Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Investigation of the Effects of Opioids on Microglial Nitrite and Nitric Oxide Synthase (iNOS) Production and Phagocytosis during Inflammation

Author(s): Yi Zhou, Xihua Lu, Yunfei Zhang, Changsheng Li, Yu Bai and Zhen Zhang*

Volume 26, Issue 10, 2023

Published on: 27 December, 2022

Page: [1900 - 1906] Pages: 7

DOI: 10.2174/1386207326666221111093915

Price: $65

Abstract

Aim: This study aimed to investigate how opioids affect phagocytosis and microglial nitrite and nitric oxide synthase (iNOS) production during inflammation.

Background: Opioids are a group of chemicals that are naturally found in the opium poppy plant and exert a variety of effects on the brain, including pain alleviation in some cases. They are commonly used in surgery and perioperative analgesia. However, research on the impact of opioids on microglial inflammatory factor production and phagocytosis is limited.

Objectives: This study was designed to investigate the effects of opioids on inducible nitric oxide synthase (iNOS) activity and nitric oxide (NO) generation. Moreover, the influence of opioids on the engulfment of C8-B4 microglial cells after stimulation with LPS was also examined.

Methods: C8-B4 mouse microglial cells were exposed to various concentrations of opioids after stimulation with lipopolysaccharide (LPS) and interferon-γ (IFN-γ). Nitrite production was assayed. The iNOS and Cox-2 were determined by Western blotting, and fluorescent immunostaining was performed to assess the percentage of microglia that engulfed fluorescent microspheres in total microglia cultivating with opioids after being activated by LPS.

Results: After LPS and IFN-γ stimulation, microglia produced lower amounts of nitric oxide (NO) production with buprenorphine, salvinorin A, and naloxone (P<0.05). When combined with naloxone, no significant differences were found than buprenorphine. It was observed that buprenorphine and salvinorin A could suppress iNOS expression activated by LPS and IFN-γ. Phagocytosis was greatly increased after LPS stimulation, and a significant increase was observed after adding salvinorin A.

Conclusion: Buprenorphine and salvinorin A were found to reduce NO production and iNOS induction in microglial cells activated by LPS and IFN-γ. Salvinorin A promoted the phagocytosis of microglia cells treated by LPS.

Graphical Abstract

[1]
You, H.; Baluszek, S.; Kaminska, B. Immune microenvironment of brain metastases-are microglia and other brain macrophages little helpers? Front. Immunol., 2019, 10, 1941.
[http://dx.doi.org/10.3389/fimmu.2019.01941] [PMID: 31481958]
[2]
Ayata, P.; Schaefer, A. Innate sensing of mechanical properties of brain tissue by microglia. Curr. Opin. Immunol., 2020, 62, 123-130.
[http://dx.doi.org/10.1016/j.coi.2020.01.003] [PMID: 32058296]
[3]
Scheiblich, H.; Trombly, M.; Ramirez, A.; Heneka, M.T. Neuroimmune connections in aging and neurodegenerative diseases. Trends Immunol., 2020, 41(4), 300-312.
[http://dx.doi.org/10.1016/j.it.2020.02.002] [PMID: 32147113]
[4]
Plein, L.M.; Rittner, H.L. Opioids and the immune system – friend or foe. Br. J. Pharmacol., 2018, 175(14), 2717-2725.
[http://dx.doi.org/10.1111/bph.13750] [PMID: 28213891]
[5]
Shavit, Y.; Depaulis, A.; Martin, F.C.; Terman, G.W.; Pechnick, R.N.; Zane, C.J.; Gale, R.P.; Liebeskind, J.C. Involvement of brain opiate receptors in the immune-suppressive effect of morphine. Proc. Natl. Acad. Sci. USA, 1986, 83(18), 7114-7117.
[http://dx.doi.org/10.1073/pnas.83.18.7114] [PMID: 3018757]
[6]
Szabo, I.; Rojavin, M.; Bussiere, J.L.; Eisenstein, T.K.; Adler, M.W.; Rogers, T.J. Suppression of peritoneal macrophage phagocytosis of Candida albicans by opioids. J. Pharmacol. Exp. Ther., 1993, 267(2), 703-706.
[PMID: 8246144]
[7]
Roy, S.; Cain, K.J.; Chapin, R.B.; Charboneau, R.G.; Barke, R.A. Morphine modulates NF kappa B activation in macrophages. Biochem. Biophys. Res. Commun., 1998, 245(2), 392-396.
[http://dx.doi.org/10.1006/bbrc.1998.8415] [PMID: 9571161]
[8]
Shrivastava, P.; Cabrera, M.A.; Chastain, L.G.; Boyadjieva, N.I.; Jabbar, S.; Franklin, T.; Sarkar, D.K. Mu-opioid receptor and delta-opioid receptor differentially regulate microglial inflammatory response to control proopiomelanocortin neuronal apoptosis in the hypothalamus: Effects of neonatal alcohol. J. Neuroinflammation, 2017, 14(1), 83.
[http://dx.doi.org/10.1186/s12974-017-0844-3] [PMID: 28407740]
[9]
Sonar, S.A.; Lal, G. The iNOS activity during an immune response controls the CNS pathology in experimental autoimmune encephalomyelitis. Front. Immunol., 2019, 10, 710.
[http://dx.doi.org/10.3389/fimmu.2019.00710] [PMID: 31019516]
[10]
Kumar, S.; Singh, R.K.; Bhardwaj, T.R. Therapeutic role of nitric oxide as emerging molecule. Biomed. Pharmacother., 2017, 85, 182-201.
[http://dx.doi.org/10.1016/j.biopha.2016.11.125] [PMID: 27940398]
[11]
Masuda, T.; Sankowski, R.; Staszewski, O.; Prinz, M. Microglia heterogeneity in the single-cell era. Cell Rep., 2020, 30(5), 1271-1281.
[http://dx.doi.org/10.1016/j.celrep.2020.01.010] [PMID: 32023447]
[12]
Brantley, E.C.; Guo, L.; Zhang, C.; Lin, Q.; Yokoi, K.; Langley, R.R.; Kruzel, E.; Maya, M.; Kim, S.W.; Kim, S.J.; Fan, D.; Fidler, I.J. Nitric oxide-mediated tumoricidal activity of murine microglial cells. Transl. Oncol., 2010, 3(6), 380-388.
[http://dx.doi.org/10.1593/tlo.10208] [PMID: 21151477]
[13]
Bal-Price, A.; Brown, G.C. Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J. Neurosci., 2001, 21(17), 6480-6491.
[http://dx.doi.org/10.1523/JNEUROSCI.21-17-06480.2001] [PMID: 11517237]
[14]
Butovsky, O.; Landa, G.; Kunis, G.; Ziv, Y.; Avidan, H.; Greenberg, N.; Schwartz, A.; Smirnov, I.; Pollack, A.; Jung, S.; Schwartz, M. Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. J. Clin. Invest., 2006, 116(4), 905-915.
[http://dx.doi.org/10.1172/JCI26836] [PMID: 16557302]
[15]
Geissmann, F.; Manz, M.G.; Jung, S.; Sieweke, M.H.; Merad, M.; Ley, K. Development of monocytes, macrophages, and dendritic cells. Science, 2010, 327(5966), 656-661.
[http://dx.doi.org/10.1126/science.1178331] [PMID: 20133564]
[16]
Sehajpal, S.; Prasad, D.N.; Singh, R.K. Prodrugs of non-steroidal anti-inflammatory drugs (NSAIDs): A long march towards synthesis of safer NSAIDs. Mini Rev. Med. Chem., 2018, 18(14), 1199-1219.
[http://dx.doi.org/10.2174/1389557518666180330112416] [PMID: 29600762]
[17]
Sehajpal, S.; Prasad, D.N.; Singh, R.K. Novel ketoprofen–antioxidants mutual codrugs as safer nonsteroidal anti‐inflammatory drugs: Synthesis, kinetic and pharmacological evaluation. Arch. Pharm., 2019, 352(7), 1800339.
[http://dx.doi.org/10.1002/ardp.201800339] [PMID: 31231875]
[18]
Eisenstein, T.K. The role of opioid receptors in immune system function. Front. Immunol., 2019, 10, 2904.
[http://dx.doi.org/10.3389/fimmu.2019.02904] [PMID: 31921165]
[19]
Ninković, J.; Roy, S. Morphine decreases bacterial phagocytosis by inhibiting actin polymerization through cAMP-, Rac-1-, and p38 MAPK-dependent mechanisms. Am. J. Pathol., 2012, 180(3), 1068-1079.
[http://dx.doi.org/10.1016/j.ajpath.2011.11.034] [PMID: 22248582]
[20]
Gwak, M.S.; Li, L.; Zuo, Z. Morphine preconditioning reduces lipopolysaccharide and interferon-γ-induced mouse microglial cell injury via δ1 opioid receptor activation. Neuroscience, 2010, 167(2), 256-260.
[http://dx.doi.org/10.1016/j.neuroscience.2010.02.017] [PMID: 20156527]
[21]
Moussaud, S.; Draheim, H.J. A new method to isolate microglia from adult mice and culture them for an extended period of time. J. Neurosci. Methods, 2010, 187(2), 243-253.
[http://dx.doi.org/10.1016/j.jneumeth.2010.01.017] [PMID: 20097228]
[22]
Steiner, N.; Balez, R.; Karunaweera, N.; Lind, J.M.; Münch, G.; Ooi, L. Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264.7 macrophages and C8–B4 microglia. Neurochem. Int., 2016, 95, 46-54.
[http://dx.doi.org/10.1016/j.neuint.2015.10.013] [PMID: 26522689]
[23]
Kobayashi, Y.; Inagawa, H.; Kohchi, C.; Okazaki, K.; Zhang, R.; Kobara, H.; Masaki, T.; Soma, G.I. Lipopolysaccharides derived from Pantoea agglomerans can promote the phagocytic activity of amyloid β in mouse microglial cells. Anticancer Res., 2017, 37(7), 3917-3920.
[http://dx.doi.org/10.21873/anticanres.11774] [PMID: 28668895]
[24]
Watkins, L.R.; Hutchinson, M.R.; Rice, K.C.; Maier, S.F. The “toll” of opioid-induced glial activation: Improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol. Sci., 2009, 30(11), 581-591.
[http://dx.doi.org/10.1016/j.tips.2009.08.002] [PMID: 19762094]
[25]
Hutchinson, M.R.; Watkins, L.R. Why is neuroimmunopharmacology crucial for the future of addiction research? Neuropharmacology, 2014, 76, 218-277.
[http://dx.doi.org/10.1016/j.neuropharm.2013.05.039]
[26]
Xie, N.; Gomes, F.P.; Deora, V.; Gregory, K.; Vithanage, T.; Nassar, Z.D.; Cabot, P.J.; Sturgess, D.; Shaw, P.N.; Parat, M.O. Activation of μ-opioid receptor and Toll-like receptor 4 by plasma from morphine-treated mice. Brain Behav. Immun., 2017, 61, 244-258.
[http://dx.doi.org/10.1016/j.bbi.2016.12.002] [PMID: 27939249]
[27]
Brown, G.C.; Bal-Price, A. Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol. Neurobiol., 2003, 27(3), 325-355.
[http://dx.doi.org/10.1385/MN:27:3:325] [PMID: 12845153]
[28]
Xu, X.; Kim, J.A.; Zuo, Z. Isoflurane preconditioning reduces mouse microglial activation and injury induced by lipopolysaccharide and interferon-γ. Neuroscience, 2008, 154(3), 1002-1008.
[http://dx.doi.org/10.1016/j.neuroscience.2008.04.013] [PMID: 18495358]
[29]
Chang, M.C.; Fan, S.Z.; Hsiao, P.N.; Cheng, W.F.; Sun, W.Z. Influence of morphine on host immunity. Acta Anaesthesiol. Taiwan., 2011, 49(3), 105-108.
[http://dx.doi.org/10.1016/j.aat.2011.08.003] [PMID: 21982172]
[30]
Koenigsknecht-Talboo, J.; Landreth, G.E. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J. Neurosci., 2005, 25(36), 8240-8249.
[http://dx.doi.org/10.1523/JNEUROSCI.1808-05.2005] [PMID: 16148231]
[31]
Ryu, J.H.; Do, S.H.; Han, S.H.; Zuo, Z. Morphine reduces mouse microglial engulfment induced by lipopolysaccharide and interferon-γ via δ opioid receptor and p38 mitogen-activated protein kinase. Neurol. Res., 2018, 40(7), 602-608.
[http://dx.doi.org/10.1080/01616412.2018.1455368] [PMID: 29583107]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy