Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Extravaganza of Nanobiotechnology in the Diagnosis and Treatment of Dementia Patients

Author(s): Sankha Bhattacharya*

Volume 24, Issue 9, 2023

Published on: 10 November, 2022

Page: [1108 - 1121] Pages: 14

DOI: 10.2174/1385272827666221027103050

Price: $65

Abstract

Dementia impairs memory, critical thinking, and decision-making. Alzheimer’s disease is caused by extracellular amyloid fibrils containing the peptide Amyloid beta (Aβ) accumulating in the brain. Alzheimer’s disease is the most common form of dementia. A slew of small molecule inhibitors developed over several decades has targeted dementia and related diseases. The drugs and inhibitors cannot cross the BBB due to their insurmountable nature. Many molecular nanomedicines have been developed that can cross the BBB via adsorptive-mediated transcytosis. Drug-loaded nanosized formulations, such as polymeric nanoparticles, solid lipid nano transporters, liposomes, nanoemulsions, exosomes, gold nanoparticles, and dendrimers, have a significant impact on dementia diagnosis and treatment. This review focuses on recent developments in nanotechnology-based drug delivery systems for dementia and related disorders such as Alzheimer’s disease. Recent advances in nanotechnology may help overcome drug delivery limitations for dementia therapy. Nanoparticles' size, composition, and structural variety bring up new therapeutic possibilities, including treating and diagnosing neurodegenerative diseases. It is possible to enhance therapeutic effectiveness by enhancing pharmacokinetics, bioavailability, water solubility, and stability under physiological conditions while reducing adverse effects by restricting their location in healthy tissues.

[1]
Goins, H. Toward data-driven assessment of Caregiver’s burden for persons with dementia using machine learning models 2020 IEEE 21st International Conference on Information Reuse and Integrationfor Data Science (IRI), Aug 11-13, 2020, Las Vegas, NV, USA, pp. 379-384.2020
[2]
Alfradique-Dunham, I.; Al-Ouran, R.; von Coelln, R.; Blauwendraat, C.; Hill, E.; Luo, L.; Stillwell, A.; Young, E.; Kaw, A.; Tan, M.; Liao, C.; Hernandez, D.; Pihlstrom, L.; Grosset, D.; Shulman, L.M.; Liu, Z.; Rouleau, G.A.; Nalls, M.; Singleton, A.B.; Morris, H.; Jankovic, J.; Shulman, J.M. Genome-Wide Assoc.Study Meta-Anal. Parkinson Disease Motor Subtyp., 2021, 7(2)e557
[3]
Gauthier, S. Research update on Alzheimer’s disease and introduction to the Expert Review of Neurotherapeutics special issue. Expert Rev. Neurother., 2017, 17(1), 1-2.
[http://dx.doi.org/10.1080/14737175.2017.1268054] [PMID: 27911115]
[4]
Chokkareddy, R.; Thondavada, N.; Kabane, B.; Redhi, G.G. 9 - Nanotechnology-based devices in the treatment for Alzheimer’s disease. Nanomaterials in Diagnostic Tools and Devices; Kanchi, S.; Sharma, D., Eds.; Elsevier, 2020, pp. 241-256.
[http://dx.doi.org/10.1016/B978-0-12-817923-9.00009-2]
[5]
Ahmadi, N.; Hosseini, M.J.; Rostamizadeh, K.; Anoush, M. Investigation of therapeutic effect of curcumin α and β glucoside anomers against Alzheimer’s disease by the nose to brain drug delivery. Brain Res., 2021, 1766147517
[http://dx.doi.org/10.1016/j.brainres.2021.147517] [PMID: 33991495]
[6]
Zhang, L.; Wang, Z.; Yuan, X.; Sui, R.; Falahati, M. Evaluation of heptelidic acid as a potential inhibitor for tau aggregation-induced Alzheimer’s disease and associated neurotoxicity. Int. J. Biol. Macromol., 2021, 183, 1155-1161.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.018] [PMID: 33971235]
[7]
Román, G.C.; Tatemichi, T.K.; Erkinjuntti, T.; Cummings, J.L.; Masdeu, J.C.; Garcia, J.H.; Amaducci, L.; Orgogozo, J.M.; Brun, A.; Hofman, A.; Moody, D.M.; O’Brien, M.D.; Yamaguchi, T.; Grafman, J.; Drayer, B.P.; Bennett, D.A.; Fisher, M.; Ogata, J.; Kokmen, E.; Bermejo, F.; Wolf, P.A.; Gorelick, P.B.; Bick, K.L.; Pajeau, A.K.; Bell, M.A.; DeCarli, C.; Culebras, A.; Korczyn, A.D.; Bogousslavsky, J.; Hartmann, A.; Scheinberg, P. Vascular dementia: Diagnostic criteria for research studies: Report of the NINDS-AIREN International Workshop. Neurology, 1993, 43(2), 250-260.
[http://dx.doi.org/10.1212/WNL.43.2.250] [PMID: 8094895]
[8]
de la Torre, J.C. Cerebral Perfusion Enhancing Interventions: A New Strategy for the Prevention of Alzheimer Dementia. Brain Pathol., 2016, 26(5), 618-631.
[http://dx.doi.org/10.1111/bpa.12405] [PMID: 27324946]
[9]
Chui, H.C.; Victoroff, J.I.; Margolin, D.; Jagust, W.; Shankle, R.; Katzman, R. Criteria for the diagnosis of ischemic vascular dementia proposed by the state of california Alzheimer’s disease diagnostic and treatment centers. Neurology, 1992, 42(3), 473-480.
[http://dx.doi.org/10.1212/WNL.42.3.473] [PMID: 1549205]
[10]
Liu, X.; Liu, Y.; Ji, S. Secretases Related to Amyloid Precursor Protein Processing. Membranes, 2021, 11(12), 983.
[http://dx.doi.org/10.3390/membranes11120983] [PMID: 34940484]
[11]
O’Brien, R.J.; Wong, P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci., 2011, 34(1), 185-204.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613] [PMID: 21456963]
[12]
De Strooper, B.; Annaert, W. Proteolytic processing and cell biological functions of the amyloid precursor protein. J. Cell Sci., 2000, 113(11), 1857-1870.
[http://dx.doi.org/10.1242/jcs.113.11.1857] [PMID: 10806097]
[13]
Cai, Y.; An, S.S.; Kim, S. Mutations in presenilin 2 and its implications in Alzheimer’s disease and other dementia-associated disorders. Clin. Interv. Aging, 2015, 10, 1163-1172.
[PMID: 26203236]
[14]
Ring, S.; Weyer, S.W.; Kilian, S.B.; Waldron, E.; Pietrzik, C.U.; Filippov, M.A.; Herms, J.; Buchholz, C.; Eckman, C.B.; Korte, M.; Wolfer, D.P.; Müller, U.C. The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J. Neurosci., 2007, 27(29), 7817-7826.
[http://dx.doi.org/10.1523/JNEUROSCI.1026-07.2007] [PMID: 17634375]
[15]
Turner, P.R.; O’Connor, K.; Tate, W.P.; Abraham, W.C. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog. Neurobiol., 2003, 70(1), 1-32.
[http://dx.doi.org/10.1016/S0301-0082(03)00089-3] [PMID: 12927332]
[16]
Reinhard, C.; Hébert, S.S.; De Strooper, B. The amyloid-β precursor protein: integrating structure with biological function. EMBO J., 2005, 24(23), 3996-4006.
[http://dx.doi.org/10.1038/sj.emboj.7600860] [PMID: 16252002]
[17]
Zheng, H.; Koo, E.H. The amyloid precursor protein: beyond amyloid. Mol. Neurodegener., 2006, 1(1), 5.
[http://dx.doi.org/10.1186/1750-1326-1-5] [PMID: 16930452]
[18]
Sinha, S.; Anderson, J.P.; Barbour, R.; Basi, G.S.; Caccavello, R.; Davis, D.; Doan, M.; Dovey, H.F.; Frigon, N.; Hong, J.; Jacobson-Croak, K.; Jewett, N.; Keim, P.; Knops, J.; Lieberburg, I.; Power, M.; Tan, H.; Tatsuno, G.; Tung, J.; Schenk, D.; Seubert, P.; Suomensaari, S.M.; Wang, S.; Walker, D.; Zhao, J.; McConlogue, L.; John, V. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature, 1999, 402(6761), 537-540.
[http://dx.doi.org/10.1038/990114] [PMID: 10591214]
[19]
Bastrup, J.; Hansen, K.H.; Poulsen, T.B.G.; Kastaniegaard, K.; Asuni, A.A.; Christensen, S.; Belling, D.; Helboe, L.; Stensballe, A.; Volbracht, C. Anti-Aβ antibody aducanumab regulates the proteome of senile plaques and closely surrounding tissue in a transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2021, 79(1), 249-265.
[http://dx.doi.org/10.3233/JAD-200715] [PMID: 33252074]
[20]
Holtzman, D.M.; Morris, J.C.; Goate, A.M. Alzheimer’s disease: the challenge of the second century. Sci. Transl. Med., 2011, 3(77), 77sr1.
[http://dx.doi.org/10.1126/scitranslmed.3002369] [PMID: 21471435]
[21]
Hansra, G.K.; Popov, G.; Banaczek, P.O.; Vogiatzis, M.; Jegathees, T.; Goldsbury, C.S.; Cullen, K.M. The neuritic plaque in Alzheimer’s disease: perivascular degeneration of neuronal processes. Neurobiol. Aging, 2019, 82, 88-101.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.06.009] [PMID: 31437721]
[22]
Guerreiro, R.J.; Gustafson, D.R.; Hardy, J. The genetic architecture of Alzheimer’s disease: beyond APP, PSENs and APOE. Neurobiol. Aging, 2012, 33(3), 437-456.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.03.025] [PMID: 20594621]
[23]
Martiz, R.M.; Patil, S.M.; Ramu, R. M K, J.; P, A.; Ranganatha, L.V.; Khanum, S.A.; Silina, E.; Stupin, V.; Achar, R.R. Discovery of novel benzophenone integrated derivatives as anti-Alzheimer’s agents targeting presenilin-1 and presenilin-2 inhibition: A computational approach. PLoS One, 2022, 17(4)e0265022
[http://dx.doi.org/10.1371/journal.pone.0265022] [PMID: 35395008]
[24]
Dai, M.H.; Zheng, H.; Zeng, L.D.; Zhang, Y. The genes associated with early-onset Alzheimer’s disease. Oncotarget, 2018, 9(19), 15132-15143.
[http://dx.doi.org/10.18632/oncotarget.23738] [PMID: 29599933]
[25]
Li, N.; Liu, K.; Qiu, Y.; Ren, Z.; Dai, R.; Deng, Y.; Qing, H. Effect of presenilin mutations on APP cleavage; insights into the pathogenesis of FAD. Front. Aging Neurosci., 2016, 8, 51.
[http://dx.doi.org/10.3389/fnagi.2016.00051] [PMID: 27014058]
[26]
Huang, Y.; Ma, M.; Zhu, X.; Li, M.; Guo, M.; Liu, P.; He, Z.; Fu, Q. Effectiveness of idebenone nanorod formulations in the treatment of Alzheimer’s disease. J. Control. Release, 2021, 336, 169-180.
[http://dx.doi.org/10.1016/j.jconrel.2021.06.024] [PMID: 34157335]
[27]
Arya, M.A.; Manoj Kumar, M.K.; Sabitha, M.; Menon, K.N.; Nair, S.C. Nanotechnology approaches for enhanced CNS delivery in treating Alzheimer’s disease. J. Drug Deliv. Sci. Technol., 2019, 51, 297-309.
[http://dx.doi.org/10.1016/j.jddst.2019.03.022]
[28]
Zeng, H.; Xu, L.; Zou, Y.; Wang, S. Romidepsin and metformin nanomaterials delivery on streptozocin for the treatment of Alzheimer’s disease in animal model. Biomed. Pharmacother., 2021, 141111864
[http://dx.doi.org/10.1016/j.biopha.2021.111864] [PMID: 34323698]
[29]
Rodrigues, M.S.; de Paula, G.C.; Duarte, M.B.; de Rezende, V.L.; Possato, J.C.; Farias, H.R.; Medeiros, E.B.; Feuser, P.E.; Streck, E.L.; de Ávila, R.A.M.; Bast, R.K.S.S.; Budni, J.; de Bem, A.F.; Silveira, P.C.L.; de Oliveira, J. Nanotechnology as a therapeutic strategy to prevent neuropsychomotor alterations associated with hypercholesterolemia. Colloids Surf. B Biointerfaces, 2021.201111608
[http://dx.doi.org/10.1016/j.colsurfb.2021.111608] [PMID: 33618084]
[30]
Raina, S.K.; Chander, V.; Raina, S.; Kumar, D.; Grover, A.; Bhardwaj, A. Hypertension and diabetes as risk factors for dementia: A secondary post-hoc analysis from north-west India. Ann. Indian Acad. Neurol., 2015, 18(1), 63-65.
[PMID: 25745313]
[31]
van Es, M.A.; Goedee, H.S.; Westeneng, H.J.; Nijboer, T.C.W.; van den Berg, L.H. Is it accurate to classify ALS as a neuromuscular disorder? Expert Rev. Neurother., 2020, 20(9), 895-906.
[http://dx.doi.org/10.1080/14737175.2020.1806061] [PMID: 32749157]
[32]
Milane, L.; Dolare, S.; Jahan, T.; Amiji, M. Mitochondrial nanomedicine: Subcellular organelle-specific delivery of molecular medicines. Nanomedicine , 2021.37102422
[http://dx.doi.org/10.1016/j.nano.2021.102422] [PMID: 34175455]
[33]
Dippong, T.; Levei, E.A.; Cadar, O. Recent Advances in Synthesis and Applications of MFe2O4 (M = Co, Cu, Mn, Ni, Zn) Nanoparticles. Nanomaterials, 2021, 11(6), 1560.
[http://dx.doi.org/10.3390/nano11061560] [PMID: 34199310]
[34]
Hansen, R.A.; Gartlehner, G.; Webb, A.P.; Morgan, L.C.; Moore, C.G.; Jonas, D.E. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clin. Interv. Aging, 2008, 3(2), 211-225.
[PMID: 18686744]
[35]
Mendez, M.F. Pain insensitivity in frontally-predominant dementia. J. Neurol. Sci., 2022, 432120027
[http://dx.doi.org/10.1016/j.jns.2021.120027] [PMID: 34654577]
[36]
Shalabalija, D.; Mihailova, L.; Crcarevska, M.S.; Karanfilova, I.C.; Ivanovski, V.; Nestorovska, A.K.; Novotni, G.; Dodov, M.G. Formulation and optimization of bioinspired rosemary extract loaded PEGylated nanoliposomes for potential treatment of Alzheimer’s disease using design of experiments. J. Drug Deliv. Sci. Technol., 2021.63102434
[http://dx.doi.org/10.1016/j.jddst.2021.102434]
[37]
Pinto, J.O.; Dores, A.R.; Geraldo, A.; Peixoto, B.; Barbosa, F. Sensory stimulation programs in dementia: a systematic review of methods and effectiveness. Expert Rev. Neurother., 2020, 20(12), 1229-1247.
[http://dx.doi.org/10.1080/14737175.2020.1825942] [PMID: 32940543]
[38]
Taillefer, M.S.; Tangarorang, G.L.; Kuchel, G.A.; Menkes, D.L. Atypical presentation of Creutzfeldt-Jakob disease: a rare but important cause of rapidly progressive dementia. Conn. Med., 2011, 75(8), 473-478.
[PMID: 21980678]
[39]
Yoshino, H. Edaravone for the treatment of amyotrophic lateral sclerosis. Expert Rev. Neurother., 2019, 19(3), 185-193.
[http://dx.doi.org/10.1080/14737175.2019.1581610] [PMID: 30810406]
[40]
Martinez-Horta, S.; Horta-Barba, A.; Kulisevsky, J. Cognitive and behavioral assessment in Parkinson’s disease. Expert Rev. Neurother., 2019, 19(7), 613-622.
[http://dx.doi.org/10.1080/14737175.2019.1629290] [PMID: 31180250]
[41]
Baranowska-Wójcik, E.; Szwajgier, D. Alzheimer’s disease: review of current nanotechnological therapeutic strategies. Expert Rev. Neurother., 2020, 20(3), 271-279.
[http://dx.doi.org/10.1080/14737175.2020.1719069] [PMID: 31957510]
[42]
Saeed, U.; Desmarais, P.; Masellis, M. The APOE ε4 variant and hippocampal atrophy in Alzheimer’s disease and Lewy body dementia: a systematic review of magnetic resonance imaging studies and therapeutic relevance. Expert Rev. Neurother., 2021, 21(8), 851-870.
[http://dx.doi.org/10.1080/14737175.2021.1956904] [PMID: 34311631]
[43]
Simrén, J.; Ashton, N.J.; Blennow, K.; Zetterberg, H.J.C.o.i.n. An update on fluid biomarkers for neurodegenerative diseases: recent success and challenges ahead. Curr. Opin. Neurobiol., 2020, 61, 29-39.
[44]
Seeman, P.; Seeman, N. Alzheimer’s disease: β-amyloid plaque formation in human brain. Synapse, 2011, 65(12), 1289-1297.
[http://dx.doi.org/10.1002/syn.20957] [PMID: 21633975]
[45]
Thal, D.R.; Walter, J.; Saido, T.C.; Fändrich, M. Neuropathology and biochemistry of Aβ and its aggregates in Alzheimer’s disease. Acta Neuropathol., 2015, 129(2), 167-182.
[http://dx.doi.org/10.1007/s00401-014-1375-y] [PMID: 25534025]
[46]
Siddiqui, N.; Ali, J.; Parvez, S.; Zameer, S.; Najmi, A.K.; Akhtar, M.J.N. Linagliptin, a DPP-4 inhibitor, ameliorates Aβ (1-42) peptides induced neurodegeneration and brain insulin resistance (BIR) via insulin receptor substrate-1 (IRS-1) in rat model of Alzheimer’s disease. Neuropharmacology, 2021, 195108662
[47]
Begcevic, I.; Brinc, D.; Brown, M.; Martinez-Morillo, E.; Goldhardt, O.; Grimmer, T.; Magdolen, V.; Batruch, I.; Diamandis, E.P.J.J.o.p. Diamandis, brain-related proteins as potential CSF biomarkers of Alzheimer’s disease: A targeted mass spectrometry approach. J. Proteomics, 2018, 182, 12-20.
[48]
Bellows, S.; Jankovic, J. Parkinsonism and tremor syndromes. J. Neurol. Sci., 2022, 433120018
[http://dx.doi.org/10.1016/j.jns.2021.120018] [PMID: 34686357]
[49]
Wechsler, M.E.; Vela Ramirez, J.E.; Peppas, N.A.J.I. 110th anniversary: nanoparticle mediated drug delivery for the treatment of Alzheimer’s disease: crossing the blood–brain barrier. Ind. Eng. Chem. Res., 2019, 58(33), 15079-15087.
[50]
Hartl, N.; Adams, F.; Merkel, O.M.J.A.t. From adsorption to covalent bonding: Apolipoprotein E functionalization of polymeric nanoparticles for drug delivery across the blood–brain barrier. Adv. Ther., 2020, 4(1)2000092
[51]
Jakki, S.L.; Senthil, V.; Yasam, V.R.; Chandrasekar, M.J.N.; Vijayaraghavan, C. The blood brain barrier and its role in Alzheimer’s therapy: an overview. Curr. Drug Targets, 2018, 19(2), 155-169.
[http://dx.doi.org/10.2174/1389450118666170612100750] [PMID: 28606049]
[52]
Schinkel, A.H. P-Glycoprotein, a gatekeeper in the blood–brain barrier. Adv. Drug Deliv. Rev., 1999, 36(2-3), 179-194.
[http://dx.doi.org/10.1016/S0169-409X(98)00085-4] [PMID: 10837715]
[53]
Arya, M.; Kumar, M.K.M.; Sabitha, M.; Menon, K.N.; Nair, S.C.J.J.O.D.D.S. Nanotechnology approaches for enhanced CNS delivery in treating Alzheimer’s disease. J. Drug Delivery Sci. Technol., 2019, 51, 297-309.
[54]
Fonseca-Santos, B.; Chorilli, M.; Palmira Daflon Gremião, M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine, 2015, 10, 4981-5003.
[http://dx.doi.org/10.2147/IJN.S87148] [PMID: 26345528]
[55]
Anand, A.; Arya, M.; Kaithwas, G.; Singh, G.; Saraf, S.A.J.J.D.D.S. Sucrose stearate as a biosurfactant for development of rivastigmine containing nanostructured lipid carriers and assessment of its activity against dementia in C. elegans model. J. Drug Delivery Sci. Technol.,, 2018, 49(2019), 219-226.
[56]
Chintamaneni, P.K.; Krishnamurthy, P.T.; Pindiprolu, S.K.S.S. Polysorbate-80 surface modified nano-stearylamine BQCA conjugate for the management of Alzheimer’s disease. RSC Advances, 2021, 11(10), 5325-5334.
[http://dx.doi.org/10.1039/D1RA00049G] [PMID: 35423107]
[57]
El-Ganainy, S.O.; Gowayed, M.A.; Agami, M.; Mohamed, P.; Belal, M.; Farid, R.M.; Hanafy, A.S. Galantamine nanoparticles outperform oral galantamine in an Alzheimer’s rat model: pharmacokinetics and pharmacodynamics. Nanomedicine, 2021, 16(15), 1281-1296.
[http://dx.doi.org/10.2217/nnm-2021-0051] [PMID: 34013783]
[58]
Folch, J.; Busquets, O.; Ettcheto, M.; Sánchez-López, E.; Castro-Torres, R.D.; Verdaguer, E.; Garcia, M.L.; Olloquequi, J.; Casadesús, G.; Beas-Zarate, C.; Pelegri, C.; Vilaplana, J.; Auladell, C.; Camins, A. Memantine for the treatment of dementia: a review on its current and future applications. J. Alzheimers Dis., 2018, 62(3), 1223-1240.
[http://dx.doi.org/10.3233/JAD-170672] [PMID: 29254093]
[59]
Kaur, A.; Nigam, K.; Srivastava, S.; Tyagi, A.; Dang, S. Memantine nanoemulsion: a new approach to treat Alzheimer’s disease. J. Microencapsul., 2020, 37(5), 355-365.
[http://dx.doi.org/10.1080/02652048.2020.1756971] [PMID: 32293915]
[60]
Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M.J.C.N. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[61]
Shin, C.Y.; Kim, H.S.; Cha, K.H.; Won, D.H.; Lee, J.Y.; Jang, S.W.; Sohn, U.D. The effects of donepezil, an acetylcholinesterase inhibitor, on impaired learning and memory in rodents. Biomol. Ther., 2018, 26(3), 274-281.
[http://dx.doi.org/10.4062/biomolther.2017.189] [PMID: 29463072]
[62]
Beshir, S.A.; Aadithsoorya, A.M.; Parveen, A.; Goh, S.S.L.; Hussain, N.; Menon, V.B. Aducanumab therapy to treat Alzheimer’s disease: a narrative review. Int. J. Alzheimers Dis., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/9343514] [PMID: 35308835]
[63]
Wang, R.; Reddy, P.H. Role of glutamate and NMDA receptors in Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1041-1048.
[http://dx.doi.org/10.3233/JAD-160763] [PMID: 27662322]
[64]
Guo, J.; Wang, Z.; Liu, R.; Huang, Y.; Zhang, N.; Zhang, R. Memantine, donepezil, or combination therapy—what is the best therapy for Alzheimer’s disease? a network meta-analysis. Brain Behav., 2020, 10(11)e01831
[http://dx.doi.org/10.1002/brb3.1831] [PMID: 32914577]
[65]
Rossignol, D.A.; Frye, R.E. The use of medications approved for Alzheimer’s disease in autism spectrum disorder: a systematic review. Front Pediatr., 2014, 2, 87.
[http://dx.doi.org/10.3389/fped.2014.00087] [PMID: 25202686]
[66]
Pottoo, F.H.; Sharma, S.; Javed, M.N.; Barkat, M.A.; Harshita, M.S. Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab. Rev., 2020, 52(1), 185-204.
[67]
Cesur, S.; Cam, M.E.; Sayin, F.S.; Gunduz, O. Electrically controlled drug release of donepezil and BiFeO3 magnetic nanoparticle-loaded PVA microbubbles/nanoparticles for the treatment of Alzheimer’s disease. J. Drug Deliv. Sci. Technol., 2022.67102977
[http://dx.doi.org/10.1016/j.jddst.2021.102977]
[68]
Vora, L.K.; Moffatt, K.; Tekko, I.A.; Paredes, A.J.; Volpe-Zanutto, F.; Mishra, D.; Peng, K.; Raj Singh Thakur, R.; Donnelly, R.F. Microneedle array systems for long-acting drug delivery. Eur. J. Pharm. Biopharm., 2021, 159, 44-76.
[http://dx.doi.org/10.1016/j.ejpb.2020.12.006] [PMID: 33359666]
[69]
Agrawal, M.; Prathyusha, E.; Ahmed, H.; Dubey, S.K.; Kesharwani, P.; Singhvi, G.; Naidu, V.G.M.; Alexander, A. Biomaterials in treatment of Alzheimer’s disease. Neurochem. Int., 2021, 145105008
[http://dx.doi.org/10.1016/j.neuint.2021.105008] [PMID: 33684545]
[70]
Takeuchi, I.; Suzuki, T.; Makino, K. Iontophoretic transdermal delivery using chitosan-coated PLGA nanoparticles for transcutaneous immunization. Colloids Surf. A Physicochem. Eng. Asp., 2021, 608125607
[http://dx.doi.org/10.1016/j.colsurfa.2020.125607]
[71]
Salwa, L.; Kumar, L. Engrafted stem cell therapy for Alzheimer’s disease: A promising treatment strategy with clinical outcome. J. Control. Release, 2021, 338, 837-857.
[http://dx.doi.org/10.1016/j.jconrel.2021.09.007] [PMID: 34509587]
[72]
Rampino, A.; Borgogna, M.; Bellich, B.; Blasi, P.; Virgilio, F.; Cesàro, A. Chitosan-pectin hybrid nanoparticles prepared by coating and blending techniques. Eur. J. Pharm. Sci., 2016, 84, 37-45.
[http://dx.doi.org/10.1016/j.ejps.2016.01.004] [PMID: 26772898]
[73]
Joshi, S.A.; Chavhan, S.S.; Sawant, K.K. Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. European. J. Pharm. Biopharm., 2010, 76(2), 189-199.
[74]
Nagpal, K.; Singh, S.K.; Mishra, D.N. Optimization of brain targeted chitosan nanoparticles of Rivastigmine for improved efficacy and safety. Int. J. Biol. Macromol., 2013, 59, 72-83.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.024] [PMID: 23597710]
[75]
Misra, S.; Chopra, K.; Sinha, V.R.; Medhi, B. Galantamine-loaded solid–lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv., 2016, 23(4), 1434-1443.
[http://dx.doi.org/10.3109/10717544.2015.1089956] [PMID: 26405825]
[76]
Laserra, S.; Basit, A.; Sozio, P.; Marinelli, L.; Fornasari, E.; Cacciatore, I.; Ciulla, M.; Türkez, H.; Geyikoglu, F.; Di Stefano, A. Solid lipid nanoparticles loaded with lipoyl–memantine codrug: Preparation and characterization. Int. J. Pharm., 2015, 485(1-2), 183-191.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.001] [PMID: 25747452]
[77]
Malekpour-Galogahi, F.; Hatamian-Zarmi, A.; Ganji, F.; Ebrahimi-Hosseinzadeh, B.; Nojoki, F.; Sahraeian, R.; Mokhtari-Hosseini, Z.B. Preparation and optimization of rivastigmine-loaded tocopherol succinate-based solid lipid nanoparticles. J. Liposome Res., 2018, 28(3), 226-235.
[http://dx.doi.org/10.1080/08982104.2017.1349143] [PMID: 28670949]
[78]
Wilkhu, J.S.; Ouyang, D.; Kirchmeier, M.J.; Anderson, D.E.; Perrie, Y. Investigating the role of cholesterol in the formation of non-ionic surfactant based bilayer vesicles: Thermal analysis and molecular dynamics. Int. J. Pharm., 2014, 461(1-2), 331-341.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.063] [PMID: 24333900]
[79]
Rajput, A.; Butani, S. Donepezil HCl liposomes: development, characterization, cytotoxicity, and pharmacokinetic study. AAPS PharmSciTech, 2022, 23(2), 74.
[http://dx.doi.org/10.1208/s12249-022-02209-9] [PMID: 35149912]
[80]
Yang, Z.Z.; Zhang, Y.Q.; Wang, Z.Z.; Wu, K.; Lou, J.N.; Qi, X.R. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int. J. Pharm., 2013, 452(1-2), 344-354.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.009] [PMID: 23680731]
[81]
Li, W.; Zhou, Y.; Zhao, N.; Hao, B.; Wang, X.; Kong, P. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ. Toxicol. Pharmacol., 2012, 34(2), 272-279.
[http://dx.doi.org/10.1016/j.etap.2012.04.012] [PMID: 22613079]
[82]
Basim, P.; Gorityala, S.; Kurakula, M.J.A.O.G.R. Advances in functionalized hybrid biopolymer augmented lipid-based systems: A spotlight on their role in design of gastro retentive delivery systems. Arch Gastroenterol Res., 2021, 2(1), 35-47.
[83]
Madhu, S.; Komala, M.; Pandian, P.J.B. Formulation development and characterization of withaferin-a loaded polymeric nanoparticles for Alzheimer’s disease. Bio Nano Sci.,, 2021, 11(2), 559-566.
[84]
Li, G.; Sun, X.; Wan, X.; Wang, D.J.D.R. Lactoferrin-loaded peg/pla block copolymer targeted with anti-transferrin receptor antibodies for Alzheimer disease. Dose Response, 2020, 18(3), 155.
[85]
Lauzon, M-A.; Marcos, B.; Faucheux, N.J.C.p. Characterization of alginate/chitosan-based nanoparticles and mathematical modeling of their SpBMP-9 release inducing neuronal differentiation of human SH-SY5Y cells. Carbohydr. Polym., 2018, 181, 801-811.
[86]
Kumar, P. Studies on the Potential of Transepidermally Delivered Neuroprotective Agent (s) Loaded Nanoconstructs Through Microneedle Induced Skin Microconduits in Management of Dementia;; Thesis, Maharaja Sayajirao University of Baroda: India, 2020.
[87]
Prathipati, B.; Rohini, P.; Kola, P.K.; Danduga, R.C.S.R. Neuroprotective effects of curcumin loaded solid lipid nanoparticles on homocysteine induced oxidative stress in vascular dementia. Curr. Res. Behav. Sci., 2021, 2100029
[88]
Scuteri, D.; Cassano, R.; Trombino, S.; Russo, R.; Mizoguchi, H.; Watanabe, C.; Hamamura, K.; Katsuyama, S.; Komatsu, T.; Morrone, L.A.J.P. Development and translation of NanoBEO, a nanotechnology-based delivery system of bergamot essential oil deprived of furocumarins, in the control of agitation in severe dementia. Pharmaceutics, 2021, 13(3), 379.
[89]
Saini, S.; Sharma, T.; Jain, A.; Kaur, H.; Katare, O.; Singh, B.J.C.; Biointerfaces, S.B. Biointerfaces, Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer’s disease: A preclinical evidence. Colloids Surf. B Biointerfaces, 2021, 205111838
[90]
Topal, G.R.; Mészáros, M.; Porkoláb, G.; Szecskó, A.; Polgár, T.F.; Siklós, L.; Deli, M.A.; Veszelka, S.; Bozkir, A.J.P. ApoE-targeting increases the transfer of solid lipid nanoparticles with donepezil cargo across a culture model of the blood–brain barrier. Pharmaceutics, 2020, 13(1), 38.
[91]
Thabet, Y.; Elsabahy, M.; Eissa, N.G.J.M. Methods for preparation of niosomes: A focus on thin-film hydration method. Methods, 2022, 199, 9-15.
[92]
Dragićević, N.; Maibach, H.I.J.P.A. Lipid-based vesicles (Liposomes) and their combination with physical methods for dermal and transdermal drug delivery. In: Percutaneous Absorption; CRC Press: Florida, 2021; p. 24.
[93]
Kong, L.; Li, X.; Ni, Y.; Xiao, H.; Yao, Y.; Wang, Y.; Ju, R.; Li, H.; Liu, J.; Fu, M.; Wu, Y.; Yang, J.; Cheng, L. Transferrin-modified osthole pegylated liposomes travel the blood-brain barrier and mitigate alzheimer’s disease-related pathology in APP/PS-1 mice. Int. J. Nanomedicine, 2020, 15, 2841-2858.
[http://dx.doi.org/10.2147/IJN.S239608] [PMID: 32425521]
[94]
Arora, S.; Layek, B.; Singh, J. Design and validation of liposomal ApoE2 gene delivery system to evade blood-brain barrier for effective treatment of Alzheimer’s disease. Mol. Pharm., 2021, 18(2), 714-725.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00461] [PMID: 32787268]
[95]
Kuo, Y-C.; Ng, I-W.; Rajesh, R.J.M.S. Glutathione-and apolipoprotein E-grafted liposomes to regulate mitogen-activated protein kinases and rescue neurons in Alzheimer’s disease. Mater Sci Eng C Mater Biol Appl.,, 2021, 127112233
[96]
Wu, Y.; Zhang, B.; Kebebe, D.; Guo, L.; Guo, H.; Li, N.; Pi, J.; Qi, D.; Guo, P.; Liu, Z. Preparation, optimization and cellular uptake study of tanshinone I nanoemulsion modified with lactoferrin for brain drug delivery. Pharm. Dev. Technol., 2019, 24(8), 982-991.
[http://dx.doi.org/10.1080/10837450.2019.1621897] [PMID: 31107131]
[97]
Çoban, Ö.; Yıldırım, S.; Bakır, T.J.J.P.I. Alpha-lipoic acid and cyanocobalamin co-loaded nanoemulsions: development; characterization, and evaluation of stability. J. Pharm. Innov., 2021, 17, 510-520.
[98]
Agrawal, M.; Saraf, S.; Pradhan, M.; Patel, R.J.; Singhvi, G.; Ajazuddin, A.; Alexander, A. Design and optimization of curcumin loaded nano lipid carrier system using Box-Behnken design. Biomed. Pharmacother., 2021, 141111919
[http://dx.doi.org/10.1016/j.biopha.2021.111919] [PMID: 34328108]
[99]
Tripathi, S.; Gupta, U.; Ujjwal, R.R.; Yadav, A.K. Nano-lipidic formulation and therapeutic strategies for Alzheimer’s disease via intranasal route. J. Microencapsul., 2021, 38(7-8), 572-593.
[http://dx.doi.org/10.1080/02652048.2021.1986585] [PMID: 34591731]
[100]
Zhang, L.; Yang, S.; Wong, L.R.; Xie, H.; Ho, P.C.L. In vitro and in vivo comparison of curcumin-encapsulated chitosan-coated poly(lactic-co-glycolic acid) nanoparticles and curcumin/hydroxypropyl-β-cyclodextrin inclusion complexes administered intranasally as therapeutic strategies for Alzheimer’s disease. Mol. Pharm., 2020, 17(11), 4256-4269.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00675] [PMID: 33084343]
[101]
Vaz, G.R.; Hädrich, G.; Bidone, J.; Rodrigues, J.L.; Falkembach, M.C.; Putaux, J-L.; Hort, M.A.; Monserrat, J.M.; Varela, A.S. Junior; Teixeira, H.F.; Muccillo-Baisch, A.L.; Horn, A.P.; Dora, C.L. Development of nasal lipid nanocarriers containing curcumin for brain targeting. J. Alzheimers Dis., 2017, 59(3), 961-974.
[102]
Phan, L.M.T.; Hoang, T.X.; Vo, T.A.T.; Pham, H.L.; Le, H.T.N.; Chinnadayyala, S.R.; Kim, J.Y.; Lee, S.M.; Cho, W.W.; Kim, Y.H.J.E.R.O.M.D. Nanomaterial-based optical and electrochemical biosensors for amyloid beta and tau: potential for early diagnosis of Alzheimer’s Disease. Expert Rev. Molecul. Diagnos., 2021, 21(2), 175-193.
[103]
Ameri, M.; Shabaninejad, Z.; Movahedpour, A.; Sahebkar, A.; Mohammadi, S.; Hosseindoost, S.; Ebrahimi, M.S.; Savardashtaki, A.; Karimipour, M.; Mirzaei, H. Biosensors for detection of Tau protein as an Alzheimer’s disease marker. Int. J. Biol. Macromol., 2020, 162, 1100-1108.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.239] [PMID: 32603732]
[104]
Xing, W.; Gao, W.; Lv, X.; Xu, X.; Zhang, Z.; Yan, J.; Mao, G.; Bu, Z. The diagnostic value of exosome-derived biomarkers in Alzheimer’s disease and mild cognitive impairment: a meta-analysis. Front. Aging Neurosci., 2021.13637218
[http://dx.doi.org/10.3389/fnagi.2021.637218] [PMID: 33732139]
[105]
Longobardi, A.; Benussi, L.; Nicsanu, R.; Bellini, S.; Ferrari, C.; Saraceno, C.; Zanardini, R.; Catania, M.; Di Fede, G.; Squitti, R.; Binetti, G.; Ghidoni, R. Plasma extracellular vesicle size and concentration are altered in Alzheimer’s disease, dementia with lewy bodies, and frontotemporal dementia. Front. Cell Dev. Biol., 2021.9667369
[http://dx.doi.org/10.3389/fcell.2021.667369] [PMID: 34046409]
[106]
Chen, Y.A.; Lu, C.H.; Ke, C.C.; Chiu, S.J.; Jeng, F.S.; Chang, C.W.; Yang, B.H.; Liu, R.S. Mesenchymal stem cell-derived exosomes ameliorate Alzheimer’s disease pathology and improve cognitive deficits. Biomedicines, 2021, 9(6), 594.
[http://dx.doi.org/10.3390/biomedicines9060594] [PMID: 34073900]
[107]
Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol., 2011, 29(4), 341-345.
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[108]
Yuyama, K.; Sun, H.; Mitsutake, S.; Igarashi, Y. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia. J. Biol. Chem., 2012, 287(14), 10977-10989.
[http://dx.doi.org/10.1074/jbc.M111.324616] [PMID: 22303002]
[109]
Soliman, H.M.; Ghonaim, G.A.; Gharib, S.M.; Chopra, H.; Farag, A.K.; Hassanin, M.H.; Nagah, A.; Emad-Eldin, M.; Hashem, N.E.; Yahya, G.; Emam, S.E.; Hassan, A.E.A.; Attia, M.S. Exosomes in Alzheimer’s disease: from being pathological players to potential diagnostics and therapeutics. Int. J. Mol. Sci., 2021, 22(19), 10794.
[http://dx.doi.org/10.3390/ijms221910794] [PMID: 34639135]
[110]
Wei, H.; Xu, Y.; Xu, W.; Zhou, Q.; Chen, Q.; Yang, M.; Feng, F.; Liu, Y.; Zhu, X.; Yu, M.; Li, Y. Serum exosomal miR-223 serves as a potential diagnostic and prognostic biomarker for dementia. Neuroscience, 2018, 379, 167-176.
[http://dx.doi.org/10.1016/j.neuroscience.2018.03.016] [PMID: 29559383]
[111]
Chao, L.L.; Schuff, N.; Kramer, J.H.; Du, A.T.; Capizzano, A.A.; O’Neill, J.; Wolkowitz, O.M.; Jagust, W.J.; Chui, H.C.; Miller, B.L.; Yaffe, K.; Weiner, M.W. Reduced medial temporal lobe N-acetylaspartate in cognitively impaired but nondemented patients. Neurology, 2005, 64(2), 282-289.
[http://dx.doi.org/10.1212/01.WNL.0000149638.45635.FF] [PMID: 15668426]
[112]
Joshi, P.; Benussi, L.; Furlan, R.; Ghidoni, R.; Verderio, C. Extracellular vesicles in Alzheimer’s disease: friends or foes? Focus on a β-vesicle interaction. Int. J. Mol. Sci., 2015, 16(3), 4800-4813.
[http://dx.doi.org/10.3390/ijms16034800] [PMID: 25741766]
[113]
Aziz, F.J.C.i. The emerging role of miR-223 as novel potential diagnostic and therapeutic target for inflammatory disorders. Cell. Immunol., 2016, 303, 1-6.
[114]
Jiang, L.; Dong, H.; Cao, H.; Ji, X.; Luan, S.; Liu, J. exosomes in pathogenesis, diagnosis, and treatment of Alzheimer’s Disease. Med. Sci. Monit., 2019, 25, 3329-3335.
[http://dx.doi.org/10.12659/MSM.914027] [PMID: 31056537]
[115]
Xin, H.; Li, Y.; Cui, Y.; Yang, J.J.; Zhang, Z.G.; Chopp, M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J. Cereb. Blood Flow Metab., 2013, 33(11), 1711-1715.
[http://dx.doi.org/10.1038/jcbfm.2013.152] [PMID: 23963371]
[116]
Sasi, S.; Joseph, S.K.; Arian, A.M.; Thomas, S. V.U., A., G.K., A., Nair, S. C. An updated review on the application of dendrimers as successful nanocarriers for brain delivery of therapeutic moieties. Int. J. Appl. Pharmac., 2021, 13(1), 1-9.
[117]
Patocka, J.; Jun, D.; Kuca, K. Possible role of hydroxylated metabolites of tacrine in drug toxicity and therapy of Alzheimer’s disease. Curr. Drug Metab., 2008, 9(4), 332-335.
[http://dx.doi.org/10.2174/138920008784220619] [PMID: 18473751]
[118]
de los Ríos, C.; Marco-Contelles, J. Tacrines for Alzheimer’s disease therapy. III. The pyridotacrines. Eur. J. Med. Chem., 2019, 166, 381-389.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.005] [PMID: 30739821]
[119]
Igartúa, D.E.; Martinez, C.S.; Del, V. Alonso, S.; Prieto, M.J. Combined Therapy for Alzheimer’s Disease: Tacrine and PAMAM dendrimers co-administration reduces the side effects of the drug without modifying its activity. AAPS Pharm. Sci. Tech., 2020, 21(3), 110.
[http://dx.doi.org/10.1208/s12249-020-01652-w] [PMID: 32215751]
[120]
Brambilla, D.; Le Droumaguet, B.; Nicolas, J.; Hashemi, S.H.; Wu, L.P.; Moghimi, S.M.; Couvreur, P.; Andrieux, K. Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomedicine, 2011, 7(5), 521-540.
[http://dx.doi.org/10.1016/j.nano.2011.03.008] [PMID: 21477665]
[121]
Nazem, A.; Mansoori, G.A.J.I.J. Nanotechnology for Alzheimer’s disease detection and treatment. Insci. J., 2011, 1(4), 169-193.
[122]
Sonvico, F.; Clementino, A.; Buttini, F.; Colombo, G.; Pescina, S.; Stanisçuaski Guterres, S.; Raffin Pohlmann, A.; Nicoli, S. Surface-modified nanocarriers for nose-to-brain delivery: From bioadhesion to targeting. Pharmaceutics, 2018, 10(1), 34.
[http://dx.doi.org/10.3390/pharmaceutics10010034] [PMID: 29543755]
[123]
Vega-Villa, K.R.; Takemoto, J.K.; Yáñez, J.A.; Remsberg, C.M.; Forrest, M.L.; Davies, N.M. Clinical toxicities of nanocarrier systems. Adv. Drug Deliv. Rev., 2008, 60(8), 929-938.
[http://dx.doi.org/10.1016/j.addr.2007.11.007] [PMID: 18313790]
[124]
Zhang, W.; Wang, W.; Yu, D.X.; Xiao, Z.; He, Z. Application of nanodiagnostics and nanotherapy to CNS diseases. Nanomedicine, 2018, 13(18), 2341-2371.
[http://dx.doi.org/10.2217/nnm-2018-0163] [PMID: 30088440]
[125]
Salvati, A.; Pitek, A.S.; Monopoli, M.P.; Prapainop, K.; Bombelli, F.B.; Hristov, D.R.; Kelly, P.M.; Åberg, C.; Mahon, E.; Dawson, K.A. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol., 2013, 8(2), 137-143.
[http://dx.doi.org/10.1038/nnano.2012.237] [PMID: 23334168]
[126]
Hajipour, M.J.; Santoso, M.R.; Rezaee, F.; Aghaverdi, H.; Mahmoudi, M.; Perry, G. Advances in Alzheimer’s diagnosis and therapy: the implications of nanotechnology. Trends Biotechnol., 2017, 35(10), 937-953.
[http://dx.doi.org/10.1016/j.tibtech.2017.06.002] [PMID: 28666544]
[127]
Ling, T.S.; Chandrasegaran, S.; Xuan, L.Z.; Suan, T.L.; Elaine, E.; Nathan, D.V.; Chai, Y.H.; Gunasekaran, B.; Salvamani, S. The potential benefits of nanotechnology in treating Alzheimer’s disease. BioMed Res. Int., 2021, 2021, 1-9.
[http://dx.doi.org/10.1155/2021/5550938] [PMID: 34285915]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy