirri, Raffaella Arfè, Virginia Cristofori, Beatrice Marchetti, Giorgia Corli, Lorenzo Caruso, Giorgio Zauli, Raffaele Giorgetti and Matteo Marti*

Volume 21, Issue 1, 2023

Published on: 16 November, 2022

Page: [87 - 104] Pages: 18

DOI: 10.2174/1570159X21666221116160032

Price: $65

Abstract

Operating a vehicle is a complex task that requires multiple cognitive functions and psychomotor skills to cooperate. Driving might be impaired by licit or illicit drugs, including novel psychoactive substances (NPS) and novel synthetic opioids (NSO), the effects of which are still yet to be elucidated in humans. In the present work, a revision of the literature regarding the psychomotor impairing effects of Fentanyl (FENT) and three analogues (Acrylfentanyl, Ocfentanyl and Furanylfentanyl) is presented, as emerged by experimental studies on humans, driving under the influence of a drug (DUID) and intoxication cases. An experimental study on a mouse model evaluated the sensorimotor alterations induced by FENT and the three fentalogs. Acute systemic administration of the four opioids (0.01-15 mg/kg i.p.) dose-dependently decreased the visual object and placing tests, the acoustic and the tactile responses of mice. The preclinical data are in accordance with the data that emerged from the revision of the literature regarding experimental data on humans, driving under the influence of drugs and intoxication cases, suggesting that novel synthetic opioids might affect the psychomotor performances on daily human tasks with a particular focus on driving.

Graphical Abstract

[1]
Wilhelmi, B.; Cohen, S.P. A framework for “driving under the influence of drugs” policy for the opioid using driver. Pain Physician, 2012, 3S(15)(Suppl.), ES215-ES230.
[http://dx.doi.org/10.36076/ppj.2012/15/ES215] [PMID: 22786459]
[2]
Marillier, M.; Verstraete, A.G. Driving under the influence of drugs. WIREs Forensic Sci., 2019, 1(3), e1326.
[http://dx.doi.org/10.1002/wfs2.1326]
[3]
Busardo, F.P.; Pichini, S.; Pellegrini, M.; Montana, A.; Lo Faro, A.F.; Zaami, S.; Graziano, S. Correlation between blood and oral fluid psychoactive drug concentrations and cognitive impairment in driving under the influence of drugs. Curr. Neuropharmacol., 2017, 16(1), 84-96.
[http://dx.doi.org/10.2174/1570159X15666170828162057] [PMID: 28847293]
[4]
United Nations Office on Drugs and Crime (UNDOC) World Drug report., 2019. Available from: https://wdr.unodc.org/wdr2019/
[5]
Soria, M.L. Driving under the influence of new psychoactive substances. Span. J. Leg. Med, 2018, 44(4), 169-175.
[http://dx.doi.org/10.1016/j.remle.2017.11.008]
[6]
European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). European Drug Report; , 2021. Available from: [https://www.emcdda.europa.eu/publications/edr/trends-developments/2021_en
[7]
Fishbain, D.A.; Cutler, R.B.; Rosomoff, H.L.; Rosomoff, R.S. Are opioid-dependent/tolerant patients impaired in driving-related skills? A structured evidence-based review. J. Pain Symptom Manage., 2003, 25(6), 559-577.
[http://dx.doi.org/10.1016/S0885-3924(03)00176-3] [PMID: 12782437]
[8]
Centola, C.; Giorgetti, A.; Zaami, S.; Giorgetti, R. Effects of GHB on psychomotor and driving performance. Curr. Drug Metab., 2018, 19(13), 1065-1072.
[http://dx.doi.org/10.2174/1389200219666180124113802] [PMID: 29366411]
[9]
Brunetti, P.; Pirani, F.; Carlier, J.; Giorgetti, R.; Busardò, F.P.; Lo Faro, A.F.A. 2017–2019 update on acute intoxications and fatalities from illicit fentanyl and analogs. J. Anal. Toxicol., 2021, 45(6), 537-554.
[http://dx.doi.org/10.1093/jat/bkaa115] [PMID: 32860688]
[10]
10. European Monitoring Centre for Drugs and Drug Addiction. EMCDDA_Europol Joint Report on a new psychoactive substance: N-(1-phenethylpiperidin-4-yl) Nphenylacrylamide (acryloylfentanyl Joint Reports, Publications Office of the European Union, Luxembourg, 2017. Available from: https://www.emcdda.europa.eu/system/ files/ publications/ 3873/ TI_PUBPDF_TDAS17001ENN_ PDFWEB_20170221105322.pdf
[11]
Menefee, L.A.; Frank, E.D.; Crerand, C.; Jalali, S.; Park, J.; Sanschagrin, K.; Besser, M. The effects of transdermal fentanyl on driving, cognitive performance, and balance in patients with chronic nonmalignant pain conditions. Pain Med., 2004, 5(1), 42-49.
[http://dx.doi.org/10.1111/j.1526-4637.2004.04005.x] [PMID: 14996236]
[12]
Sabatowski, R.; Schwalen, S.; Rettig, K.; Herberg, K.W.; Kasper, S.M.; Radbruch, L. Driving ability under long-term treatment with transdermal fentanyl. J. Pain Symptom Manage., 2003, 25(1), 38-47.
[http://dx.doi.org/10.1016/S0885-3924(02)00539-0] [PMID: 12565187]
[13]
Wilson, P.; Lim, R. Patient with very high opioid tolerance enrolled in opioid agonist treatment: A Case Report. J. Addict. Med., 2022, 16(2), 246-248.
[http://dx.doi.org/10.1097/ADM.0000000000000868] [PMID: 33973925]
[14]
Dumas, E.O.; Pollack, G.M. Opioid tolerance development: A pharmacokinetic/pharmacodynamic perspective. AAPS J., 2008, 10(4), 537-551.
[http://dx.doi.org/10.1208/s12248-008-9056-1] [PMID: 18989788]
[15]
Hayley, A.C.; Downey, L.A.; Green, M.; Shiferaw, B.; Kenneally, M.; Keane, M.; Adams, M.; Shehabi, Y. Driving Simulator performance after administration of analgesic doses of ketamine with dexmedetomidine or fentanyl. J. Clin. Psychopharmacol., 2019, 39(5), 446-454.
[http://dx.doi.org/10.1097/JCP.0000000000001101] [PMID: 31433347]
[16]
Stevenson, G.W.; Pathria, M.N.; Lamping, D.L.; Buck, L.; Rosenbloom, D. Driving ability after intravenous fentanyl or diazepam. A controlled double-blind study. Invest. Radiol., 1986, 21(9), 717-719.
[http://dx.doi.org/10.1097/00004424-198609000-00008] [PMID: 3533834]
[17]
Zacny, J.P.; Lance Lichtor, J.; Zaragoza, J.G.; de Wit, H. Subjective and behavioral responses to intravenous fentanyl in healthy volunteers. Psychopharmacology (Berl.), 1992, 107(2-3), 319-326.
[http://dx.doi.org/10.1007/BF02245155] [PMID: 1615132]
[18]
Veselis, R.A.; Reinsel, R.A.; Feshchenko, V.A.; Wronski, M.; Dnistrian, A.; Dutcher, S.; Wilson, R. Impaired memory and behavioral performance with fentanyl at low plasma concentrations. Anesth. Analg., 1994, 79(5), 952-960.
[http://dx.doi.org/10.1213/00000539-199411000-00023] [PMID: 7978415]
[19]
Ghoneim, M.M.; Mewaldt, S.P.; Thatcher, J.W. The effect of diazepam and fentanyl on mental, psychomotor and electroencephalographic functions and their rate of recovery. Psychopharmacology (Berl.), 1975, 44(1), 61-66.
[http://dx.doi.org/10.1007/BF00421185] [PMID: 1105627]
[20]
Schneider, U.; Bevilacqua, C.; Jacobs, R.; Karst, M.; Dietrich, D.E.; Becker, H.; Müller-Vahl, K.R.; Seeland, I.; Gielsdorf, D.; Schedlowski, M.; Emrich, H.M. Effects of fentanyl and low doses of alcohol on neuropsychological performance in healthy subjects. Neuropsychobiology, 1999, 39(1), 38-43.
[http://dx.doi.org/10.1159/000026558] [PMID: 9892858]
[21]
Jamison, R.N.; Schein, J.R.; Vallow, S.; Ascher, S.; Vorsanger, G.J.; Katz, N.P. Neuropsychological effects of long-term opioid use in chronic pain patients. J. Pain Symptom Manage., 2003, 26(4), 913-921.
[http://dx.doi.org/10.1016/S0885-3924(03)00310-5] [PMID: 14527760]
[22]
WHO Ocfentanil. Critical Review report; , 2017. Available from: https://www.who.int/medicines/access/controlledsubstances/CriticalReview_Ocfentanil.pdf?ua=1
[23]
Ebrahim, Z.; Shoenwald, P.; Grimes-Rice, M.; Damask, M.C.; Khairallah, P.A. Multiple dose evaluation of the efficacy of ocfentanil HCl (A-3217) to produce postoperative analgesia. Anesth. Analg., 1991, 72, S63-S64.
[24]
Misailidi, N.; Papoutsis, I.; Nikolaou, P.; Dona, A.; Spiliopoulou, C.; Athanaselis, S. Fentanyls continue to replace heroin in the drug arena: the cases of ocfentanil and carfentanil. Forensic Toxicol., 2018, 36(1), 12-32.
[http://dx.doi.org/10.1007/s11419-017-0379-4] [PMID: 29367860]
[25]
Schumann, J.; Perkins, M.; Dietze, P.; Nambiar, D.; Mitra, B.; Gerostamoulos, D.; Drummer, O.H.; Cameron, P.; Smith, K.; Beck, B. The prevalence of alcohol and other drugs in fatal road crashes in Victoria, Australia. Accid. Anal. Prev., 2021, 153, 105905.
[http://dx.doi.org/10.1016/j.aap.2020.105905] [PMID: 33631704]
[26]
Logan, B.K.; D’Orazio, A.L.; Mohr, A.L.A.; Limoges, J.F.; Miles, A.K.; Scarneo, C.E.; Kerrigan, S.; Liddicoat, L.J.; Scott, K.S.; Huestis, M.A. Recommendations for toxicological investigation of drug-impaired driving and motor vehicle fatalities—2017 update. J. Anal. Toxicol., 2018, 42(2), 63-68.
[http://dx.doi.org/10.1093/jat/bkx082] [PMID: 29186455]
[27]
Tonellato, DJ; Ransohoff, JR; Nash, C; Melanson, SEF; Petrides, AK; Tolan, NV; Goldberg, SA; Boyer, EW; Chai, PR; Erickson, TB >Traumatic pedestrian and bicyclist injuries associated with intoxication. Am J Emerg Med, 2020, S0735-6757(20), 30710-5.
[http://dx.doi.org/10.1016/j.ajem.2020.08.024]
[28]
Rohrig, T.P.; Nash, E.; Osawa, K.A.; Shan, X.; Scarneo, C.; Youso, K.B.; Miller, R.; Tiscione, N.B. Fentanyl and driving impairment. J. Anal. Toxicol., 2021, 45(4), 389-396.
[http://dx.doi.org/10.1093/jat/bkaa105] [PMID: 32797151]
[29]
Chan-Hosokawa, A.; Bierly, J.J. 11-year study of fentanyl in driving under the influence of drugs casework. J. Anal. Toxicol., 2022, 46(3), 337-341.
[http://dx.doi.org/10.1093/jat/bkab049] [PMID: 34002762]
[30]
Drummer, O.H.; Yap, S. The involvement of prescribed drugs in road trauma. Forensic Sci. Int., 2016, 265, 17-21.
[http://dx.doi.org/10.1016/j.forsciint.2015.12.050] [PMID: 26826848]
[31]
Berecki-Gisolf, J.; Hassani-Mahmooei, B.; Collie, A.; McClure, R. Prescription opioid and benzodiazepine use after road traffic injury. Pain Med., 2015, 17(2)
[http://dx.doi.org/10.1111/pme.12890] [PMID: 26271354]
[32]
Giorgetti, A.; Centola, C.; Giorgetti, R. Fentanyl novel derivative-related deaths. Hum. Psychopharmacol., 2017, 32(3), e2605.
[http://dx.doi.org/10.1002/hup.2605] [PMID: 28635020]
[33]
Marquardt, K.A.; Steven Tharratt, R. Inhalation abuse of fentanyl patch. J. Toxicol. Clin. Toxicol., 1994, 32(1), 75-78.
[http://dx.doi.org/10.3109/15563659409000433] [PMID: 8308952]
[34]
Moon, J.M.; Chun, B.J. Fentanyl intoxication caused by abuse of transdermal fentanyl. J. Emerg. Med., 2011, 40(1), 37-40.
[http://dx.doi.org/10.1016/j.jemermed.2007.10.075] [PMID: 18455903]
[35]
European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). Trends and Developments. European Drug Report; Publications Office of the European Union: Luxembourg, 2017.
[36]
Helander, A.; Bäckberg, M.; Signell, P.; Beck, O. Intoxications involving acrylfentanyl and other novel designer fentanyls – results from the Swedish STRIDA project. Clin. Toxicol. (Phila.), 2017, 55(6), 589-599.
[http://dx.doi.org/10.1080/15563650.2017.1303141] [PMID: 28349714]
[37]
Guerrieri, D.; Rapp, E.; Roman, M.; Thelander, G.; Kronstrand, R. Acrylfentanyl: Another new psychoactive drug with fatal consequences. Forensic Sci. Int., 2017, 277, e21-e29.
[http://dx.doi.org/10.1016/j.forsciint.2017.05.010] [PMID: 28587915]
[38]
Butler, D.C.; Shanks, K.; Behonick, G.S.; Smith, D.; Presnell, S.E.; Tormos, L.M. Three cases of fatal acrylfentanyl toxicity in the united states and a review of literature. J. Anal. Toxicol., 2018, 42(1), e6-e11.
[http://dx.doi.org/10.1093/jat/bkx083] [PMID: 29036502]
[39]
Fogarty, M.F.; Papsun, D.M.; Logan, B.K. Analysis of fentanyl and 18 novel fentanyl analogs and metabolites by LC–MS-MS, and report of fatalities associated with methoxyacetylfentanyl and cyclopropylfentanyl. J. Anal. Toxicol., 2018, 42(9), 592-604.
[http://dx.doi.org/10.1093/jat/bky035] [PMID: 29750250]
[40]
Helander, A.; Bäckberg, M.; Beck, O. Intoxications involving the fentanyl analogs acetylfentanyl, 4-methoxybutyrfentanyl and furanylfentanyl: Results from the Swedish STRIDA project. Clin. Toxicol. (Phila.), 2016, 54(4), 324-332.
[http://dx.doi.org/10.3109/15563650.2016.1139715] [PMID: 26850293]
[41]
Allibe, N.; Billault, F.; Moreau, C.; Marchard, A.; Gaillard, Y.; Hoizey, G.; Eysseric-Guerin, H.; Milan, N. Ocfentanil in France: Seven case reports (2016–2018). Toxicologie Analytique et Clinique, 2019, 31(4), 317-322.
[http://dx.doi.org/10.1016/j.toxac.2018.12.003]
[42]
Starmark, J.E.; Stålhammar, D.; Holmgren, E. The Reaction Level Scale (RLS85). Manual and guidelines. Acta Neurochir. (Wien), 1988, 91(1-2), 12-20.
[http://dx.doi.org/10.1007/BF01400521] [PMID: 3394542]
[43]
Bluelight.org. Novel opioid, Furanylfentanyl Available from: http://www.bluelight.org/vb/threads/755118 [Accessed on: 2015 Nov].
[44]
Wedinos Quarterly Newsletter.Synthetic opioids. PHILTRE Bull 6: 3. Available from: http://www.wedinos.org/resources/down loads/Philtre_Issue_6.pdf Available from: https://www.wedinos.org/resources/downloads/WN_Annual_Report_1415_final.pdf [Accessed 09 Nov 2016].
[45]
Quintana, P.; Ventura, M.; Grifell, M.; Palma, A.; Galindo, L.; Fornís, I.; Gil, C.; Carbón, X.; Caudevilla, F.; Farré, M.; Torrens, M. The hidden web and the fentanyl problem: Detection of ocfentanil as an adulterant in heroin. Int. J. Drug Policy, 2017, 40, 78-83.
[http://dx.doi.org/10.1016/j.drugpo.2016.10.006] [PMID: 27889114]
[46]
Coopman, V.; Cordonnier, J.; De Leeuw, M.; Cirimele, V. Ocfentanil overdose fatality in the recreational drug scene. Forensic Sci. Int., 2016, 266(Suppl. C), 469-473.
[http://dx.doi.org/10.1016/j.forsciint.2016.07.005] [PMID: 27471990]
[47]
Dussy, F.E.; Hangartner, S.; Hamberg, C.; Berchtold, C.; Scherer, U.; Schlotterbeck, G.; Wyler, D.; Briellmann, T.A. An acute ocfentanil fatality: A case report with post-mortem concentrations. J. Anal. Toxicol., 2016, 40(9), 761-766.
[http://dx.doi.org/10.1093/jat/bkw096] [PMID: 27650310]
[48]
Casati, S.; Minoli, M.; Angeli, I.; Ravelli, A.; Crudele, G.D.L.; Orioli, M. An ocfentanil-related death case: UHPLC-MS/MS analysis of the drug. Drug Test. Anal., 2019, 11(1), 173-177.
[http://dx.doi.org/10.1002/dta.2473] [PMID: 30091284]
[49]
Bilel, S.; Azevedo Neto, J.; Arfè, R.; Tirri, M.; Gaudio, R.M.; Fantinati, A.; Bernardi, T.; Boccuto, F.; Marchetti, B.; Corli, G.; Serpelloni, G.; De-Giorgio, F.; Malfacini, D.; Trapella, C.; Calo’, G.; Marti, M. In vitro and in vivo pharmaco-dynamic study of the novel fentanyl derivatives: Acrylfentanyl, Ocfentanyl and Furanylfentanyl. Neuropharmacology, 2022, 209, 109020.
[http://dx.doi.org/10.1016/j.neuropharm.2022.109020] [PMID: 35247453]
[50]
Vigolo, A.; Ossato, A.; Trapella, C.; Vincenzi, F.; Rimondo, C.; Seri, C.; Varani, K.; Serpelloni, G.; Marti, M. Novel halogenated derivates of JWH-018: Behavioral and binding studies in mice. Neuropharmacology, 2015, 95, 68-82.
[http://dx.doi.org/10.1016/j.neuropharm.2015.02.008] [PMID: 25769232]
[51]
Ossato, A.; Vigolo, A.; Trapella, C.; Seri, C.; Rimondo, C.; Serpelloni, G.; Marti, M. JWH-018 impairs sensorimotor functions in mice. Neuroscience, 2015, 300, 174-188.
[http://dx.doi.org/10.1016/j.neuroscience.2015.05.021] [PMID: 25987201]
[52]
Canazza, I.; Ossato, A.; Trapella, C.; Fantinati, A.; De Luca, M.A.; Margiani, G.; Vincenzi, F.; Rimondo, C.; Di Rosa, F.; Gregori, A.; Varani, K.; Borea, P.A.; Serpelloni, G.; Marti, M. Effect of the novel synthetic cannabinoids AKB48 and 5F-AKB48 on “tetrad”, sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo pharmacological studies. Psychopharmacology (Berl.), 2016, 233(21-22), 3685-3709.
[http://dx.doi.org/10.1007/s00213-016-4402-y] [PMID: 27527584]
[53]
Fantinati, A.; Ossato, A.; Bianco, S.; Canazza, I.; De Giorgio, F.; Trapella, C.; Marti, M. 1-cyclohexyl-x-methoxybenzene derivatives, novel psychoactive substances seized on the internet market. Synthesis and in vivo pharmacological studies in mice. Hum. Psychopharmacol., 2017, 32(3), e2560.
[http://dx.doi.org/10.1002/hup.2560] [PMID: 28657178]
[54]
Ossato, A.; Bilel, S.; Gregori, A.; Talarico, A.; Trapella, C.; Gaudio, R.M.; De-Giorgio, F.; Tagliaro, F.; Neri, M.; Fattore, L.; Marti, M. Neurological, sensorimotor and cardiorespiratory alterations induced by methoxetamine, ketamine and phencyclidine in mice. Neuropharmacology, 2018, 141, 167-180.
[http://dx.doi.org/10.1016/j.neuropharm.2018.08.017] [PMID: 30165078]
[55]
Ossato, A.; Canazza, I.; Trapella, C.; Vincenzi, F.; De Luca, M.A.; Rimondo, C.; Varani, K.; Borea, P.A.; Serpelloni, G.; Marti, M. Effect of JWH-250, JWH-073 and their interaction on “tetrad”, sensorimotor, neurological and neurochemical responses in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 67, 31-50.
[http://dx.doi.org/10.1016/j.pnpbp.2016.01.007] [PMID: 26780169]
[56]
Marti, M.; Neri, M.; Bilel, S.; Di Paolo, M.; La Russa, R.; Ossato, A.; Turillazzi, E. MDMA alone affects sensorimotor and prepulse inhibition responses in mice and rats: tips in the debate on potential MDMA unsafety in human activity. Forensic Toxicol., 2019, 37(1), 132-144.
[http://dx.doi.org/10.1007/s11419-018-0444-7]
[57]
Howells, R.D.; Groth, J.; Hiller, J.M.; Simon, E.J. Opiate binding sites in the retina: Properties and distribution. J. Pharmacol. Exp. Ther., 1980, 215(1), 60-64.
[PMID: 6256520]
[58]
Zhu, Y.; Hsu, M.S.; Pintar, J.E. Developmental expression of the μ, κ, and δ opioid receptor mRNAs in mouse. J. Neurosci., 1998, 18(7), 2538-2549.
[http://dx.doi.org/10.1523/JNEUROSCI.18-07-02538.1998] [PMID: 9502813]
[59]
Bilel, S.; Azevedo, N.J.; Arfè, R.; Tirri, M.; Gregori, A.; Serpelloni, G.; De-Giorgio, F.; Frisoni, P.; Neri, M.; Calò, G.; Marti, M. In vitro and in vivo pharmacological characterization of the synthetic opioid MT-45. Neuropharmacology, 2020, 171, 108110.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108110] [PMID: 32344007]
[60]
Lambert, F.M.; Bras, H.; Cardoit, L.; Vinay, L.; Coulon, P.; Glover, J.C. Early postnatal maturation in vestibulospinal pathways involved in neck and forelimb motor control. Dev. Neurobiol., 2016, 76(10), 1061-1077.
[http://dx.doi.org/10.1002/dneu.22375] [PMID: 26724676]
[61]
Meyer, A.F.; Poort, J.; O’Keefe, J.; Sahani, M.; Linden, J.F. Ahead-mounted camera system integrates detailed behavioral monitoring with multichannel electrophysiology in freely moving mice. Neuron, 2018, 100(1), 46-60.e7.
[http://dx.doi.org/10.1016/j.neuron.2018.09.020] [PMID: 30308171]
[62]
Wallace, D.J.; Greenberg, D.S.; Sawinski, J.; Rulla, S.; Notaro, G.; Kerr, J.N.D. Rats maintain an overhead binocular field at the expense of constant fusion. Nature, 2013, 498(7452), 65-69.
[http://dx.doi.org/10.1038/nature12153] [PMID: 23708965]
[63]
Khan, S.I.; Della Santina, C.C.; Migliaccio, A.A. Angular vestibuloocular reflex responses in Otop1 mice. I. Otolith sensor input is essential for gravity context-specific adaptation. J. Neurophysiol., 2019, 121(6), 2291-2299.
[http://dx.doi.org/10.1152/jn.00811.2018] [PMID: 30969887]
[64]
Meyer, A.F.; O’Keefe, J.; Poort, J. Two distinct types of eye-head coupling in freely moving mice. Curr. Biol., 2020, 30(11), 2116-2130.e6.
[http://dx.doi.org/10.1016/j.cub.2020.04.042] [PMID: 32413309]
[65]
Tosolini, A.P.; Morris, R. Spatial characterization of the motor neuron columns supplying the rat forelimb. Neuroscience, 2012, 200, 19-30.
[http://dx.doi.org/10.1016/j.neuroscience.2011.10.054] [PMID: 22100785]
[66]
Tosolini, A.P.; Mohan, R.; Morris, R. Targeting the full length of the motor end plate regions in the mouse forelimb increases the uptake of fluoro-gold into corresponding spinal cord motor neurons. Front. Neurol., 2013, 4, 58.
[http://dx.doi.org/10.3389/fneur.2013.00058] [PMID: 23730296]
[67]
Payne, H.L.; Raymond, J.L. Magnetic eye tracking in mice. eLife, 2017, 6, e29222.
[http://dx.doi.org/10.7554/eLife.29222] [PMID: 28872455]
[68]
Lin, Y.; Carpenter, D.O. Direct excitatory opiate effects mediated by non-synaptic actions on rat medial vestibular neurons. Eur. J. Pharmacol., 1994, 262(1-2), 99-106.
[http://dx.doi.org/10.1016/0014-2999(94)90032-9] [PMID: 7813583]
[69]
Drago, F.; Gorgone, G.; Spina, F.; Panissidi, G.; Bello, A.D.; Moro, F.; Scapagnini, U. Opiate receptors in the rabbit iris. Naunyn Schmiedebergs Arch. Pharmacol., 1980, 315(1), 1-4.
[http://dx.doi.org/10.1007/BF00504223] [PMID: 6264328]
[70]
Selbach, J.M.; Buschnack, S.H.; Steuhl, K.P.; Kremmer, S.; Muth-Selbach, U. Substance P and opioid peptidergic innervation of the anterior eye segment of the rat: an immunohistochemical study. J. Anat., 2005, 206(3), 237-242.
[http://dx.doi.org/10.1111/j.1469-7580.2005.00379.x] [PMID: 15733295]
[71]
Cleymaet, A.M.; Berezin, C.T.; Vigh, J. Endogenous opioid signaling in the mouse retina modulates pupillary light reflex. Int. J. Mol. Sci., 2021, 22(2), 554.
[http://dx.doi.org/10.3390/ijms22020554] [PMID: 33429857]
[72]
Cleymaet, A.M.; Gallagher, S.K.; Tooker, R.E.; Lipin, M.Y.; Renna, J.M.; Sodhi, P.; Berg, D.; Hartwick, A.T.E.; Berson, D.M.; Vigh, J. μ-opioid receptor activation directly modulates intrinsically photosensitive retinal ganglion cells. Neuroscience, 2019, 408, 400-417.
[http://dx.doi.org/10.1016/j.neuroscience.2019.04.005] [PMID: 30981862]
[73]
Wilde, M.; Pichini, S.; Pacifici, R.; Tagliabracci, A.; Busardò, F.P.; Auwärter, V.; Solimini, R. Metabolic pathways and potencies of new fentanyl analogs. Front. Pharmacol., 2019, 10, 238.
[http://dx.doi.org/10.3389/fphar.2019.00238] [PMID: 31024296]
[74]
Varshneya, N.B.; Hassanien, S.H.; Holt, M.C.; Stevens, D.L.; Layle, N.K.; Bassman, J.R.; Iula, D.M.; Beardsley, P.M. Respiratory depressant effects of fentanyl analogs are opioid receptor-mediated. Biochem. Pharmacol., 2022, 195, 114805.
[http://dx.doi.org/10.1016/j.bcp.2021.114805] [PMID: 34673011]
[75]
Jongkamonwiwat, N.; Phansuwan-Pujito, P.; Sarapoke, P.; Chetsawang, B.; Casalotti, S.O.; Forge, A.; Dodson, H.; Govitrapong, P. The presence of opioid receptors in rat inner ear. Hear. Res., 2003, 181(1-2), 85-93.
[http://dx.doi.org/10.1016/S0378-5955(03)00175-8] [PMID: 12855366]
[76]
Jongkamonwiwat, N.; Phansuwan-Pujito, P.; Casalotti, S.O.; Forge, A.; Dodson, H.; Govitrapong, P. The existence of opioid receptors in the cochlea of guinea pigs. Eur. J. Neurosci., 2006, 23(10), 2701-2711.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04810.x] [PMID: 16817873]
[77]
Nguyen, K.D.; Mowlds, D.; Lopez, I.A.; Hosokawa, S.; Ishiyama, A.; Ishiyama, G. Mu-opioid receptor (MOR) expression in the human spiral ganglia. Brain Res., 2014, 1590, 10-19.
[http://dx.doi.org/10.1016/j.brainres.2014.09.051] [PMID: 25278190]
[78]
Helander, A.; Bäckberg, M.; Beck, O. MT-45, a new psychoactive substance associated with hearing loss and unconsciousness. Clin. Toxicol. (Phila.), 2014, 52(8), 901-904.
[http://dx.doi.org/10.3109/15563650.2014.943908] [PMID: 25175898]
[79]
Lopez, I.; Ishiyama, A.; Ishiyama, G. Sudden sensorineural hearing loss due to drug abuse. Semin. Hear., 2012, 33(3), 251-260.
[http://dx.doi.org/10.1055/s-0032-1315724]
[80]
Christenson, B.J.; Marjala, A.R.P. Two cases of sudden sensorineural hearing loss after methadone overdose. Ann. Pharmacother., 2010, 44(1), 207-210.
[http://dx.doi.org/10.1345/aph.1M250] [PMID: 20028962]
[81]
Saifan, C.; Glass, D.; Barakat, I.; El-Sayegh, S. Methadone induced sensorineural hearing loss. Case Rep. Med., 2013, 2013, 1-5.
[http://dx.doi.org/10.1155/2013/242730] [PMID: 23983704]
[82]
Ramírez, T.; Soto, E.; Vega, R. Opioid modulation of cochlear auditory responses in the rat inner ear. Synapse, 2020, 74(1), e22128.
[http://dx.doi.org/10.1002/syn.22128] [PMID: 31403743]
[83]
Yang, H.M.; Zhan, L.J.; Lin, X.Q.; Chu, C.P.; Qiu, D.L.; Lan, Y. Fentanyl inhibits air puff-evoked sensory information processing in mouse cerebellar neurons recorded in vivo. Front. Syst. Neurosci., 2020, 14, 51.
[http://dx.doi.org/10.3389/fnsys.2020.00051] [PMID: 32848643]
[84]
Horswill, M.S.; Plooy, A.M. Auditory feedback influences perceived driving speeds. Perception, 2008, 37(7), 1037-1043.
[http://dx.doi.org/10.1068/p5736] [PMID: 18773726]
[85]
Wilkins, L.; Gray, R.; Gaska, J.; Winterbottom, M. Motion perception and driving: Predicting performance through testing and shortening braking reaction times through training. Invest. Ophthalmol. Vis. Sci., 2013, 54(13), 8364-8374.
[http://dx.doi.org/10.1167/iovs.13-12774] [PMID: 24282222]
[86]
Ivers, R.Q.; Mitchell, P.; Cumming, R.G. Sensory impairment and driving: The blue mountains eye study. Am. J. Public Health, 1999, 89(1), 85-87.
[http://dx.doi.org/10.2105/AJPH.89.1.85] [PMID: 9987472]
[87]
Wang, M.; Liao, Y.; Lyckvi, S.L.; Chen, F. How drivers respond to visual vs. auditory information in advisory traffic information systems. Behav. Inf. Technol., 2020, 39(12), 1308-1319.
[http://dx.doi.org/10.1080/0144929X.2019.1667439]
[88]
Gaffary, Y.; Lécuyer, A. The use of haptic and tactile information in the car to improve driving safety: A review of current technologies. Front. ICT, 2018, 5, 5.
[http://dx.doi.org/10.3389/fict.2018.00005]
[89]
Pesavento, S.; Bilel, S.; Murari, M.; Gottardo, R.; Arfè, R.; Tirri, M.; Panato, A.; Tagliaro, F.; Marti, M. Zebrafish larvae: A new model to study behavioural effects and metabolism of fentanyl, in comparison to a traditional mice model. Med. Sci. Law, 2022, 62(3), 188-198.
[http://dx.doi.org/10.1177/00258024221074568] [PMID: 35040690]
[90]
Klebacher, R.; Harris, M.I.; Ariyaprakai, N.; Tagore, A.; Robbins, V.; Dudley, L.S.; Bauter, R.; Koneru, S.; Hill, R.D.; Wasserman, E.; Shanes, A.; Merlin, M.A. Incidence of naloxone redosing in the age of the new opioid epidemic. Prehosp. Emerg. Care, 2017, 21(6), 682-687.
[http://dx.doi.org/10.1080/10903127.2017.1335818] [PMID: 28686547]
[92]
Rothman, R.B.; Xu, H.; Wang, J.B.; Partilla, J.S.; Kayakiri, H.; Rice, K.C.; Uhl, G.R. Ligand selectivity of cloned human and rat opioid mu receptors. Synapse, 1995, 21(1), 60-64.
[http://dx.doi.org/10.1002/syn.890210109] [PMID: 8525463]
[93]
Zhang, X.; Hutchins, S.D.; Blough, B.E.; Vallender, E.J. In vitro effects of ligand bias on primate mu opioid receptor downstream signaling. Int. J. Mol. Sci., 2020, 21(11), 3999.
[http://dx.doi.org/10.3390/ijms21113999] [PMID: 32503269]
[94]
Abood, M.E.; Noel, M.A.; Carter, R.C.; Harris, L.S. Evaluation of a series of N-alkyl benzomorphans in cell lines expressing transfected δ- and μ-opioid receptors. Biochem. Pharmacol., 1995, 50(6), 851-859.
[http://dx.doi.org/10.1016/0006-2952(95)02007-Y] [PMID: 7575648]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy