Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Characterization, Potential Prognostic Value, and Immune Heterogeneity of Cathepsin C in Diffuse Glioma

Author(s): Quanwei Zhou, Shasha Li, Xuejun Yan, Hecheng Zhu, Weidong Liu, Youwei Guo, Hongjuan Xu, Wen Yin, Xuewen Li, Qian Yang, Hui Liu*, Xingjun Jiang* and Caiping Ren*

Volume 18, Issue 1, 2023

Published on: 23 December, 2022

Page: [76 - 91] Pages: 16

DOI: 10.2174/1574893618666221101144857

Price: $65

Abstract

Background: Diffuse glioma is the most frequent intracranial tumor and remains universally lethal. Prognostic biomarkers have remained a focus in diffuse glioma during the last decades. More reliable predictors to adequately characterize the prognosis of diffuse glioma are essential. Cathepsin C (CTSC), a lysosomal cysteine protease, is an essential component of the lysosomal hydrolase family, with their potential roles in diffuse glioma remaining to be characterized.

Objective: We aimed to investigate the performance of CTSC in predicting prognosis and therapeutic targets in diffuse glioma.

Methods: The expression profile of CTSC in multiple tumors and more than 2000 glioma samples with corresponding clinical data were collected through authoritative public databases. The expression level of CTSC was evaluated by qPCR and IHC. The prognostic value of CTSC was assessed using the univariate and multivariate cox regression analysis. The ESTIMATE R package was used to evaluate the immune and stromal scores based on the gene expression profile. The CIBERSORT was applied to evaluate the relative levels of 22 immune cell subtypes by using the R package 'CIBERSORT' to define the cell composition of tumor tissues. In addition, the MCP counter was used to assess the absolute abundance of neutrophils.

Results/Discussion: CTSC was aberrantly expressed and significantly correlated with clinical outcomes in multiple tumors. CTSC was heterogeneously expressed across histologic types and tumor grades for diffuse glioma and highly enriched in IDH or IDH1-wildtype glioma. CTSC was positively associated with immune and stromal scores and infiltrating levels of M2 macrophages and neutrophils and negatively associated with infiltrating levels of NK cells. Additionally, CTSC was closely correlated with some immune checkpoint molecules, including CD276, CD80, CD86 and PD-L2.

Conclusion: CTSC was involved in shaping the immunosuppressive microenvironment and acted as an independent indicator of a poor prognosis in diffuse glioma. Targeting CTSC for glioma therapies might provide promising prospects.

« Previous
Graphical Abstract

[1]
Aldape K, Amin SB, Ashley DM, et al. Glioma through the looking glass: Molecular evolution of diffuse gliomas and the glioma longitudinal analysis consortium. Neuro-oncol 2018; 20(7): 873-84.
[http://dx.doi.org/10.1093/neuonc/noy020] [PMID: 29432615]
[2]
Claes A, Idema AJ, Wesseling P. Diffuse glioma growth: A guerilla war. Acta Neuropathol 2007; 114(5): 443-58.
[http://dx.doi.org/10.1007/s00401-007-0293-7] [PMID: 17805551]
[3]
Zhou Q, Yan X, Liu W, et al. Three immune-associated subtypes of diffuse glioma differ in immune infiltration, immune checkpoint molecules, and prognosis. Front Oncol 2020; 10586019
[http://dx.doi.org/10.3389/fonc.2020.586019] [PMID: 33425739]
[4]
Friebel E, Kapolou K, Unger S, et al. Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes. Cell 2020; 181(7): 1626-1642.e20.
[http://dx.doi.org/10.1016/j.cell.2020.04.055] [PMID: 32470397]
[5]
Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell 2017; 31(3): 326-41.
[http://dx.doi.org/10.1016/j.ccell.2017.02.009] [PMID: 28292436]
[6]
Graeber MB, Scheithauer BW, Kreutzberg GW. Microglia in brain tumors. Glia 2002; 40(2): 252-9.
[http://dx.doi.org/10.1002/glia.10147] [PMID: 12379912]
[7]
Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 2016; 19(1): 20-7.
[http://dx.doi.org/10.1038/nn.4185] [PMID: 26713745]
[8]
Komohara Y, Ohnishi K, Kuratsu J, Takeya M. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 2008; 216(1): 15-24.
[http://dx.doi.org/10.1002/path.2370] [PMID: 18553315]
[9]
Majety M, Runza V, Lehmann C, Hoves S, Ries CH. A drug development perspective on targeting tumor-associated myeloid cells. FEBS J 2018; 285(4): 763-76.
[http://dx.doi.org/10.1111/febs.14277] [PMID: 28941174]
[10]
Weiskopf K. Cancer immunotherapy targeting the CD47/SIRPα axis. Eur J Cancer 2017; 76: 100-9.
[http://dx.doi.org/10.1016/j.ejca.2017.02.013] [PMID: 28286286]
[11]
Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses1. Neuro-oncol 2006; 8(3): 261-79.
[http://dx.doi.org/10.1215/15228517-2006-008] [PMID: 16775224]
[12]
Fossati G, Ricevuti G, Edwards SW, Walker C, Dalton A, Rossi ML. Neutrophil infiltration into human gliomas. Acta Neuropathol 1999; 98(4): 349-54.
[http://dx.doi.org/10.1007/s004010051093] [PMID: 10502039]
[13]
Joice SL, Mydeen F, Couraud PO, et al. Modulation of blood–brain barrier permeability by neutrophils: In vitro and in vivo studies. Brain Res 2009; 1298: 13-23.
[http://dx.doi.org/10.1016/j.brainres.2009.08.076] [PMID: 19728990]
[14]
Yee PP, Wei Y, Kim SY, et al. Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression. Nat Commun 2020; 11(1): 5424.
[http://dx.doi.org/10.1038/s41467-020-19193-y] [PMID: 33110073]
[15]
Postma TJ, Heimans JJ, Luykx SA, et al. A phase II study of paclitaxel in chemonaïve patients with recurrent high-grade glioma. Ann Oncol 2000; 11(4): 409-13.
[http://dx.doi.org/10.1023/A:1008376123066] [PMID: 10847458]
[16]
Adkison AM, Raptis SZ, Kelley DG, Pham CTN. Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Invest 2002; 109(3): 363-71.
[http://dx.doi.org/10.1172/JCI0213462] [PMID: 11827996]
[17]
Korkmaz B, Caughey GH, Chapple I, et al. Therapeutic targeting of cathepsin C: From pathophysiology to treatment. Pharmacol Ther 2018; 190: 202-36.
[http://dx.doi.org/10.1016/j.pharmthera.2018.05.011] [PMID: 29842917]
[18]
Pham CTN, Ley TJ. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc Natl Acad Sci USA 1999; 96(15): 8627-32.
[http://dx.doi.org/10.1073/pnas.96.15.8627] [PMID: 10411926]
[19]
Pham CTN, Ivanovich JL, Raptis SZ, Zehnbauer B, Ley TJ. Papillon-Lefèvre syndrome: Correlating the molecular, cellular, and clinical consequences of cathepsin C/dipeptidyl peptidase I deficiency in humans. J Immunol 2004; 173(12): 7277-81.
[http://dx.doi.org/10.4049/jimmunol.173.12.7277] [PMID: 15585850]
[20]
Hart TC, Hart PS, Michalec MD, et al. Haim-Munk syndrome and papillon-lefevre syndrome are allelic mutations in cathepsin C. J Med Genet 2000; 37(2): 88-94.
[http://dx.doi.org/10.1136/jmg.37.2.88] [PMID: 10662807]
[21]
Andoniou CE, Fleming P, Sutton VR, Trapani JA, Degli-Esposti MA. Cathepsin C limits acute viral infection independently of NK cell and CD8 + T-cell cytolytic function. Immunol Cell Biol 2011; 89(4): 540-8.
[http://dx.doi.org/10.1038/icb.2010.115] [PMID: 20975734]
[22]
Korkmaz B, Lesner A, Letast S, et al. Neutrophil proteinase 3 and dipeptidyl peptidase I (cathepsin C) as pharmacological targets in granulomatosis with polyangiitis (Wegener granulomatosis). Semin Immunopathol 2013; 35(4): 411-21.
[http://dx.doi.org/10.1007/s00281-013-0362-z] [PMID: 23385856]
[23]
Hamon Y, Legowska M, Hervé V, et al. Neutrophilic cathepsin C Is maturated by a multistep proteolytic process and secreted by activated cells during inflammatory lung diseases. J Biol Chem 2016; 291(16): 8486-99.
[http://dx.doi.org/10.1074/jbc.M115.707109] [PMID: 26884336]
[24]
Xiao Y, Cong M, Li J, et al. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation. Cancer Cell 2021; 39(3): 423-437.e7.
[http://dx.doi.org/10.1016/j.ccell.2020.12.012] [PMID: 33450198]
[25]
Khaket TP, Singh MP, Khan I, Bhardwaj M, Kang SC. Targeting of cathepsin C induces autophagic dysregulation that directs ER stress mediated cellular cytotoxicity in colorectal cancer cells. Cell Signal 2018; 46: 92-102.
[http://dx.doi.org/10.1016/j.cellsig.2018.02.017] [PMID: 29501728]
[26]
Zhang GP, Yue X, Li SQ, Cathepsin C. Cathepsin C interacts with TNF-α/p38 MAPK signaling pathway to promote proliferation and metastasis in hepatocellular carcinoma. Cancer Res Treat 2020; 52(1): 10-23.
[http://dx.doi.org/10.4143/crt.2019.145] [PMID: 31048666]
[27]
Jewett A, Cacalano NA, Teruel A, et al. Inhibition of nuclear factor kappa B (NFκB) activity in oral tumor cells prevents depletion of NK cells and increases their functional activation. Cancer Immunol Immunother 2006; 55(9): 1052-63.
[http://dx.doi.org/10.1007/s00262-005-0093-7] [PMID: 16328384]
[28]
Yan X, Zhou Q, Zhu H, et al. The clinical features, prognostic significance, and immune heterogeneity of CD37 in diffuse gliomas. iScience 2021; 24(11): 103249.
[http://dx.doi.org/10.1016/j.isci.2021.103249] [PMID: 34755091]
[29]
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102(43): 15545-50.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[30]
Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284-7.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[31]
Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 2013; 4(1): 2612.
[http://dx.doi.org/10.1038/ncomms3612] [PMID: 24113773]
[32]
Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 2015; 12(5): 453-7.
[http://dx.doi.org/10.1038/nmeth.3337] [PMID: 25822800]
[33]
Becht E, Giraldo NA, Lacroix L, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 2016; 17(1): 218.
[http://dx.doi.org/10.1186/s13059-016-1070-5] [PMID: 27765066]
[34]
Ma Q, Long W, Xing C, et al. Cancer stem cells and immunosuppressive microenvironment in glioma. Front Immunol 2018; 9: 2924.
[http://dx.doi.org/10.3389/fimmu.2018.02924] [PMID: 30619286]
[35]
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018; 359(6382): 1350-5.
[http://dx.doi.org/10.1126/science.aar4060] [PMID: 29567705]
[36]
Feng E, Liang T, Wang X, et al. Correlation of alteration of HLA-F expression and clinical characterization in 593 brain glioma samples. J Neuroinflammation 2019; 16(1): 33.
[http://dx.doi.org/10.1186/s12974-019-1418-3] [PMID: 30755240]
[37]
Zhang C, Cheng W, Ren X, et al. Tumor purity as an underlying key factor in glioma. Clin Cancer Res 2017; 23(20): 6279-91.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2598] [PMID: 28754819]
[38]
Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer 2009; 9(5): 361-71.
[http://dx.doi.org/10.1038/nrc2628] [PMID: 19343034]
[39]
Voronov E, Apte RN. IL-1 in colon inflammation, colon carcinogenesis and invasiveness of colon cancer. Cancer Microenviron 2015; 8(3): 187-200.
[http://dx.doi.org/10.1007/s12307-015-0177-7] [PMID: 26686225]
[40]
Wright HL, Chikura B, Bucknall RC, Moots RJ, Edwards SW. Changes in expression of membrane TNF, NF-κB activation and neutrophil apoptosis during active and resolved inflammation. Ann Rheum Dis 2011; 70(3): 537-43.
[http://dx.doi.org/10.1136/ard.2010.138065] [PMID: 21109521]
[41]
Han S, Liu Y, Li Q, Li Z, Hou H, Wu A. Pre-treatment neutrophil-to-lymphocyte ratio is associated with neutrophil and T-cell infiltration and predicts clinical outcome in patients with glioblastoma. BMC Cancer 2015; 15(1): 617.
[http://dx.doi.org/10.1186/s12885-015-1629-7] [PMID: 26341881]
[42]
Hagemann T, Lawrence T, McNeish I, et al. “Re-educating” tumor-associated macrophages by targeting NF-κB. J Exp Med 2008; 205(6): 1261-8.
[http://dx.doi.org/10.1084/jem.20080108] [PMID: 18490490]
[43]
Huang C, Bi E, Hu Y, et al. A novel NF-kappaB binding site controls human granzyme B gene transcription. J Immunol 2006; 176(7): 4173-81.
[http://dx.doi.org/10.4049/jimmunol.176.7.4173] [PMID: 16547254]
[44]
Xiao G, Zhang X, Zhang X, et al. Aging-related genes are potential prognostic biomarkers for patients with gliomas. Aging (Albany NY) 2021; 13(9): 13239-63.
[http://dx.doi.org/10.18632/aging.203008] [PMID: 33946049]
[45]
Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol 2014; 26(1): 54-74.
[http://dx.doi.org/10.1016/j.smim.2014.01.001] [PMID: 24552665]
[46]
Grivennikov SI, Karin M. Inflammatory cytokines in cancer: Tumour necrosis factor and interleukin 6 take the stage. Ann Rheum Dis 2011; 70 (Suppl. 1): i104-8.
[http://dx.doi.org/10.1136/ard.2010.140145] [PMID: 21339211]
[47]
Huang J, Liu F, Liu Z, et al. Immune checkpoint in glioblastoma: Promising and challenging. Front Pharmacol 2017; 8: 242.
[http://dx.doi.org/10.3389/fphar.2017.00242] [PMID: 28536525]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy