Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

An Overview of Recent Advances in Isatin-Based Multicomponent Reactions

Author(s): Ghodsi Mohammadi Ziarani*, Zahra Panahande, Fatemeh Mohajer, Mohammad Goodarzi and Rajender S. Varma*

Volume 26, Issue 15, 2022

Published on: 25 November, 2022

Page: [1485 - 1502] Pages: 18

DOI: 10.2174/1385272827666221103102758

Price: $65

Abstract

Isatin has been widely deployed in multicomponent reactions to prepare diverse heterocyclic compounds, which have garnered the attention of organic chemists considering their anti-inflammatory, anti-microbial, and antiviral activities, among others. This review discusses the applications of isatin in multicomponent reactions from 2019 to 2022. Isatin has been used as a raw material in multicomponent reactions due to its diverse biological and therapeutic activities. This overview may help stimulate the readers to exploit such convergent strategies in their synthetic endeavors.

« Previous
Graphical Abstract

[1]
Moosavi-Zare, A.R.; Zolfigol, M.A.; Salehi-Moratab, R.; Noroozizadeh, E. Synthesis of spiropyran derivatives over 1-(carboxymethyl) pyridinium iodide as nanostructured pyridinium salt under aqueous media. Can. J. Chem., 2017, 95(2), 194-198.
[http://dx.doi.org/10.1139/cjc-2016-0374]
[2]
Mohammadi Ziarani, G.; Gholamzadeh, P.; Lashgari, N.; Hajiabbasi, P. Oxindole as starting material in organic synthesis. ARKIVOC, 2013, 2013(1), 470-535.
[http://dx.doi.org/10.3998/ark.5550190.p008.074]
[3]
Mohammadi Ziarani, G.; Moradi, R.; Lashgari, N.; Badiei, A.; Soorki, A.A. Synthesis and biological evaluation of spiro [Indoline-3, 4´-pyrano [2, 3-C: 6, 5-C´] di-pyrazol]-2-ones in the presence of SBA-Pr-SO3H as a nanocatalyst. Quim. Nova, 2015, 38, 1167-1171.
[4]
Mohammadi Ziarani, G.; Lashgari, N.; Azimian, F.; Kruger, H.G.; Gholamzadeh, P. Ninhydrin in synthesis of heterocyclic compounds. ARKIVOC, 2015, 2015(6), 1-139.
[http://dx.doi.org/10.3998/ark.5550190.p008.905]
[5]
Mohammadi Ziarani, G.; Khademi, M.; Mohajer, F.; Anafcheh, M.; Badiei, A.; Ghasemi, J.B. Solvent-free one-pot synthesis of 4-aryl-3,5-dimethyl-1,4,7,8-tetrahydrodipyrazolo[3,4-b:4′3′-e]pyridines using Fe3O4@SiO2@ (BuSO3H)3 catalytic Fe3+ system as selective colorimetric. Res. Chem. Intermed., 2022, 48(5), 2111-2133.
[http://dx.doi.org/10.1007/s11164-022-04682-0]
[6]
Chen, M.N.; Mo, L.P.; Cui, Z.S.; Zhang, Z.H. Magnetic nanocatalysts: Synthesis and application in multicomponent reactions. Curr. Opin. Green Sustain. Chem., 2019, 15, 27-37.
[http://dx.doi.org/10.1016/j.cogsc.2018.08.009]
[7]
Younus, H.A.; Al-Rashida, M.; Hameed, A.; Uroos, M.; Salar, U.; Rana, S.; Khan, K.M. Multicomponent reactions (MCR) in medicinal chemistry: A patent review (2010-2020). Expert Opin. Ther. Pat., 2021, 31(3), 267-289.
[http://dx.doi.org/10.1080/13543776.2021.1858797] [PMID: 33275061]
[8]
Gulati, S.; John, S.E.; Shankaraiah, N. Microwave-assisted multicomponent reactions in heterocyclic chemistry and mechanistic aspects. Beilstein J. Org. Chem., 2021, 17(1), 819-865.
[http://dx.doi.org/10.3762/bjoc.17.71] [PMID: 33968258]
[9]
Javahershenas, R. Recent applications of aminouracil in multicomponent reactions. ARKIVOC, 2021, 2021(1), 236-272.
[http://dx.doi.org/10.24820/ark.5550190.p011.440]
[10]
Biswas, S.K.; Das, D. One-pot Synthesis of Pyrano[2,3-c]pyrazole Derivatives via Multicomponent Reactions (MCRs) and their applications in medicinal chemistry. Mini Rev. Org. Chem., 2022, 19(5), 552-568.
[http://dx.doi.org/10.2174/1570193X19666211220141622]
[11]
Verma, M.; Pandeya, S.N.; Singh, K.N.; Stables, J.P. Anticonvulsant activity of Schiff bases of isatin derivatives. Acta Pharm., 2004, 54(1), 49-56.
[PMID: 15050044]
[12]
Dandia, A.; Singh, R.; Khaturia, S.; Mérienne, C.; Morgant, G.; Loupy, A. Efficient microwave enhanced regioselective synthesis of a series of benzimidazolyl/triazolyl spiro [indole-thiazolidinones] as potent antifungal agents and crystal structure of spiro[3H-indole-3,2′-thiazolidine]-3′(1,2,4-triazol-3-yl)-2,4′(1H)-dione. Bioorg. Med. Chem., 2006, 14(7), 2409-2417.
[http://dx.doi.org/10.1016/j.bmc.2005.11.025] [PMID: 16321543]
[13]
Kassab, S.E.; Hegazy, G.H.; Eid, N.M.; Amin, K.M.; El-Gendy, A.A. Synthesis of 1H-indole-2,3-dione-3-thiosemicarbazone ribonucleosides as antibacterial agents. Nucleosides Nucleotides Nucleic Acids, 2010, 29(1), 72-80.
[http://dx.doi.org/10.1080/15257770903459267] [PMID: 20391194]
[14]
Feng, L.S.; Liu, M.L.; Wang, B.; Chai, Y.; Hao, X.Q.; Meng, S.; Guo, H.Y. Synthesis and in vitro antimycobacterial activity of balofloxacin ethylene isatin derivatives. Eur. J. Med. Chem., 2010, 45(8), 3407-3412.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.027] [PMID: 20493593]
[15]
Jarrahpour, A.; Khalili, D.; De Clercq, E.; Salmi, C.; Brunel, J. Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives. Molecules, 2007, 12(8), 1720-1730.
[http://dx.doi.org/10.3390/12081720] [PMID: 17960083]
[16]
Sridhar, S.K.; Ramesh, A. Synthesis and pharmacological activities of hydrazones, Schiff and Mannich bases of isatin derivatives. Biol. Pharm. Bull., 2001, 24(10), 1149-1152.
[http://dx.doi.org/10.1248/bpb.24.1149] [PMID: 11642321]
[17]
Gürsoy, A.; Karali, N. Synthesis and primary cytotoxicity evaluation of 3-[[(3-phenyl-4(3H)-quinazolinone-2-yl)mercaptoacetyl]hydrazono]-1H-2-indolinones. Eur. J. Med. Chem., 2003, 38(6), 633-643.
[http://dx.doi.org/10.1016/S0223-5234(03)00085-0] [PMID: 12832136]
[18]
Bal, T.R.; Anand, B.; Yogeeswari, P.; Sriram, D. Synthesis and evaluation of anti-HIV activity of isatin β-thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2005, 15(20), 4451-4455.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.046] [PMID: 16115762]
[19]
Ozgun, D.O.; Yamali, C.; Gul, H.I.; Taslimi, P.; Gulcin, I.; Yanik, T.; Supuran, C.T. Inhibitory effects of isatin Mannich bases on carbonic anhydrases, acetylcholinesterase, and butyrylcholinesterase. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1498-1501.
[http://dx.doi.org/10.3109/14756366.2016.1149479] [PMID: 26928426]
[20]
Chemchem, M.; Menacer, R.; Merabet, N.; Bouridane, H.; Yahiaoui, S.; Moussaoui, S.; Belkhiri, L. Green synthesis, antibacterial evaluation and QSAR analysis of some isatin Schiff bases. J. Mol. Struct., 2020, 1208, 127853.
[http://dx.doi.org/10.1016/j.molstruc.2020.127853]
[21]
Borad, M.A.; Bhoi, M.N.; Prajapati, N.P.; Patel, H.D. Review of synthesis of spiro heterocyclic compounds from isatin. Synth. Commun., 2014, 44(7), 897-922.
[http://dx.doi.org/10.1080/00397911.2013.843196]
[22]
Zhang, Y.Z.; Du, H.Z.; Liu, H.L.; He, Q.S.; Xu, Z. Isatin dimers and their biological activities. Arch. Pharm. (Weinheim), 2020, 353(3), 1900299.
[http://dx.doi.org/10.1002/ardp.201900299] [PMID: 31985855]
[23]
Pradeep, S.D.; Sebastian, D.; Gopalakrishnan, A.K.; Manoharan, D.K.; Madhusudhanan, D.T.; Mohanan, P.V. Synthesis and characterization of a novel heterocyclic schiff base and development of a fluorescent sensor for Vitamin B12. J. Fluoresc., 2021, 31(4), 1113-1123.
[http://dx.doi.org/10.1007/s10895-021-02743-y] [PMID: 33963980]
[24]
Echekwube, H.O.; Ukoha, P.O.; Ujam, O.T.; Nwuche, C.O.; Asegbeloyin, J.N.; Ibezim, A. Synthesis and in silico investigation of Schiff base derivatives of 1H-indole-2,3-diones and their Co(II) and Ni(II) complexes as antimicrobial agents. Braz. J. Biol. Sci., 2019, 6(12), 63-85.
[http://dx.doi.org/10.21472/bjbs.061207]
[25]
Kekulé, A. Ueber die Constitution des Isatins, der Isatinsäure und des Indols. Ber. Dtsch. Chem. Ges., 1869, 2(1), 748-749.
[http://dx.doi.org/10.1002/cber.186900201293]
[26]
Aboul-Fadl, T.; Bin-Jubair, F.A.S.; Aboul-Wafa, O. Schiff bases of indoline-2,3-dione (isatin) derivatives and nalidixic acid carbohydrazide, synthesis, antitubercular activity and pharmacophoric model building. Eur. J. Med. Chem., 2010, 45(10), 4578-4586.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.020] [PMID: 20696500]
[27]
Jahng, K.C.; Kim, S.I.; Kim, D.H.; Seo, C.S.; Son, J.K.; Lee, S.H.; Lee, E.S.; Jahng, Y. One-pot synthesis of simple alkaloids: 2,3-polymethylene-4(3H)-quinazolinones, luotonin A, tryptanthrin, and rutaecarpine. Chem. Pharm. Bull. (Tokyo), 2008, 56(4), 607-609.
[http://dx.doi.org/10.1248/cpb.56.607] [PMID: 18379119]
[28]
Doménech, A.; Doménech-Carbó, M.T.; Sánchez del Río, M.; Vázquez de Agredos Pascual, M.L.; Lima, E. Maya Blue as a nanostructured polyfunctional hybrid organic–inorganic material: The need to change paradigms. New J. Chem., 2009, 33(12), 2371-2379.
[http://dx.doi.org/10.1039/b901942a]
[29]
Al-Wabli, R.I.; Almomen, A.A.; Almutairi, M.S.; Keeton, A.B.; Piazza, G.A.; Attia, M.I. New Isatin–Indole Conjugates: Synthesis, characterization, and a plausible mechanism of their in vitro antiproliferative activity. Drug Des. Devel. Ther., 2020, 14, 483-495.
[http://dx.doi.org/10.2147/DDDT.S227862] [PMID: 32099332]
[30]
Chen, G.; Su, H.; Zhang, M.; Huo, F.; Zhang, J.; Hao, X.; Zhao, J. New bactericide derived from Isatin for treating oilfield reinjection water. Chem. Cent. J., 2012, 6(1), 90.
[http://dx.doi.org/10.1186/1752-153X-6-90] [PMID: 22929650]
[31]
Singh, A.; Zhang, D.; Tam, C.C.; Cheng, L.W.; Land, K.M.; Kumar, V. Click-chemistry approach to synthesis of functionalized isatin-ferrocenes and their biological evaluation against the human pathogen Trichomonas vaginalis. J. Organomet. Chem., 2019, 896, 1-4.
[http://dx.doi.org/10.1016/j.jorganchem.2019.05.025]
[32]
Bhunia, A.; Roy, T.; Pachfule, P.; Rajamohanan, P.R.; Biju, A.T. Transition-metal-free multicomponent reactions involving arynes, N-heterocycles, and isatins. Angew. Chem. Int. Ed., 2013, 52(38), 10040-10043.
[http://dx.doi.org/10.1002/anie.201304278] [PMID: 23913808]
[33]
Chiyanzu, I.; Hansell, E.; Gut, J.; Rosenthal, P.J.; McKerrow, J.H.; Chibale, K. Synthesis and evaluation of isatins and thiosemicarbazone derivatives against cruzain, falcipain-2 and rhodesain. Bioorg. Med. Chem. Lett., 2003, 13(20), 3527-3530.
[http://dx.doi.org/10.1016/S0960-894X(03)00756-X] [PMID: 14505663]
[34]
Silva, J.F.M.; Garden, S.J.; Pinto, A.C. The chemistry of isatins: A review from 1975 to 1999. J. Braz. Chem. Soc., 2001, 12(3), 273-324.
[http://dx.doi.org/10.1590/S0103-50532001000300002]
[35]
Shrestha, R.; Lee, G.J.; Lee, Y.R. Synthesis of diverse isatins via ring contraction of 3-diazoquinoline-2,4-diones. RSC Advances, 2016, 6(68), 63782-63787.
[http://dx.doi.org/10.1039/C6RA13585D]
[36]
Li, J.; Zheng, Y.; Yu, X.; Lv, S.; Wang, Q.; Hai, L.; Wu, Y. Synthesis of isatins by the palladium-catalyzed intramolecular acylation of unactivated aryl C(sp 2)–H bonds. RSC Advances, 2015, 5(125), 103280-103283.
[http://dx.doi.org/10.1039/C5RA23837D]
[37]
Lopes, E.A.; Santos, M.M. Synthesis of Spirooxindoles by Multicomponent Reactions. In: Synthetic Approaches to Nonaromatic Nitrogen Heterocycles; Phillips, A.M., Ed.; John Wiley & Sons Ltd: New York City, United States, 2020; Vol. 2, pp. 225-247.
[http://dx.doi.org/10.1002/9781119708841.ch9]
[38]
Galliford, C.V.; Scheidt, K.A. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem. Int. Ed., 2007, 46(46), 8748-8758.
[http://dx.doi.org/10.1002/anie.200701342] [PMID: 17943924]
[39]
Cheng, D.; Ishihara, Y.; Tan, B.; Barbas, C.F. III Organocatalytic asymmetric assembly reactions: synthesis of spirooxindoles via organocascade strategies. ACS Catal., 2014, 4(3), 743-762.
[http://dx.doi.org/10.1021/cs401172r]
[40]
Santos, M.M.M. Recent advances in the synthesis of biologically active spirooxindoles. Tetrahedron, 2014, 70(52), 9735-9757.
[http://dx.doi.org/10.1016/j.tet.2014.08.005]
[41]
Yu, B.; Yu, D.Q.; Liu, H.M. Spirooxindoles: Promising scaffolds for anticancer agents. Eur. J. Med. Chem., 2015, 97, 673-698.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.056] [PMID: 24994707]
[42]
Mei, G.J.; Shi, F. Catalytic asymmetric synthesis of spirooxindoles: recent developments. Chem. Commun. (Camb.), 2018, 54(50), 6607-6621.
[http://dx.doi.org/10.1039/C8CC02364F] [PMID: 29770377]
[43]
Trost, B.; Brennan, M. Asymmetric syntheses of oxindole and indole spirocyclic alkaloid natural products. Synthesis, 2009, 2009(18), 3003-3025.
[http://dx.doi.org/10.1055/s-0029-1216975]
[44]
Chen, W.B.; Wu, Z.J.; Pei, Q.L.; Cun, L.F.; Zhang, X.M.; Yuan, W.C. Highly enantioselective construction of spiro[4H-pyran-3,3′-oxindoles] through a domino Knoevenagel/Michael/cyclization sequence catalyzed by cupreine. Org. Lett., 2010, 12(14), 3132-3135.
[http://dx.doi.org/10.1021/ol1009224] [PMID: 20545337]
[45]
Badillo, J.J.; Hanhan, N.V.; Franz, A.K. Enantioselective synthesis of substituted oxindoles and spirooxindoles with applications in drug discovery. Curr. Opin. Drug Discov. Devel., 2010, 13(6), 758-776.
[PMID: 21061236]
[46]
Cao, Y.; Jiang, X.; Liu, L.; Shen, F.; Zhang, F.; Wang, R. Enantioselective Michael/cyclization reaction sequence: Scaffold-inspired synthesis of spirooxindoles with multiple stereocenters. Angew. Chem. Int. Ed., 2011, 50(39), 9124-9127.
[http://dx.doi.org/10.1002/anie.201104216] [PMID: 21919145]
[47]
Ball-Jones, N.R.; Badillo, J.J.; Franz, A.K. Strategies for the enantioselective synthesis of spirooxindoles. Org. Biomol. Chem., 2012, 10(27), 5165-5181.
[http://dx.doi.org/10.1039/c2ob25184a] [PMID: 22581310]
[48]
Han, X.; Chan, W.L.; Yao, W.; Wang, Y.; Lu, Y. Phosphine-mediated Highly Enantioselective Spirocyclization with Ketimines as Substrates. Angew. Chem. Int. Ed., 2016, 55(22), 6492-6496.
[http://dx.doi.org/10.1002/anie.201600453] [PMID: 27080309]
[49]
Song, Z.Y.; Chen, K.Q.; Chen, X.Y.; Ye, S. Diastereo-and enantioselective synthesis of spirooxindoles with contiguous tetrasubstituted stereocenters via catalytic coupling of two tertiary radicals. J. Org. Chem., 2018, 83(5), 2966-2970.
[http://dx.doi.org/10.1021/acs.joc.7b03161] [PMID: 29405713]
[50]
Brandão, P.; Marques, C.; Burke, A.J.; Pineiro, M. The application of isatin-based multicomponent-reactions in the quest for new bioactive and druglike molecules. Eur. J. Med. Chem., 2021, 211, 113102.
[http://dx.doi.org/10.1016/j.ejmech.2020.113102] [PMID: 33421712]
[51]
Mohammadi Ziarani, G.; Moradi, R.; Lashgari, N. Asymmetric synthesis of chiral oxindoles using isatin as starting material. Tetrahedron, 2018, 74(13), 1323-1353.
[http://dx.doi.org/10.1016/j.tet.2018.01.025]
[52]
Mohammadi Ziarani, G.; Mohajer, F. An overview of quantitative and qualitative approaches on the synthesis of heterocyclic kojic acid scaffolds through the multi-component reactions. Heterocycles, 2021, 102(2), 211-229.
[http://dx.doi.org/10.3987/REV-20-936]
[53]
Mohammadi Ziarani, G.; Javadi, F.; Mohajer, F. The molecular diversity scope of Oxindole derivatives in organic synthesis. Curr. Org. Chem., 2021, 25(7), 779-818.
[http://dx.doi.org/10.2174/1385272825666210111112814]
[54]
Mohammadi Ziarani, G.; Mohajer, F.; Moradi, R.; Mofatehnia, P. The molecular diversity scope of urazole in the synthesis of organic compounds. Curr. Org. Synth., 2019, 16(7), 953-967.
[http://dx.doi.org/10.2174/1570179416666190925162215] [PMID: 31984879]
[55]
Mohammadi Ziarani, G.; Mohajer, F.; Mali, S.N.; Screening, H.T. The molecular diversity of 1, 8-diaminonaphthalene in organic chemistry. Comb. Chem. High Throughput Screen., 2021, 24(10), 1702-1713.
[http://dx.doi.org/10.2174/1386207323666201110144014] [PMID: 33172368]
[56]
Lashgari, N.; Badiei, A.; Mohammadi Ziarani, G.; Faridbod, F. Isatin functionalized nanoporous SBA-15 as a selective fluorescent probe for the detection of Hg(II) in water. Anal. Bioanal. Chem., 2017, 409(12), 3175-3185.
[http://dx.doi.org/10.1007/s00216-017-0258-1] [PMID: 28271223]
[57]
Moradi, R.; Mohammadi Ziarani, G.; Lashgari, N. Recent applications of isatin in the synthesis of organic compounds. ARKIVOC, 2017, 2017(1), 148-201.
[http://dx.doi.org/10.24820/ark.5550190.p009.980]
[58]
Mohammadi Ziarani, G.; Moradi, R.; Lashgari, N. Asymmetric synthesis of chiral 3,3-disubstituted oxindoles using isatin as starting material. Tetrahedron Asymmetry, 2015, 26(10-11), 517-541.
[http://dx.doi.org/10.1016/j.tetasy.2015.04.011]
[59]
Lashgari, N.; Mohammadi Ziarani, G. Synthesis of heterocyclic compounds based on isatin through 1,3-dipolar cycloaddition reactions. ARKIVOC, 2012, 2012(1), 277-320.
[http://dx.doi.org/10.3998/ark.5550190.0013.108]
[60]
Mohammadi Ziarani, G.; Khademi, M.; Mohajer, F.; Yadav, S.; Tomar, R. Recent advances in the application of barbituric acid derivatives in multicomponent reactions. Curr. Org. Chem., 2022, 26(2), 162-188.
[http://dx.doi.org/10.2174/1385272826666211229150318]
[61]
Mohammadi Ziarani, G.; Moradi, R.; Lashgari, N. Synthesis of spiro-fused heterocyclic scaffolds through multicomponent reactions involving isatin. ARKIVOK, 2016, 2016(1), 1-81.
[62]
Ahmadi, T.; Mohammadi Ziarani, G.; Gholamzadeh, P.; Mollabagher, H. Recent advances in asymmetric multicomponent reactions (AMCRs). Tetrahedron Asymmetry, 2017, 28(5), 708-724.
[http://dx.doi.org/10.1016/j.tetasy.2017.04.002]
[63]
Chate, A.V.; Rudrawar, P.P.; Bondle, G.M.; Sangeshetti, J.N. 2-Aminoethanesulfonic acid: An efficient organocatalyst for green synthesis of spirooxindole dihydroquinazolinones and novel 1,2-(dihydroquinazolin-3(4 H)isonicotinamides in water. Synth. Commun., 2020, 50(2), 226-242.
[http://dx.doi.org/10.1080/00397911.2019.1692868]
[64]
Wu, C.; Liu, J.; Kui, D.; Lemao, Y.; Yingjie, X.; Luo, X.; Meiyang, X.; Shen, R. Efficient multicomponent synthesis of spirooxindole derivatives catalyzed by Copper Triflate. Polycycl. Aromat. Compd., 2022, 42(1), 277-289.
[http://dx.doi.org/10.1080/10406638.2020.1726976]
[65]
Mirzaei, F.; Bayat, M.; Nasri, S. A one-pot synthesis of piperidinium spirooxindoline-pyridineolates and indole-substituted pyridones in aqueous or ethanol medium. Mol. Divers., 2021, 26(4), 2039-2048.
[PMID: 34528212]
[66]
Neamani, S.; Moradi, L.; Sun, M. Synthesis of magnetic hollow mesoporous N-doped silica rods as a basic catalyst for the preparation of some spirooxindole-1,4-dihydropyridine derivatives. Appl. Surf. Sci., 2020, 504, 144466.
[http://dx.doi.org/10.1016/j.apsusc.2019.144466]
[67]
Azimi, R.; Baharfar, R.; Bagheri, H. Stereoselective Synthesis of Multifunctional Spirooxindole-Dihydrofuran Derivatives. Polycycl. Aromat. Compd., 2022. [Epub ahead of print]
[68]
Lotfy, G.; Aziz, Y.M.A.; Said, M.M.; El Ashry, E.S.H.; El Tamany, E.S.H.; Barakat, A.; Ghabbour, H.A.; Yousuf, S.; Ul-Haq, Z.; Choudhary, M.I. Synthesis of oxindole analogues, biological activity, and in silico studies. ChemistrySelect, 2019, 4(35), 10510-10516.
[http://dx.doi.org/10.1002/slct.201901228]
[69]
Singh, M.; Amrutha Krishnan, A.V.; Mandal, R.; Samanta, J.; Ravichandiran, V.; Natarajan, R.; Bharitkar, Y.P.; Hazra, A. Azomethine ylide cycloaddition: a versatile tool for preparing novel pyrrolizidino-spiro-oxindolo hybrids of the doubly conjugated alkamide piperine. Mol. Divers., 2020, 24(3), 627-639.
[http://dx.doi.org/10.1007/s11030-019-09969-w] [PMID: 31183672]
[70]
Nishtala, V.B.; Basavoju, S. Crystal Structure and Molecular Docking Studies of 1-Ethyl-2′-(furan-2-carbonyl)-1′-(furan-2-yl)-1′,2′,5′,6′,7′,7a′-hexahyd-rospiro[indoline-3,3′-pyrrolizin]-2-one. J. Chem. Crystallogr., 2018, 48(3), 78-90.
[http://dx.doi.org/10.1007/s10870-018-0709-3]
[71]
Askri, S.; Edziri, H.; Hamouda, M.B.; Mchiri, C.; Gharbi, R.; El-Gawad, H.H.A.; El-Tahawy, M.M.T. Synthesis, biological evaluation, density functional calculation and molecular docking analysis of novel spiropyrrolizidines derivatives as potential anti-microbial and anti-coagulant agents. J. Mol. Struct., 2022, 1250, 131688.
[http://dx.doi.org/10.1016/j.molstruc.2021.131688]
[72]
Tripathi, V.D.; Shukla, A.K.; Mohammed, H.S. Regioselective Three Component Domino Synthesis of Polyhydrospiro[indoline-3,3′-pyrrolizine]-2-one via. [3+2] Cycloaddition Reaction. Asian J. Chem., 2019, 31(3), 613-616.
[http://dx.doi.org/10.14233/ajchem.2019.21737]
[73]
Mohammadi Ziarani, G.; Mollabagher, H.; Lashgari, N.; Badiei, A. One-pot solvent-free synthesis of pyranonaphthoquinone-fused spirooxindoles catalyzed by SBA-IL. Sci. Iran., 2018, 25(6), 3295-3304.
[74]
Zhang, Z.; Yuan, A.; Zheng, C. Synthesis of pyridopyrimidine derivatives based on benzenesulfonyl acetonitrile compounds via a one-pot sequential four-component domino reaction and microwave-mediated molecular cyclization. Synth. Commun., 2018, 48(23), 2973-2982.
[http://dx.doi.org/10.1080/00397911.2018.1527354]
[75]
Islam, M.S.; Haukka, M.; Soliman, S.M.; Al-Majid, A.M.; Rahman, A.F.M.M.; Bari, A.; Barakat, A. Regio- and stereoselective synthesis of spiro-heterocycles bearing the pyrazole scaffold via [3+2] cycloaddition reaction. J. Mol. Struct., 2022, 1250, 131711.
[http://dx.doi.org/10.1016/j.molstruc.2021.131711]
[76]
Reddy Indukuri, D.; Reddy Potuganti, G.; Maria Cherian, A.; Babu Nanubolu, J.; Soujanya, Y.; Alla, M. Multicomponent domino approaches for the synthesis of spirooxazolidine‐2‐thiones and spirooxothiolane‐2‐imines. Eur. J. Org. Chem., 2021, 2021(38), 5348-5358.
[http://dx.doi.org/10.1002/ejoc.202100739]
[77]
Potuganti, G.R.; Indukuri, D.R.; Nanubolu, J.B.; Alla, M. Copper-Catalyzed Domino Addition, Hydroamination, and Cyclization: A Multicomponent Approach to Spiro Oxazolidinone Derivatives. J. Org. Chem., 2018, 83(24), 15186-15194.
[http://dx.doi.org/10.1021/acs.joc.8b02461] [PMID: 30465431]
[78]
Sadeghi, B.; Mousavi, S.A. Preparation and Characterization of Nano-coc-OSO3 H as a Novel Nanocatalyst for the One-Pot Synthesis of Spirooxindoles. Polycycl. Aromat. Compd., 2022, 42(2), 424-436.
[http://dx.doi.org/10.1080/10406638.2020.1737828]
[79]
Hojati, S.F.; Amiri, A.; Mahamed, M. Polystyrene@graphene oxide-Fe3O4 as a novel and magnetically recyclable nanocatalyst for the efficient multi-component synthesis of spiro indene derivatives. Res. Chem. Intermed., 2020, 46(2), 1091-1107.
[http://dx.doi.org/10.1007/s11164-019-04021-w]
[80]
Chen, M.N.; Di, J.Q.; Li, J.M.; Mo, L.P.; Zhang, Z.H. Eosin Y-catalyzed one-pot synthesis of spiro[4H-pyran-oxindole] under visible light irradiation. Tetrahedron, 2020, 76(14), 131059.
[http://dx.doi.org/10.1016/j.tet.2020.131059]
[81]
Makarem, S.; Mirza, B.; Mohammad Darvish, Z.; Amiri Notash, N.; Ashrafi, S. Organic electrosynthesis: a promising alternative methodology for the synthesis of nanosized particles of pyrans. Anal. Bioanal. Chem., 2019, 6(1), 231-240.
[PMID: 30443773]
[82]
Wang, D.C.; Fan, C.; Xie, Y.M.; Yao, S.; Song, H. Efficient and mild one-pot synthesis of (E)-8′-arylidene-5′,6′,7′,8′-tetrahydrospiro[oxindole-3,4′-pyrano[3,2-c]pyridin] derivatives with potential antitumor activity. Arab. J. Chem., 2019, 12(8), 1918-1924.
[http://dx.doi.org/10.1016/j.arabjc.2014.12.003]
[83]
Salimi, M.; Sandaroos, R.; Esmaeli-nasrabadi, F. Efficient synthesis of spirooxindole derivatives by magnetic and recyclable CaFe2O4@MgAl-LDH. J. Indian Chem. Soc., 2021, 18(1), 1-12.
[http://dx.doi.org/10.1007/s13738-020-02017-7]
[84]
Divar, M.; Zomorodian, K.; Sabet, R.; Moeini, M.; Khabnadideh, S. An Efficient Method for Synthesis of Some Novel Spirooxindole-4H-Pyran Derivatives. Polycycl. Aromat. Compd., 2021, 41(7), 1549-1562.
[http://dx.doi.org/10.1080/10406638.2019.1686405]
[85]
Upadhyay, A.; Singh, R.K.P. An efficient one pot four-component synthesis of spiro[indoline-3,4′pyrano[2,3-c]pyrazole] derivatives via electrochemical approach. Asian J. Chem., 2021, 33(7), 1685-1691.
[http://dx.doi.org/10.14233/ajchem.2021.23196]
[86]
Dhakar, A.; Rajput, A.; Khanum, G.; Agarwal, D.D. SLS-catalyzed Multi-component One-pot Reactions for the Convenient Synthesis of Spiro[indoline-3,4′-pyrano [2,3-c]pyrazole] Derivatives. Curr. Organocatal., 2021, 8(2), 200-210.
[http://dx.doi.org/10.2174/2213337207999200910103325]
[87]
Safaei-Ghomi, J.; Elyasi, Z.; Babaei, P. N-doped graphene quantum dots modified with CuO (0D)/ZnO (1D) heterojunctions as a new nanocatalyst for the environmentally friendly one-pot synthesis of monospiro derivatives. New J. Chem., 2021, 45(3), 1269-1277.
[http://dx.doi.org/10.1039/D0NJ04447D]
[88]
Amanda, M.H.; Cahyana, A.H.; Abdullah, I. The synthesis results comparison of spirooxindole derivatives using TiO2 and TiO2/SiO2 catalyst. J. Phys. Conf. Ser., 2021, 1918(3), 032017.
[http://dx.doi.org/10.1088/1742-6596/1918/3/032017]
[89]
Geedkar, D.; Kumar, A.; Reen, G.K.; Sharma, P. Titania‐silica nanoparticles ensemblies assisted heterogeneous catalytic strategy for the synthesis of pharmacologically significant 2,3‐diaryl‐3,4‐dihydroimidazo[4,5‐ b]indole scaffolds. J. Heterocycl. Chem., 2020, 57(4), 1963-1973.
[http://dx.doi.org/10.1002/jhet.3925]
[90]
Prasoona, G.; Kishore, B.; Brahmeshwari, G. A Simple and Efficient Four-Component One-Pot Synthesis of Novel 2-Aryl-3-benzimidazolyl-3,4-dihydroimidazo[4,5-b]indoles Catalyzed by Ceric Ammonium Nitrate in Aqueous Ethanol. Russ. J. Org. Chem., 2021, 57(6), 994-1001.
[http://dx.doi.org/10.1134/S1070428021060166]
[91]
Feng, T.T.; Gong, Y.; Wei, Q.D.; Wang, G.L.; Liu, H.H.; Tian, M.Y.; Liu, X.L.; Chen, Z.Y.; Zhou, Y. Diversity-oriented Construction of Chromanone-fused Polycyclic Pyrrolidinyl-dispirooxindoles. J. Heterocycl. Chem., 2018, 55(5), 1136-1146.
[http://dx.doi.org/10.1002/jhet.3145]
[92]
Boudriga, S.; Elmhawech, B.; Moheddine, A. Straightforward and Highly Diastereoselective Synthesis of a New Set of Functionalized Dispiropyrrolidines Involving Multicomponent 1,3‐Dipolar Cycloaddition with Azomethine Ylides. J. Heterocycl. Chem., 2019, 56(6), 1748-1756.
[http://dx.doi.org/10.1002/jhet.3532]
[93]
Askri, S.; Dbeibia, A.; Mchiri, C.; Boudriga, S.; Knorr, M.; Roulland, E.; Laprévote, O.; Saffon-Merceron, N.; Gharbi, R. Antimicrobial activity and in silico molecular docking studies of Pentacyclic Spiro[oxindole-2,3′-pyrrolidines] Tethered with Succinimide Scaffolds. Appl. Sci. (Basel), 2021, 12(1), 360-380.
[http://dx.doi.org/10.3390/app12010360]
[94]
Barakat, A.; Haukka, M.; Soliman, S.M.; Ali, M.; Al-Majid, A.M.; El-Faham, A.; Domingo, L.R. Straightforward regio- and diastereoselective synthesis, molecular structure, intermolecular interactions and mechanistic study of spirooxindole-engrafted rhodanine Analogs. Molecules, 2021, 26(23), 7276.
[http://dx.doi.org/10.3390/molecules26237276] [PMID: 34885853]
[95]
Shinoj Kumar, P.P.; Krishnaswamy, G.; Desai, N.R.; Sreenivasa, S.; Aruna Kumar, D.B. Highly Facile, Regio‐ and Stereoselective Synthesis of Spiropyrrolidine‐5‐aza‐2‐oxindole Derivatives through Multicomponent 1,3‐Dipolar Cycloaddition reaction and their in‐vitro and in‐silico biological studies. ChemistrySelect, 2021, 6(35), 9407-9414.
[http://dx.doi.org/10.1002/slct.202102118]
[96]
Bhaumik, A.; Azaz, T.; Singh, V.; Khatana, A.K.; Tiwari, B. Carbene/base-mediated redox alkenylation of isatins using β-substituted organoselenones and aldehydes. J. Org. Chem., 2019, 84(22), 14898-14903.
[http://dx.doi.org/10.1021/acs.joc.9b02188] [PMID: 31638798]
[97]
Brandão, P.; Puerta, A.; Padrón, J.M.; Kuznetsov, M.L.; Burke, A.J.; Pineiro, M. Ugi Adducts of Isatin as promising antiproliferative agents with Druglike Properties. Asian J. Org. Chem., 2021, 10(12), 3434-3455.
[http://dx.doi.org/10.1002/ajoc.202100684]
[98]
Brandão, P.; López, Ó.; Leitzbach, L.; Stark, H.; Fernández-Bolaños, J.G.; Burke, A.J.; Pineiro, M. Ugi Reaction synthesis of oxindole–lactam hybrids as selective butyrylcholinesterase inhibitors. ACS Med. Chem. Lett., 2021, 12(11), 1718-1725.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00344] [PMID: 34795859]
[99]
Niu, L.; Pi, R.; Dong, S.; Liu, S. Aromatic C–H bond functionalized via zwitterion intermediates to construct bioxindole containing continuous quaternary carbons. J. Org. Chem., 2019, 84(23), 15192-15200.
[http://dx.doi.org/10.1021/acs.joc.9b02228] [PMID: 31663338]
[100]
Sai Allaka, B.; Basavoju, S.; Rama Krishna, G. A photoinduced multicomponent regioselective synthesis of 1,4,5‐trisubstituted‐1,2,3‐triazoles: transition metal‐ azide‐ and oxidant‐free protocol. Adv. Synth. Catal., 2021, 363(14), 3560-3565.
[http://dx.doi.org/10.1002/adsc.202100321]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy