Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Research Article

Ribosome-inactivating Protein MAP30 Isolated from Momordica Charantia L. Induces Apoptosis in Hepatocellular Carcinoma Cells

Author(s): Yiping Zhou, Di Yang, Zihao Qiang, Yanfa Meng, Ruigang Li, Xiang Fan, Wei Zhao* and Yao Meng*

Volume 19, Issue 2, 2024

Published on: 21 November, 2022

Page: [223 - 232] Pages: 10

DOI: 10.2174/1574892818666221103114649

Price: $65

Abstract

Background: Ribosome-inactivating proteins (RIPs) have been reported to exert antitumor and anti-virus activities. A recent patent CN202011568116.7 has developed a new method to prepare Momordica anti-HIV protein of 30 kDa (MAP30). MAP30 is a type I RIP, which kills various tumor cells through the N-glycosidase activity and irreversibly inhibits protein synthesis.

Objective: To assess the potential role of MAP30 in inducing apoptosis of human hepatocellular carcinoma HCC-LM3 cells and elucidate the molecular mechanism of MAP30.

Methods: CCK-8 assay was used to assess the proliferation of HCC-LM3 cells. Flow cytometry was used to measure the cycle, the level of ROS and apoptosis in HCC-LM3 cells. Western blots was used to measure protein levels.

Results: Treatment with MAP30 reduced survival and proliferation of human liver cancer HCCLM3 cells in a dose-dependent manner. PI staining showed cell cycle arrest in G0/G1 phase. Furthermore, MAP30 increased the level of ROS in HCC-LM3 cells in 24 h treatment. To further confirm the role of MAP30 in inducing cell apoptosis, immunoblotting was carried out to detect the change of apoptosis-related proteins including PARP poly (ADP-ribose) polymerase (PARP- 1), Casepase3 and Cleaved-Caspase9. We found that PARP-1 and Caspase-3 were downregulated, whereas Cleaved-Caspase9 was up-regulated in HCC-LM3 cells treated with MAP30.

Conclusion: This study indicated that MAP30 has the potential to be a novel therapeutic agent for human hepatocellular carcinoma.

[1]
Fang EF, Ng TB. Bitter gourd (Momordica charantia) is a cornucopia of health: A review of its credited antidiabetic, anti-HIV, and antitumor properties. Curr Mol Med 2011; 11(5): 417-36.
[http://dx.doi.org/10.2174/156652411795976583] [PMID: 21568930]
[2]
Pieroni A, Houlihan L, Ansari N, Hussain B, Aslam S. Medicinal perceptions of vegetables traditionally consumed by South-Asian migrants living in Bradford, Northern England. J Ethnopharmacol 2007; 113(1): 100-10.
[http://dx.doi.org/10.1016/j.jep.2007.05.009] [PMID: 17583457]
[3]
Dandawate PR, Subramaniam D, Padhye SB, Anant S. Bitter melon: a panacea for inflammation and cancer. Chin J Nat Med 2016; 14(2): 81-100.
[http://dx.doi.org/10.1016/S1875-5364(16)60002-X] [PMID: 26968675]
[4]
Reyes AG, Anné J, Mejía A. Ribosome-inactivating proteins with an emphasis on bacterial RIPs and their potential medical applications. Future Microbiol 2012; 7(6): 705-17.
[http://dx.doi.org/10.2217/fmb.12.39] [PMID: 22702525]
[5]
Puri M, Kaur I, Kanwar R, Gupta R, Chauhan A, Kanwar J. Ribosome inactivating proteins (RIPs) from Momordica charantia for anti viral therapy. Curr Mol Med 2009; 9(9): 1080-94.
[http://dx.doi.org/10.2174/156652409789839071] [PMID: 19747115]
[6]
Quan C, Shi Y, Wang C, Wang C, Yang K. p,p′-DDE damages spermatogenesis via phospholipid hydroperoxide glutathione peroxidase depletion and mitochondria apoptosis pathway. Environ Toxicol 2016; 31(5): 593-600.
[PMID: 25410718]
[7]
Fan JM, Luo J, Xu J, et al. Effects of recombinant MAP30 on cell proliferation and apoptosis of human colorectal carcinoma LoVo cells. Mol Biotechnol 2008; 39(1): 79-86.
[http://dx.doi.org/10.1007/s12033-008-9034-y] [PMID: 18246454]
[8]
Lee-Huang S, Huang PL, Chen HC, et al. Anti-HIV and anti-tumor activities of recombinant MAP30 from bitter melon. Gene 1995; 161(2): 151-6.
[http://dx.doi.org/10.1016/0378-1119(95)00186-A] [PMID: 7665070]
[9]
Singh R, Pandey KD, Singh M, et al. Isolation and characterization of endophytes bacterial strains of Momordica charantia L. and their possible approach in stress management. Microorganisms 2022; 10(2): 290.
[http://dx.doi.org/10.3390/microorganisms10020290] [PMID: 35208743]
[10]
Fan X, He L, Meng Y, Li G, Li L, Meng Y. α-MMC and MAP30, two ribosome-inactivating proteins extracted from Momordica charantia, induce cell cycle arrest and apoptosis in A549 human lung carcinoma cells. Mol Med Rep 2015; 11(5): 3553-8.
[http://dx.doi.org/10.3892/mmr.2015.3176] [PMID: 25573293]
[11]
Zhang S, Shi Z, Pang K, et al. MAP30 inhibits bladder cancer cell migration and invasion in vitro through suppressing akt pathway and the epithelial/mesenchymal transition process. DNA Cell Biol 2020; 39(11): 1948-60.
[http://dx.doi.org/10.1089/dna.2020.5469] [PMID: 33155841]
[12]
Howat AJ. The toxic plant proteins ricin and abrin induce apoptotic changes in mammalian lymphoid tissues and intestine. J Pathol 1988; 154(1): 29-33.
[http://dx.doi.org/10.1002/path.1711540105] [PMID: 3346770]
[13]
Kochi SK, Collier RJ. DNA fragmentation and cytolysis in U937 cells treated with diphtheria toxin or other inhibitors of protein synthesis. Exp Cell Res 1993; 208(1): 296-302.
[http://dx.doi.org/10.1006/excr.1993.1249] [PMID: 8359223]
[14]
Moghadam A, Niazi A, Afsharifar A, Taghavi SM. Expression of a recombinant anti-HIV and anti-tumor protein, MAP30, in nicotiana tobacum hairy roots: A pH-stable and thermophilic antimicrobial protein. PLoS One 2016; 11(7): e0159653.
[http://dx.doi.org/10.1371/journal.pone.0159653] [PMID: 27459300]
[15]
Li M, Chen Y, Liu Z, Shen F, Bian X, Meng Y. Anti-tumor activity and immunological modification of Ribosome-Inactivating Protein (RIP) from Momordica charantia by covalent attachment of polyethylene glycol. Acta Biochim Biophys Sin 2009; 41(9): 792-9.
[http://dx.doi.org/10.1093/abbs/gmp068] [PMID: 19727528]
[16]
Bian X, Shen F, Chen Y, Wang B, Deng M, Meng Y. PEGylation of alpha-momorcharin: Synthesis and characterization of novel anti-tumor conjugates with therapeutic potential. Biotechnol Lett 2010; 32(7): 883-90.
[http://dx.doi.org/10.1007/s10529-010-0242-8] [PMID: 20238144]
[17]
Deng N, Wang L, He Q, et al. PEGylation alleviates the non-specific toxicities of Alpha-Momorcharin and preserves its antitumor efficacy in vivo. Drug Deliv 2016; 23(1): 95-100.
[http://dx.doi.org/10.3109/10717544.2014.905652] [PMID: 24786488]
[18]
Sun Y, Sun F, Li J, et al. Mono-PEGylation of Alpha-MMC and MAP30 from Momordica charantia L.: production, identification and anti-tumor activity. Molecules 2016; 21(11): 1457.
[http://dx.doi.org/10.3390/molecules21111457]
[19]
Baumert T, Crouchet E. H2 blockers targeting liver macrophages for the prevention and treatment of liver disease and cancer. Patent WO2022034121, 2022.
[20]
Sangeeta S, Maithili A, Kedar S, Gayatri M. Cancer stem cell targeting compounds. Patent EP3116867, 2017.
[21]
Wang YX, Neamati N, Jacob J, et al. Solution structure of anti-HIV-1 and anti-tumor protein MAP30: structural insights into its multiple functions. Cell 1999; 99(4): 433-42.
[http://dx.doi.org/10.1016/S0092-8674(00)81529-9] [PMID: 10571185]
[22]
Jiang Y, Miao J, Wang D, et al. MAP30 promotes apoptosis of U251 and U87 cells by suppressing the LGR5 and Wnt/β-catenin signaling pathway, and enhancing Smac expression. Oncol Lett 2018; 15(4): 5833-40.
[http://dx.doi.org/10.3892/ol.2018.8073] [PMID: 29556310]
[23]
Shang C, Rougé P, Van Damme E. Ribosome inactivating proteins from rosaceae. Molecules 2016; 21(8): 1105.
[http://dx.doi.org/10.3390/molecules21081105]
[24]
Ng T, Wong J, Wang H. Recent progress in research on ribosome inactivating proteins. Curr Protein Pept Sci 2010; 11(1): 37-53.
[http://dx.doi.org/10.2174/138920310790274662] [PMID: 20201806]
[25]
Fang EF, Zhang CZY, Wong JH, Shen JY, Li CH, Ng TB. The MAP30 protein from bitter gourd (Momordica charantia) seeds promotes apoptosis in liver cancer cells in vitro and in vivo. Cancer Lett 2012; 324(1): 66-74.
[http://dx.doi.org/10.1016/j.canlet.2012.05.005] [PMID: 22579806]
[26]
Sebti SM, Lawrence NJ, Turkson J. Platinum compounds that inhibit constitutive stat3 signaling and induce cell cycle arrest and apoptosis of malignant cells. Patent US2021177836, 2021.
[27]
Koski L, Jones S, Echeverri C, et al. The use of eukaryotic genes affecting cell cycle control or cell cycle progression for diagnosis and treatment of proliferattive diseases. Patent AU2004271725B2, 2004.
[28]
Gan YH, Peng SQ, Liu HY. Molecular mechanism of apoptosis induced by ricin in HeLa cells. Acta Pharmacol Sin 2000; 21(3): 243-8.
[PMID: 11324424]
[29]
Stuart MCA, Damoiseaux JGMC, Frederik PM, Arends JW, Reutelingsperger CPM. Surface exposure of phosphatidylserine during apoptosis of rat thymocytes precedes nuclear changes. Eur J Cell Biol 1998; 76(1): 77-83.
[http://dx.doi.org/10.1016/S0171-9335(98)80019-8] [PMID: 9650785]
[30]
Lee-Huang S, Kung HF, Huang PL, et al. Human immunodeficiency virus type 1 (HIV-1) inhibition, DNA-binding, RNA-binding, and ribosome inactivation activities in the N-terminal segments of the plant anti-HIV protein GAP31. Proc Natl Acad Sci 1994; 91(25): 12208-12.
[http://dx.doi.org/10.1073/pnas.91.25.12208] [PMID: 7527556]
[31]
Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998; 281(5381): 1322-6.
[http://dx.doi.org/10.1126/science.281.5381.1322] [PMID: 9735050]
[32]
Banjara S, D. Sa J, Hinds MG, Kvansakul M. The structural basis of Bcl-2 mediated cell death regulation in hydra. Biochem J 2020; 477(17): 3287-97.
[http://dx.doi.org/10.1042/BCJ20200556] [PMID: 32776134]
[33]
de Alboran IM, O’Hagan RC, Gärtner F, et al. Analysis of C-MYC function in normal cells via conditional gene-targeted mutation. Immunity 2001; 14(1): 45-55.
[http://dx.doi.org/10.1016/S1074-7613(01)00088-7] [PMID: 11163229]
[34]
Beier R, Kiermaier A, Fero M, et al. Induction of cyclin E-cdk2 kinase activity, E2F-dependent transcription and cell growth by Myc are ge netically separable events. EMBO J 2000; 19(21): 5813-23.
[http://dx.doi.org/10.1093/emboj/19.21.5813] [PMID: 11060032]
[35]
Bhat SS, Parray AA, Mushtaq U, Fazili KM, Khanday FA. Actin depolymerization mediated loss of SNTA1 phosphorylation and Rac1 activity has implications on ROS production, cell migration and apoptosis. Apoptosis 2016; 21(6): 737-48.
[http://dx.doi.org/10.1007/s10495-016-1241-6] [PMID: 27048259]
[36]
Kim H, Lee DG. Naringin‐generated ROS promotes mitochondria‐mediated apoptosis in Candida albicans. IUBMB Life 2021; 73(7): 953-67.
[http://dx.doi.org/10.1002/iub.2476] [PMID: 33934490]
[37]
Lim EJ, Heo J, Kim YH. Tunicamycin promotes apoptosis in leukemia cells through ROS generation and downregulation of survivin expression. Apoptosis 2015; 20(8): 1087-98.
[http://dx.doi.org/10.1007/s10495-015-1135-z] [PMID: 26022098]
[38]
Chtourou Y, Aouey B, Kebieche M, Fetoui H. Protective role of naringin against cisplatin induced oxidative stress, inflammatory response and apoptosis in rat striatum via suppressing ROS-mediated NF-κB and P53 signaling pathways. Chem Biol Interact 2015; 239: 76-86.
[http://dx.doi.org/10.1016/j.cbi.2015.06.036] [PMID: 26120027]
[39]
Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol 2018; 80: 50-64.
[http://dx.doi.org/10.1016/j.semcdb.2017.05.023] [PMID: 28587975]
[40]
D’Autréaux B, Toledano MB. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 2007; 8(10): 813-24.
[http://dx.doi.org/10.1038/nrm2256] [PMID: 17848967]
[41]
Tu Y, Zhou Y, Zhang D, et al. Light-induced Reactive Oxygen Species (ROS) generator for tumor therapy through an ROS burst in mitochondria and AKT-inactivation-induced apoptosis. ACS Appl Bio Mater 2021; 4(6): 5222-30.
[42]
Wei B, Huang Q, Huang S, Mai W, Zhong X. Trichosanthin-induced autophagy in gastric cancer cell MKN-45 is dependent on Reactive Oxygen Species (ROS) and NF-κB/p53 pathway. J Pharmacol Sci 2016; 131(2): 77-83.
[http://dx.doi.org/10.1016/j.jphs.2016.03.001] [PMID: 27032906]
[43]
Zhu F, Zhu PX, Xu F, Che YP, Ma YM, Ji ZL. Alpha‐momorcharin enhances Nicotiana benthamiana resistance to tobacco mosaic virus infection through modulation of reactive oxygen species. Mol Plant Pathol 2020; 21(9): 1212-26.
[http://dx.doi.org/10.1111/mpp.12974] [PMID: 32713165]
[44]
Gao FF, Quan JH, Lee MA, et al. Trichomonas vaginalis induces apoptosis via ROS and ER stress response through ER–mitochondria crosstalk in SiHa cells. Parasit Vectors 2021; 14(1): 603.
[http://dx.doi.org/10.1186/s13071-021-05098-2] [PMID: 34895315]
[45]
Meng Y, Lin S, Liu S, Fan X, Li G, Meng Y. A novel method for simultaneous production of two ribosome-inactivating proteins, α-MMC and MAP30, from Momordica charantia L. PLoS One 2014; 9(7): e101998.
[http://dx.doi.org/10.1371/journal.pone.0101998] [PMID: 25003606]
[46]
Park SW, Prithiviraj B, Vepachedu R, Vivanco JM. Isolation and purification of ribosome-inactivating proteins. Methods Mol Biol 2006; 318: 335-47.
[PMID: 16673928]
[47]
Sharma N, Park SW, Vepachedu R, et al. Isolation and characterization of an RIP (Ribosome-Inactivating Protein)-like protein from tobacco with dual enzymatic activity. Plant Physiol 2004; 134(1): 171-81.
[http://dx.doi.org/10.1104/pp.103.030205] [PMID: 14671015]
[48]
Cao L, Wang W, Zhang W, Staiger CJ. Lipid Signaling Requires ROS production to elicit actin cytoskeleton remodeling during plant innate immunity. Int J Mol Sci 2022; 23(5): 2447.
[http://dx.doi.org/10.3390/ijms23052447] [PMID: 35269589]
[49]
Han Y, Ishibashi S, Iglesias-Gonzalez J, Chen Y, Love NR, Amaya E. Ca2+-induced mitochondrial ROS regulate the early embryonic cell cycle. Cell Rep 2018; 22(1): 218-31.
[http://dx.doi.org/10.1016/j.celrep.2017.12.042] [PMID: 29298423]
[50]
Zarkovic N. Roles and functions of ROS and RNS in cellular physiology and pathology. Cells 2020; 9(3): 767.
[http://dx.doi.org/10.3390/cells9030767] [PMID: 32245147]
[51]
Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science 1997; 275(5303): 1129-32.
[http://dx.doi.org/10.1126/science.275.5303.1129] [PMID: 9027314]
[52]
Watabe M, Machida K, Osada H. MT-21 is a synthetic apoptosis inducer that directly induces cytochrome c release from mitochondria. Cancer Res 2000; 60(18): 5214-22.
[PMID: 11016650]
[53]
Haga N, Fujita N, Tsuruo T. Mitochondrial aggregation precedes cytochrome c release from mitochondria during apoptosis. Oncogene 2003; 22(36): 5579-85.
[http://dx.doi.org/10.1038/sj.onc.1206576] [PMID: 12944905]
[54]
Wang J, Wu H, Zhou Y, et al. HIF-1α inhibits mitochondria-mediated apoptosis and improves the survival of human adipose-derived stem cells in ischemic microenvironments. J Plast Reconstr Aesthet Surg 2021; 74(8): 1908-18.
[http://dx.doi.org/10.1016/j.bjps.2020.11.041] [PMID: 33358677]
[55]
Wang GW, Zhou Z, Klein JB, Kang YJ. Inhibition of hypoxia/reoxygenation-induced apoptosis in metallothionein-overexpressing cardiomyocytes. Am J Physiol Heart Circ Physiol 2001; 280(5): H2292-9.
[http://dx.doi.org/10.1152/ajpheart.2001.280.5.H2292] [PMID: 11299233]
[56]
Ramachandran S, Desai NM, Goers TA, et al. Improved islet yields from pancreas preserved in perflurocarbon is via inhibition of apoptosis mediat ed by mitochondrial pathway. Am J Transplant 2006; 6(7): 1696-703.
[57]
Kuo WT, Ho YJ, Kuo SM, et al. Induction of the mitochondria apoptosis pathway by phytohemagglutinin erythroagglutinating in human lung cancer cells. Ann Surg Oncol 2011; 18(3): 848-56.
[http://dx.doi.org/10.1245/s10434-010-1351-2] [PMID: 20924795]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy