Generic placeholder image

Recent Advances in Food, Nutrition & Agriculture

Editor-in-Chief

ISSN (Print): 2772-574X
ISSN (Online): 2772-5758

Review Article

Locust Bean Gum: Processing, Properties and Food Applications

Author(s): Arun Kumar Singh, Rishabha Malviya* and Gudhanti Siva Naga Koteswara Rao

Volume 13, Issue 2, 2022

Published on: 02 December, 2022

Page: [93 - 102] Pages: 10

DOI: 10.2174/2772574X14666221107104357

Price: $65

Abstract

Locust bean gum is derived from the seed endosperm of the Ceratonia siliqua carob tree and is known as locust bean or carob gum. Food, medicines, paper, textile, oil drilling, and cosmetic sectors all use it as an ingredient. Hydrogen bonding with water molecules makes locust bean gum useful in industrial settings. In addition, its dietary fibre activity helps regulate numerous health issues, including diabetes, bowel motions, heart disease and colon cancer. Locust bean gum production, processing, composition, characteristics, culinary applications, and health advantages are the subject of this article.

Graphical Abstract

[1]
Ensminger AH, Ensminger ME, Konlande JE, Robson JRK. Food and nutrition encyclopedia. Boca Raton: CRC Press 1994; pp. 346-8.
[2]
Mudgils D, Barak S, Khatkar BS. Process optimization of partially hydrolyzed guar gum using response surface methodology. Agro Food Ind Hi-Tech 2012; 23(1): 13-5.
[3]
Mudgil D, Barak S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. Int J Biol Macromol 2013; 61: 1-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.06.044] [PMID: 23831534]
[4]
Mudgil D, Barak S, Khatkar BS. X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum. Int J Biol Macromol 2012; 50(4): 1035-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.02.031] [PMID: 22409871]
[5]
Mudgil D, Barak S, Khatkar BS. Effect of enzymatic depolymerization on physicochemical and rheological properties of guar gum. Carbohydr Polym 2012; 90(1): 224-8.
[http://dx.doi.org/10.1016/j.carbpol.2012.04.070] [PMID: 24751034]
[6]
Mudgil D, Barak S, Khatkar BS. Dietary fibres-soluble fibre and cookie quality. Agro Food Ind Hi-Tech 2012; 23(3): 15.
[7]
Daas PJH, Schols HA, de Jongh HHJ. On the galactosyl distribution of commercial galactomannans. Carbohydr Res 2000; 329(3): 609-19.
[http://dx.doi.org/10.1016/S0008-6215(00)00209-3] [PMID: 11128589]
[8]
Richardson PH, Willmer J, Foster TJ. Dilute solution properties of guar and locust bean gum in sucrose solutions. Food Hydrocoll 1998; 12(3): 339-48.
[http://dx.doi.org/10.1016/S0268-005X(98)00025-3]
[9]
Maier H, Anderson M, Karl C, Magnuson K. Industrial gums - polysaccharides and their derivatives. New York: Academic Press 1993; pp. 181-226.
[10]
Goycoolea FM, Morris ER, Gidley MJ. Viscosity of galactomannans at alkaline and neutral pH: evidence of ‘hyperentanglement’ in solution. Carbohydr Polym 1995; 27(1): 69-71.
[http://dx.doi.org/10.1016/0144-8617(95)00030-B]
[11]
Olasunkanmi LO, Ebenso EE. Experimental and computational studies on propanone derivatives of quinoxalin-6-yl-4,5-dihydropyrazole as inhibitors of mild steel corrosion in hydrochloric acid. J Colloid Interface Sci 2020; 561: 104-16.
[http://dx.doi.org/10.1016/j.jcis.2019.11.097] [PMID: 31812856]
[12]
Tan B, Zhang S, Liu H, et al. Corrosion inhibition of X65 steel in sulfuric acid by two food flavorants 2-isobutylthiazole and 1-(1,3-Thiazol-2-yl) ethanone as the green environmental corrosion inhibitors: Combination of experimental and theoretical researches. J Colloid Interface Sci 2019; 538: 519-29.
[http://dx.doi.org/10.1016/j.jcis.2018.12.020] [PMID: 30544069]
[13]
Qiang Y, Zhang S, Zhao H, Tan B, Wang L. Enhanced anticorrosion performance of copper by novel N-doped carbon dots. Corros Sci 2019; 161: 108193.
[http://dx.doi.org/10.1016/j.corsci.2019.108193]
[14]
Manh TD, Hien PV, Nguyen QB, Quyen TN, Hinton BRW, Nam ND. Corrosion inhibition of steel in naturally -aerated chloride solution by rare-earth 4-hydroxycinnamate compound. J. Taiwan Inst. Chem Eng 2019; 103: 177-89.
[15]
Nam ND, Hien PV, Hoai NT, Thu VTH. A study on the mixed corrosion inhibitor with a dominant cathodic inhibitor for mild steel in aqueous chloride solution. J Taiwan Inst Chem Eng 2018; 91: 556-69.
[16]
El-Hajjaji F, Messali M, Martínez de Yuso MV, et al. Effect of 1-(3-phenoxypropyl) pyridazin-1-ium bromide on steel corrosion inhibition in acidic medium. J Colloid Interface Sci 2019; 541: 418-24.
[http://dx.doi.org/10.1016/j.jcis.2019.01.113]
[17]
Ramezanzadeh M, Sanaei Z, Bahlakeh G, Ramezanzadeh B. Highly effective inhibition of mild steel corrosion in 3.5% NaCl solution by green Nettle leaves extract and synergistic effect of eco-friendly cerium nitrate additive: Experimental, MD simulation and QM investigations. J Mol Liq 2018; 256: 67-83.
[http://dx.doi.org/10.1016/j.molliq.2018.02.021]
[18]
Ünal B, Metin S, Işıklı ND. Use of response surface methodology to describe the combined effect of storage time, locust bean gum and dry matter of milk on the physical properties of low-fat set yoghurt. Int Dairy J 2003; 13(11): 909-16.
[http://dx.doi.org/10.1016/S0958-6946(03)00118-3]
[19]
Cerqueira MA, Bourbon AI, Pinheiro AC, et al. Galactomannans use in the development of edible films/coatings for food applications. Trends Food Sci Technol 2011; 22(12): 662-71.
[http://dx.doi.org/10.1016/j.tifs.2011.07.002]
[20]
Soma PK, Williams PD, Lo YM. Advancements in non-starch polysaccharides research for frozen foods and microencapsulation of probiotics. Front Chem Eng China 2009; 3(4): 413-26.
[http://dx.doi.org/10.1007/s11705-009-0254-x]
[21]
Barak S, Mudgil D. Locust bean gum: Processing, properties and food applications-A review. Int J Biol Macromol 2014; 66: 74-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.02.017] [PMID: 24548746]
[22]
Rowe R, Sheskey P, Owen S. Handbook of pharmaceutical excipients. (5th ed.), London: Pharmaceutical Press 2006.
[23]
Pollard M, Kelly R, Wahl C, et al. Investigation of equilibrium solubility of a carob galactomannan. Food Hydrocoll 2007; 21(5-6): 683-92.
[http://dx.doi.org/10.1016/j.foodhyd.2006.08.010]
[24]
Urdiain M, Doménech-Sánchez S, Albertí S, Benedí VJ, Rosselló JA. Identification of two additives, locust bean gum (E-410) and guar gum (E-412), in food products by DNA-based methods. Food Addit Contam 2004; 21(7): 619-25.
[http://dx.doi.org/10.1080/02652030410001713889] [PMID: 15370834]
[25]
Beneke C, Viljoen A, Hamman J. Polymeric plant-derived excipients in drug delivery. Molecules 2009; 14(7): 2602-20.
[http://dx.doi.org/10.3390/molecules14072602] [PMID: 19633627]
[26]
Zavoral JH, Hannan P, Fields DJ, et al. The hypolipidemic effect of locust bean gum food products in familial hypercholesterolemic adults and children. Am J Clin Nutr 1983; 38(2): 285-94.
[http://dx.doi.org/10.1093/ajcn/38.2.285] [PMID: 6308996]
[27]
Brennan CS. Dietary fibre, glycaemic response, and diabetes. Mol Nutr Food Res 2005; 49(6): 560-70.
[http://dx.doi.org/10.1002/mnfr.200500025] [PMID: 15926145]
[28]
Smith BM, Bean SR, Schober TJ, Tilley M, Herald TJ, Aramouni F. Composition and molecular weight distribution of carob germ protein fractions. J Agric Food Chem 2010; 58(13): 7794-800.
[http://dx.doi.org/10.1021/jf101523p] [PMID: 20557053]
[29]
Bouzouita N, Khaldi A, Zgoulli S, et al. The analysis of crude and purified locust bean gum: A comparison of samples from different carob tree populations in Tunisia. Food Chem 2007; 101(4): 1508-15.
[http://dx.doi.org/10.1016/j.foodchem.2006.03.056]
[30]
Kök MS, Hill SE, Mitchell JR. Viscosity of galactomannans during high temperature processing: Influence of degradation and solubilisation. Food Hydrocoll 1999; 13(6): 535-42.
[http://dx.doi.org/10.1016/S0268-005X(99)00040-5]
[31]
Maier H, Anderson M, Karl C, Magnuson K, Whistler RL. Industrial gums -polysaccharides and their derivatives. New York: Academic Press 1993; pp. 205-15.
[32]
Rodríguez-Solana R. Romano A, Moreno-Rojas JM. Carob pulp: a nutritional and functional by-product worldwide spread in the formulation of different food products and beverages. A review. Processes 2021; 9(7): 1146.
[http://dx.doi.org/10.3390/pr9071146]
[33]
Gaisford SE, Harding SE, Mitchell JR, Bradley TD. A comparison between the hot and cold water soluble fractions of two locust bean gum samples. Carbohydr Polym 1986; 6(6): 423-42.
[http://dx.doi.org/10.1016/0144-8617(86)90002-0]
[34]
McCleary BV, Clark AH, Dea ICM, Rees DA. The fine structures of carob and guar galactomannans. Carbohydr Res 1985; 139: 237-60.
[http://dx.doi.org/10.1016/0008-6215(85)90024-2]
[35]
Dakia PA, Blecker C, Robert C, Wathelet B, Paquot M. Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hydrocoll 2008; 22(5): 807-18.
[http://dx.doi.org/10.1016/j.foodhyd.2007.03.007]
[36]
Sittikijyothin W, Torres D, Gonçalves MP. Modelling the rheological behaviour of galactomannan aqueous solutions. Carbohydr Polym 2005; 59(3): 339-50.
[http://dx.doi.org/10.1016/j.carbpol.2004.10.005]
[37]
Hussain M, Bakalis S, Gouseti O, Zahoor T, Anjum FM, Shahid M. Dynamic and shear stress rheological properties of guar galactomannans and its hydrolyzed derivatives. Int J Biol Macromol 2015; 72: 687-91.
[38]
Jin Y, Liang R, Liu J, Lin S, Yu Y, Cheng S. Effect of structure changes on hydrolysis degree, moisture state, and thermal denaturation of egg white protein treated by electron beam irradiation. Lwt 2017; 77: 134-41.
[39]
Kurt A, Kahyaoglu T. Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydr Polym 2014; 104: 50-8.
[40]
Lukasik KV, Ludescher RD. Molecular mobility in water and glycerol plasticized cold-and hot-cast gelatin films. Food Hydrocoll 2006; 487: 96-105.
[41]
Ma Q, Du L, Yang Y, Wang L. Rheology of film-forming solutions and physical properties of tara gum film reinforced with polyvinyl alcohol (PVA). Food Hydrocoll 2017; 63(63): 677-84.
[http://dx.doi.org/10.1016/j.foodhyd.2016.10.009]
[42]
Wu Y, Cui W, Eskin NAM, Goff HD. An investigation of four commercial galactomannans on their emulsion and rheological properties. Food Res Int 2009; 42(8): 1141-6.
[http://dx.doi.org/10.1016/j.foodres.2009.05.015]
[43]
Srivastava M, Kapoor P. Seed galactomannans: An overview. Chem Biodivers 2005; 2(3): 295-317.
[http://dx.doi.org/10.1002/cbdv.200590013] [PMID: 17191982]
[44]
Zhong D, Liu Z, Xie S, Zhang W, Zhang Y, Xue W. Study on poly(D,L -lactic) microspheres embedded in calcium alginate hydrogel beads as dual drug delivery systems. J Appl Polym Sci 2013; 129(2): 767-72.
[http://dx.doi.org/10.1002/app.38797]
[45]
Español L, Larrea A, Andreu V, et al. Dual encapsulation of hydrophobic and hydrophilic drugs in PLGA nanoparticles by a single-step method: Drug delivery and cytotoxicity assays. RSC Advances 2016; 6(112): 111060-9.
[http://dx.doi.org/10.1039/C6RA23620K]
[46]
Khuroo T, Verma D, Khuroo A, Ali A, Iqbal Z. Simultaneous delivery of paclitaxel and erlotinib from dual drug loaded PLGA nanoparticles: Formulation development, thorough optimization and in vitro release. J Mol Liq 2018; 257: 52-68.
[http://dx.doi.org/10.1016/j.molliq.2018.02.091]
[47]
Nosrati H, Abhari F, Charmi J, Davaran S, Danafar H. Multifunctional nanoparticles from albumin for stimuli-responsive efficient dual drug delivery. Bioorg Chem 2019; 88: 102959.
[http://dx.doi.org/10.1016/j.bioorg.2019.102959] [PMID: 31075743]
[48]
Kuttappan S, Mathew D, Jo J, et al. Dual release of growth factor from nanocomposite fibrous scaffold promotes vascularisation and bone regeneration in rat critical sized calvarial defect. Acta Biomater 2018; 78: 36-47.
[http://dx.doi.org/10.1016/j.actbio.2018.07.050] [PMID: 30067947]
[49]
Anirudhan TS, Mohan AM. Novel pH sensitive dual drug loaded-gelatin methacrylate/methacrylic acid hydrogel for the controlled release of antibiotics. Int J Biol Macromol 2018; 110: 167-78.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.220] [PMID: 29462679]
[50]
Anirudhan TS, Parvathy J, Nair AS. A novel composite matrix based on polymeric micelle and hydrogel as a drug carrier for the controlled release of dual drugs. Carbohydr Polym 2016; 136: 1118-27.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.019] [PMID: 26572454]
[51]
Wang F, Zhang Q, Li X, et al. Redox-responsive blend hydrogel films based on carboxymethyl cellulose/chitosan microspheres as dual delivery carrier. Int J Biol Macromol 2019; 134: 413-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.049] [PMID: 31078600]
[52]
Santos LF, Correia IJ, Silva AS, Mano JF. Biomaterials for drug delivery patches. Eur J Pharm Sci 2018; 118: 49-66.
[http://dx.doi.org/10.1016/j.ejps.2018.03.020] [PMID: 29572160]
[53]
Peppas NA. Hydrogels and drug delivery. Curr Opin Colloid Interface Sci 1997; 2(5): 531-7.
[http://dx.doi.org/10.1016/S1359-0294(97)80103-3]
[54]
Merino S. Martín C, Kostarelos K, Prato M, Vázquez E. Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano 2015; 9(5): 4686-97.
[http://dx.doi.org/10.1021/acsnano.5b01433] [PMID: 25938172]
[55]
Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J. Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 2015; 5(4): 2054-130.
[http://dx.doi.org/10.3390/nano5042054] [PMID: 28347111]
[56]
Gu D, O’Connor AJ. G H Qiao G, Ladewig K. Hydrogels with smart systems for delivery of hydrophobic drugs. Expert Opin Drug Deliv 2017; 14(7): 879-95.
[http://dx.doi.org/10.1080/17425247.2017.1245290] [PMID: 27705026]
[57]
Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ. Nanoparticle -hydrogel composites: Concept, design, and applications of these promising, multi-functional materials. Adv Sci (Weinh) 2015; 2(1-2): 1400010.
[http://dx.doi.org/10.1002/advs.201400010] [PMID: 27980900]
[58]
Perumal S, Ramadass S, Madhan B. Sol-gel processed mupirocin silica microspheres loaded collagen scaffold: A synergistic bio-composite for wound healing. Eur J Pharm Sci 2014; 52: 26-33.
[http://dx.doi.org/10.1016/j.ejps.2013.10.006] [PMID: 24514452]
[59]
Doyle JP, Giannouli P, Martin EJ, Brooks M, Morris ER. Effect of sugars, galactose content and chainlength on freeze-thaw gelation of galactomannans. Carbohyd Poly 2006; 64(3): 391-401.
[http://dx.doi.org/10.1016/j.carbpol.2005.12.019]
[60]
Dunstan DE, Chen Y, Liao ML, Salvatore R, Boger DV, Prica M. Structure and rheology of the κ-carrageenan/locust bean gum gels. Food Hydrocoll 2001; 15(4-6): 475-84.
[61]
Gao F, Zhao DL, Li Y, Li XG. Preparation and hydrogen storage of activated rayon-based carbon fibers with high specific surface area. J Phys Chem Solids 2010; 71(4): 444-7.
[http://dx.doi.org/10.1016/j.jpcs.2009.11.017]
[62]
Torres MD, Moreira R, Chenlo F. Vázquez MJ. Water adsorption isotherms of carboxymethyl cellulose, guar, locust bean, tragacanth and xanthan gums. Carbohydr Polym 2012; 89(2): 592-8.
[http://dx.doi.org/10.1016/j.carbpol.2012.03.055] [PMID: 24750763]
[63]
Feng B, Peng J, Guo W, Luo G, Zhang W, Wang H. The depression behavior and mechanism of carboxymethyl chitosan on calcite flotation. J Mater Res Technol 2019; 8(1): 1036-40.
[http://dx.doi.org/10.1016/j.jmrt.2018.07.013]
[64]
Feng B, Peng J, Zhang W, Ning X, Guo Y, Zhang W. Use of locust bean gum in flotation separation of chalcopyrite and talc. Miner Eng 2018; 122: 79-83.
[http://dx.doi.org/10.1016/j.mineng.2018.03.044]
[65]
Vargas M, Pastor C, Chiralt A, McClements DJ. González-Martيnez C. Recent advances in edible coatings for fresh and minimally processed fruits. Crit Rev Food Sci Nutr 2008; 48(6): 496-511.
[http://dx.doi.org/10.1080/10408390701537344] [PMID: 18568856]
[66]
Mathlouthi M, Ed. Food packaging and preservation. Newyork: Springer Science & Business Media 1994.
[http://dx.doi.org/10.1007/978-1-4615-2173-0]
[67]
Martins JT, Cerqueira MA, Bourbon AI, Pinheiro AC, Souza BWS, Vicente AA. Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocoll 2012; 29(2): 280-9.
[http://dx.doi.org/10.1016/j.foodhyd.2012.03.004]
[68]
Kohajdová Z. Karovičová J, Schmidt Š.Significance of emulsifiers and hydrocolloids in bakery industry. Acta Chim Slov 2009; 2(1): 46-61.
[69]
Ho LH, Aziah AN. Dough mixing and thermal properties including the pasting profiles of composite flour blends with added hydrocolloids. Int Food Res J 2013; 20(2): 911-7.
[70]
Gallagher E, Gormley TR, Arendt EK. Recent advances in the formulation of gluten-free cereal-based products. Trends Food Sci Technol 2004; 15(3-4): 143-52.
[http://dx.doi.org/10.1016/j.tifs.2003.09.012]
[71]
Silva E, Birkenhake M, Scholten E, Sagis LMC, van der Linden E. Controlling rheology and structure of sweet potato starch noodles with high broccoli powder content by hydrocolloids. Food Hydrocoll 2013; 30(1): 42-52.
[http://dx.doi.org/10.1016/j.foodhyd.2012.05.002]
[72]
Schorsch C, Jones MG, Norton IT. Thermodynamic incompatibility and microstructure of milk protein/locust bean gum/sucrose systems. Food Hydrocoll 1999; 13(2): 89-99.
[http://dx.doi.org/10.1016/S0268-005X(98)00074-5]
[73]
Schorsch C, Jones MG, Norton IT. Phase behaviour of pure micellar casein/κ-carrageenan systems in milk salt ultrafiltrate. Food Hydrocoll 2000; 14(4): 347-58.
[http://dx.doi.org/10.1016/S0268-005X(00)00011-4]
[74]
Rodd A, Davis CR, Dunstan DE, Forrest BA, Boger DV. Rheological characterisation of ‘weak gel’ carrageenan stabilised milks. Food Hydrocoll 2000; 14(5): 445-54.
[http://dx.doi.org/10.1016/S0268-005X(00)00024-2]
[75]
Thaiudom S, Goff HD. Effect of κ-carrageenan on milk protein polysaccharide mixtures. Int Dairy J 2003; 13(9): 763-71.
[http://dx.doi.org/10.1016/S0958-6946(03)00097-9]
[76]
Vega C, Andrew RA, Goff HD. Serum separation in soft-serve ice cream mixes. Milchwissenschaft 2004; 59(5-6): 284-7.
[77]
Sanchez C, Zuniga-Lopez R, Schmitt C, Despond S, Hardy J. Microstructure of acid-induced skim milk-locust bean gum-xanthan gels. Int Dairy J 2000; 10(3): 199-212.
[http://dx.doi.org/10.1016/S0958-6946(00)00030-3]
[78]
Fiszman SM, Lluch MA, Salvador A. Effect of addition of gelatin on microstructure of acidic milk gels and yoghurt and on their rheological properties. Int Dairy J 1999; 9(12): 895-901.
[http://dx.doi.org/10.1016/S0958-6946(00)00013-3]
[79]
Schmidt KA, Smith DE. Milk reactivity of gum and milk protein solutions. J Dairy Sci 1992; 75(12): 3290-5.
[http://dx.doi.org/10.3168/jds.S0022-0302(92)78104-1]
[80]
Lim CC, Ferguson LR, Tannock GW. Dietary fibres as “prebiotics”: Implications for colorectal cancer. Mol Nutr Food Res 2005; 49(6): 609-19.
[http://dx.doi.org/10.1002/mnfr.200500015] [PMID: 15864790]
[81]
Anderson JW, Akanji AO. CRC Handbook of Dietary Fiber in Human Nutrition. Boca Raton: CRC Press 1993; pp. 443-70.
[82]
Galvez J. Rodríguez-Cabezas ME, Zarzuelo A. Effects of dietary fiber on inflammatory bowel disease. Mol Nutr Food Res 2005; 49(6): 601-8.
[http://dx.doi.org/10.1002/mnfr.200500013] [PMID: 15841496]
[83]
Würsch P, Pi-Sunyer FX. The role of viscous soluble fiber in the metabolic control of diabetes: A review with special emphasis on cereals rich in β-glucan. Diabetes Care 1997; 20(11): 1774-80.
[http://dx.doi.org/10.2337/diacare.20.11.1774] [PMID: 9353622]
[84]
Albertos I, Martin-Diana AB, Cullen PJ, et al. Shelf-life extension of herring (Clupea harengus) using in-package atmospheric plasma technology. Innov Food Sci Emerg Technol 2019; 53: 85-91.
[http://dx.doi.org/10.1016/j.ifset.2017.09.010]
[85]
Li H, Lin B, Hong Y, et al. Assessing the moisture migration during microwave drying of coal using low-field nuclear magnetic resonance. Dry Technol 2018; 36(5): 567-77.
[http://dx.doi.org/10.1080/07373937.2017.1349136]
[86]
Maia Neta Z, de Almeida NM, Grisi CVB, de Sousa S, Cordeiro AMTM. Elaboration and quality control of the piracui from trahira (Hoplias malabaricus) during storage. Int J Gastron Food Sci 2021; 23: 100287.
[http://dx.doi.org/10.1016/j.ijgfs.2020.100287]
[87]
Halldorsdottir SM, Kristinsson HG, Sveinsdottir H, Thorkelsson G, Hamaguchi PY. The effect of natural antioxidants on haemoglobin-mediated lipid oxidation during enzymatic hydrolysis of cod protein. Food Chem 2013; 141(2): 914-9.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.101] [PMID: 23790867]
[88]
Shahidi F, Zhong Y. Lipid oxidation and improving the oxidative stability. Chem Soc Rev 2010; 39(11): 4067-79.
[http://dx.doi.org/10.1039/b922183m] [PMID: 20617249]
[89]
Piccini J, Evans DR, Quaranta HO. Comparison of TBA number of irradiated fish with sensory quality. Food Chem 1986; 19(3): 163-71.
[http://dx.doi.org/10.1016/0308-8146(86)90067-1]
[90]
Volpe MG, Siano F, Paolucci M, et al. Active edible coating effectiveness in shelf-life enhancement of trout (Oncorhynchus mykiss) fillets. Lebensm Wiss Technol 2015; 60(1): 615-22.
[http://dx.doi.org/10.1016/j.lwt.2014.08.048]
[91]
Shokri S, Parastouei K, Taghdir M, Abbaszadeh S. Application an edible active coating based on chitosan- Ferulago angulata essential oil nanoemulsion to shelf life extension of Rainbow trout fillets stored at 4 °C. Int J Biol Macromol 2020; 153: 846-54.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.080] [PMID: 32171831]
[92]
Alirezalu K, Yaghoubi M, Nemati Z, Farmani B, Mousavi Khaneghah A. Efficacy of stinging nettle extract in combination with ε‐polylysine on the quality, safety, and shelf life of rainbow trout fillets. Food Sci Nutr 2021; 9(3): 1542-50.
[http://dx.doi.org/10.1002/fsn3.2129] [PMID: 33747468]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy