Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

The Determination of Molecular and Toxicological Mechanisms of Cucurbitacin E in Model Organism Drosophila melanogaster and Various Cancer Cell Lines: Molecular Modelling, Docking and Dynamic Simulation Studies

Author(s): Aydın Tunçbilek, Serap Yalçin Azarkan and Fahriye Ercan*

Volume 19, Issue 2, 2023

Published on: 16 December, 2022

Page: [81 - 93] Pages: 13

DOI: 10.2174/1573409919666221031112223

Price: $65

Abstract

Introduction: Cucurbitacins are one of the most important components of Ecballium elaterium. Among the cucurbitacins, Cucurbitacin E was the first to be isolated. This study focused on screening the anticancer and insecticidal potential of Cucurbitacin E by the in-vitro, invivo, and in-silico methods.

Methods: In the study, toxicity analysis of Cucurbitacin E was determined on HeLa, Caco 2 cancer cell lines and D. melanogaster. While the expression levels of the BAD, BCL-2, AKT-1 and H-purine genes of cancer cell lines were determined, the CG15530, BUFFY, AKT-1 and Purine genes of D. melanogaster were determined by RT-PCR. Besides, molecular docking and dynamic properties of Cucurbitacin E with human and insectoid enzymes were presented in silico.

Results: The IC50 value of Cucurbitacin E in the HeLa ovarian and Caco 2 colon cancer cell lines was determined to be 42 ug/ml and 85 ug/ml, respectively. The LC50 and LC99 doses for fruit flies were determined to be 47,693 μg/ml and 133,251 μg/ml, respectively. Gene expression analysis revealed that Cucurbitacin E showed the greatest effect on Purine and AKT-1 genes in D. melanogaster. We analyzed all genes by Western blot but did not detect significant changes in genes other than H-purine. In silico studies revealed that the Purine protein of D. melanogaster had the highest bonding energy with Cucurbitacin E as a ligand. Similarly, Cucurbitacin E showed great affinity towards H-purine (-10.2 kcal/mol). Molecular dynamics simulation studies were also performed to determine the stability of the dynamic process.

Conclusion: As a result of our in vivo, in vitro and bioinformatic analyzes, it has been seen that Cucurbitacin E is effective against the cancer types and model insects studied.

« Previous
Graphical Abstract

[1]
Graf, U.; Würgler, F.E.; Katz, A.J.; Frei, H.; Juon, H.; Hall, C.B.; Kale, P.G. Somatic mutation and recombination test in Drosophila melanogaster. Environ. Mutagen., 1984, 6(2), 153-188.
[http://dx.doi.org/10.1002/em.2860060206] [PMID: 6423380]
[2]
Muller, H.J. Artificial transmutation of the gene. Science, 1927, 66(1699), 84-87.
[http://dx.doi.org/10.1126/science.66.1699.84]
[3]
Alaraby, M.; Hernández, A.; Annangi, B.; Demir, E.; Bach, J.; Rubio, L.; Creus, A.; Marcos, R. Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: Studies with Drosophila melanogaster as a promising in vivo model. Nanotoxicology, 2015, 9(6), 749-759.
[http://dx.doi.org/10.3109/17435390.2014.976284] [PMID: 25358738]
[4]
Bernards, A.; Hariharan, I.K. Of flies and men-Studying human disease in Drosophila. Curr. Opin. Genet. Dev., 2001, 11(3), 274-278.
[http://dx.doi.org/10.1016/S0959-437X(00)00190-8] [PMID: 11377963]
[5]
Kaplan, E.; Gündüz, U. Expression analysis of TOP2A, MSH2 and MLH1 genes in MCF7 cells at different levels of etoposide resistance. Biomed. Pharmacother., 2012, 66(1), 29-35.
[http://dx.doi.org/10.1016/j.biopha.2011.09.002] [PMID: 22285073]
[6]
Tan, M.L.; Choong, P.F.M.; Dass, C.R. Cancer, chitosan nanoparticles and catalytic nucleic acids. J. Pharm. Pharmacol., 2010, 61(1), 3-12.
[http://dx.doi.org/10.1211/jpp.61.01.0002] [PMID: 19126291]
[7]
Parton, M.; Dowsett, M.; Smith, I. Studies of apoptosis in breast cancer. BMJ, 2001, 322(7301), 1528-1532.
[http://dx.doi.org/10.1136/bmj.322.7301.1528] [PMID: 11420276]
[8]
Eken, C.; Özbek, K.; Yildirim, C.K.; Eray, O. Severe uvular edema and nasal mucosal necrosis due to Ecbalium elaterium (squirting cucumber): An allergic reaction or direct toxic effect? Clin. Toxicol., 2008, 46(3), 257-258.
[http://dx.doi.org/10.1080/15563650601158834] [PMID: 18344108]
[9]
Lavie, D.; Szinai, S. The constituents of Ecballium elaterium L. II. (α-Elaterin,). J. Am. Chem. Soc., 1958, 80(3), 707-710.
[http://dx.doi.org/10.1021/ja01536a046]
[10]
Balbaa, S.I.; Zaki, A.Y.; El-zalabani, S.M. Qualitative study of the cucurbitacin content Ecballium elaterium A. Rich. Growing in Egypt. Egypt. J. Pharm. Sci., 1978, 19(1-4), 253-259.
[11]
Balbaa, S.I.; Zaki, A.Y.; El-zalabani, S.M. Cucurbitacin content in the different organs of Ecballium elaterium (A. Rich.) cultivated in Egypt. Egypt. J. Pharm. Sci., 1979, 20(1-4), 221-228.
[12]
Atasü, E.; Cihangir, V. Ecballiun elaterium L. bitkisinin farmakognozide yeri. Pharmacia-JIPA, 1985, 3, 391-395.
[13]
Yeşilada, E.; Tanaka, S.; Sezik, E.; Tabata, M. Isolation of an anti-inflammatory principle from the fruit juice of Ecballium elaterium. J. Nat. Prod., 1988, 51(3), 504-508.
[http://dx.doi.org/10.1021/np50057a008] [PMID: 3404148]
[14]
Agil, M.A.; Risco, S.; Miró, M.; Navarro, M.C.; Ocete, M.A.; Jiménez, J. Analgesic and antipyretic effects of Ecballium elaterium (L.) A. Richard. Extract in rodents. Phytother. Res., 1995, 9(2), 135-138.
[http://dx.doi.org/10.1002/ptr.2650090211]
[15]
Gallily, R.; Shohat, B.; Kalish, J.; Gitter, S.; Lavie, D. Further studies on the antitumor effect of cucurbitacins. Cancer Res., 1962, 22, 1038-1045.
[PMID: 13946249]
[16]
Piper, M.D.W.; Blanc, E.; Leitão-Gonçalves, R.; Yang, M.; He, X.; Linford, N.J.; Hoddinott, M.P.; Hopfen, C.; Soultoukis, G.A.; Niemeyer, C.; Kerr, F.; Pletcher, S.D.; Ribeiro, C.; Partridge, L. A holidic medium for Drosophila melanogaster. Nat. Methods, 2014, 11(1), 100-105.
[http://dx.doi.org/10.1038/nmeth.2731] [PMID: 24240321]
[17]
Nichols, C.D.; Becnel, J.; Pandey, U.B. Methods to assay Drosophila behavior. J. Vis. Exp., 2012, 61(61), 3795.
[PMID: 22433384]
[18]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[19]
Sas, E.B.; Yalcin, S.; Ercan, F.; Kurt, M. A multi-spectroscopic, computational and molecular modeling studies on anti-apoptotic proteins with Boc-D-Lys-OH. J. Mol. Struct., 2020, 1199, 126981.
[http://dx.doi.org/10.1016/j.molstruc.2019.126981]
[20]
Yalcin, S.; Sas, E.B.; Cankaya, N.; Ercan, F.; Kurt, M. The physical studies and interaction with anti-apoptotic proteins of 2-(bis(cyanomethyl)amino)-2-oxoethyl methacrylate molecule. Condens. Matter Phys., 2019, 22(3), 33301.
[http://dx.doi.org/10.5488/CMP.22.33301]
[21]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[22]
Ramachandran, G.N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol., 1963, 7(1), 95-99.
[http://dx.doi.org/10.1016/S0022-2836(63)80023-6] [PMID: 13990617]
[23]
Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res., 2018, 46(W1), W363-W367.
[http://dx.doi.org/10.1093/nar/gky473] [PMID: 29860391]
[24]
WebGro. 2021. Available from: https://simlab.uams.edu/index.php (Accessed September 25, 2021).
[25]
Bekker, H.; Berendsen, H.; Dijkstra, E.; Achterop, S.; Van Drunen, R.; Van der Spoel, D.; Sijbers, A.; Keegstra, H.; Reitsma, B.; Renardus, M. Gromacs: A parallel computer for molecular dynamics simulations. Phys. Comput., 1993, 92, 252-256.
[26]
Oostenbrink, C.; Villa, A.; Mark, A.E.; Van Gunsteren, W.F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem., 2004, 25(13), 1656-1676.
[http://dx.doi.org/10.1002/jcc.20090] [PMID: 15264259]
[27]
Bjelkmar, P.; Larsson, P.; Cuendet, M.A.; Hess, B.; Lindahl, E. Implementation of the charmm force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J. Chem. Theory Comput., 2010, 6(2), 459-466.
[http://dx.doi.org/10.1021/ct900549r] [PMID: 26617301]
[28]
Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 2010, 78(8), 1950-1958.
[http://dx.doi.org/10.1002/prot.22711] [PMID: 20408171]
[29]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[30]
Zoete, V.; Daina, A.; Bovigny, C.; Michielin, O. SwissSimilarity: A web tool for low to ultra high throughput ligand-based virtual screening. J. Chem. Inf. Model., 2016, 56(8), 1399-1404.
[http://dx.doi.org/10.1021/acs.jcim.6b00174] [PMID: 27391578]
[31]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[32]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 1997, 23(1-3), 3-25.
[http://dx.doi.org/10.1016/S0169-409X(96)00423-1]
[33]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[http://dx.doi.org/10.1021/cc9800071] [PMID: 10746014]
[34]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[35]
Liu, K.; Kokubo, H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: A cross-docking study. J. Chem. Inf. Model., 2017, 57(10), 2514-2522.
[http://dx.doi.org/10.1021/acs.jcim.7b00412]
[36]
Liao, H.; Liao, M.; Xu, L.; Yan, X.; Ren, B.; Zhu, Z.; Yuan, K.; Zeng, Y. Integrative analysis of h-prune as a potential therapeutic target for hepatocellular carcinoma. EBioMedicine, 2019, 41, 310-319.
[http://dx.doi.org/10.1016/j.ebiom.2019.01.001] [PMID: 30665854]
[37]
Marino, N.; Zollo, M. Understanding h-prune biology in the fight against cancer. Clin. Exp. Metastasis, 2007, 24(8), 637-645.
[http://dx.doi.org/10.1007/s10585-007-9109-3] [PMID: 17952613]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy