Generic placeholder image

International Journal of Sensors, Wireless Communications and Control

Editor-in-Chief

ISSN (Print): 2210-3279
ISSN (Online): 2210-3287

Research Article

In Vivo Diagnostic Real-time Wireless Sensing of Glucose in Human Urine and Live Fish Deep Brain Cells

Author(s): Suw Young Ly*, Kwang Jin Choi, Ji Hyun Kim and Kyung Lee

Volume 12, Issue 7, 2022

Published on: 16 November, 2022

Page: [543 - 552] Pages: 10

DOI: 10.2174/2210327913666221026170156

Price: $65

Abstract

Background: A method for the diagnosis of glucose was developed using square-wave anodic stripping voltammetry (SWASV).

Objective: With mercury immobilized onto the carbon nanotube using a handmade paste electrode (HgPE). In this study, the method of modification probe was first tried directly on live cells and untreated human urine.

Methods: The optimized results indicated a sensitive peak signal of glucose on the HgPE. Curves were obtained within a concentration range of 10ngL-1~14mgL-1 with a preconcentration time of 100 sec.

Results: The observed relative standard deviation (RSD) was 0.279 (n=15), with a glucose concentration of 1 ugL-1 under optimum conditions and a 50-sec accumulation. A low detection limit (S/N) of 0.6 ngL-1 (2.99×10-12 M) was also attained, which is better sensitive than other methods of 58 M, 7 uM, 2×10-6M, 0.13 mg/ml, 8 mM, 40 mM.

Conclusion: The final results indicate that the method could be applied to the diagnosis of glucose in human urine and deep live fish brain cells in real-time using wireless, and the method can be used in assays, in vivo and in real-time, without requiring any pretreatment and other pharmaceutical or medicinal analysis, as well as other materials requiring diagnostic analyses.

« Previous
Graphical Abstract

[1]
Raut S, Patel R, Pervaiz I, Al-Ahmad AJ. Abeta peptides disrupt the barrier integrity and glucose metabolism of human induced pluripotent stem cell-derived brain microvascular endothelial cells. Neurotoxicology 2022; 89: 110-20.
[http://dx.doi.org/10.1016/j.neuro.2022.01.007] [PMID: 35065085]
[2]
Masson SWC, Sorrenson B, Shepherd PR, Merry TL. β-catenin regulates muscle glucose transport via actin remodelling and M-cadherin binding. Mol Metab 2020; 42: 101091.
[http://dx.doi.org/10.1016/j.molmet.2020.101091]
[3]
Lee SR, Choi EK, Han KD, Lee SH, Oh S. Effect of the variability of blood pressure, glucose level, total cholesterol level, and body mass index on the risk of atrial fibrillation in a healthy population. Heart Rhythm 2020; 17(1): 12-9.
[http://dx.doi.org/10.1016/j.hrthm.2019.07.006] [PMID: 31299298]
[4]
Wadghiri MZ, Idri A, El Idrissi T, Hakkoum H. Ensemble blood glucose prediction in diabetes mellitus: A review. Comput Biol Med 2022; 147: 105674.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105674] [PMID: 35716436]
[5]
Park JS, Choi JS, Han DK. Platinum nanozyme-hydrogel composite (PtNZHG)-impregnated cascade sensing system for one-step glucose detection in serum, urine, and saliva. Sens Actuators B Chem 2022; 359: 131585.
[http://dx.doi.org/10.1016/j.snb.2022.131585]
[6]
Ramesh G, Wood AC, Allison MA, et al. Associations between adherence to the dietary approaches to stop hypertension (DASH) diet and six glucose homeostasis traits in the Microbiome and Insulin Longitudinal Evaluation Study (MILES). Nutr Metab Cardiovasc Dis 2022; 32(6): 1418-26.
[http://dx.doi.org/10.1016/j.numecd.2022.03.014] [PMID: 35459606]
[7]
Botero D, Wolfsdorf JI. Diabetes mellitus in children and adolescents. Arch Med Res 2005; 36(3): 281-90.
[http://dx.doi.org/10.1016/j.arcmed.2004.12.002] [PMID: 15925018]
[8]
Hood RC, Chen Y, Sindelar DK, et al. The effect of prestudy insulin therapy on safety and efficacy of human regular U-500 insulin by pump or injection: A posthoc analysis. Endocr Pract 2021; 27(8): 783-9.
[http://dx.doi.org/10.1016/j.eprac.2021.01.012]
[9]
McDonald TS, Neal ES, Borges K. Fructose 1,6-bisphosphate is anticonvulsant and improves oxidative glucose metabolism within the hippocampus and liver in the chronic pilocarpine mouse epilepsy model. Epilepsy Behav 2021; 122: 108223.
[http://dx.doi.org/10.1016/j.yebeh.2021.108223] [PMID: 34388666]
[10]
Yang X, Zhou Z, Xiao D, Choi MMF. A fluorescent glucose biosensor based on immobilized glucose oxidase on bamboo inner shell membrane. Biosens Bioelectron 2006; 21(8): 1613-20.
[http://dx.doi.org/10.1016/j.bios.2005.08.004] [PMID: 16168632]
[11]
Liu G, Lin Y. Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes. Electrochem Commun 2006; 8(2): 251-6.
[http://dx.doi.org/10.1016/j.elecom.2005.11.015]
[12]
Horgan AM, Marshall AJ, Kew SJ, Dean KES, Creasey CD, Kabilan S. Crosslinking of phenylboronic acid receptors as a means of glucose selective holographic detection. Biosens Bioelectron 2006; 21(9): 1838-45.
[http://dx.doi.org/10.1016/j.bios.2005.11.028]
[13]
Qijin C, Shaojun D. Amperometric biosensors on the immobilization of oxidases in a prussian blue film by electrochemical codeposition. Anal Chim Acta 1995; 310: 429-36.
[http://dx.doi.org/10.1016/0003-2670(95)00152-P]
[14]
Chávez-Servín JL, Castellote AI, López-Sabater MC. Analysis of mono- and disaccharides in milk-based formulae by high-performance liquid chromatography with refractive index detection. J Chromatogr A 2004; 1043(2): 211-5.
[http://dx.doi.org/10.1016/j.chroma.2004.06.002] [PMID: 15330094]
[15]
Krikstopaitis K, Kulys J, Tetianec L. Bioelectrocatalytical glucose oxidation with phenoxazine modified glucose oxidase. Electrochem Commun 2004; 6(4): 331-6.
[http://dx.doi.org/10.1016/j.elecom.2004.01.011]
[16]
Lau K-T, de Fortescu SAL, Murphy LJ, Slater JM. Disposable glucose sensors for flow injection analysis using substituted 1,4-benzoquinone mediators. Electroanalysis 2003; 15(11): 975-81.
[http://dx.doi.org/10.1002/elan.200390118]
[17]
Cho IH, Choi KJ, Kim JH, Lee K, Ly SY. Analysis of Staphylococcus aureus molecules in non-treated blood using mercury immobilized carbon nanotube sensor. Molecules 2022; 27(6): 1837.
[http://dx.doi.org/10.3390/molecules27061837] [PMID: 35335199]
[18]
Ludmila Ř. Hasoň Stanislav, Daňhel Aleš, Fojta Miroslav, Ostatna Veronika. Catalytic and redox activity of nucleic acids at mercury electrodes: Roles of nucleobase residues. J Electroanal Chem (Lausanne) 2020; 856: 113812.
[19]
Havran L, Vacek J, Dorčák V. Free and bound histidine in reactions at mercury electrode. J Electroanal Chem (Lausanne) 2022; 916: 116336.
[http://dx.doi.org/10.1016/j.jelechem.2022.116336]
[20]
Dong Ho Kim, Choi Jeeyu, Park Hyeon Jeong, et al. Virtual rapid sensing of COVID-19 virus antibodies in patients blood by using platinized antigen linking graphene probe. Biomed J Sci Tech Res 2022; 42: 34021-8.
[21]
Pietrzak K, Wardak C. Comparative study of nitrate all solid state ion-selective electrode based on multiwalled carbon nanotubesionic liquid nanocomposite. Sens Actuators B Chem 2021; 348: 130720.
[http://dx.doi.org/10.1016/j.snb.2021.130720]
[22]
Olga Matyshevska, Olga Anna Yu, Shtogun Yaroslav, et al. Self-organizing DNA/carbon nanotube molecular films. Mater Sci Eng C 2001; 15: 249-52.
[23]
Hakawati NA, Alharthi SS, Danil de Namor AF. Thermodynamics, a suitable reporter in the design of mercury (II) ion selective electrodes. Arab J Chem 2020; 13(12): 8671-83.
[http://dx.doi.org/10.1016/j.arabjc.2020.09.059]
[24]
Anik Tutum M, Aslan S. Fabrication of biofuel cell based on nanomaterial modified composite glassy carbon paste electrode. Curr Anal Chem 2015; 12(1): 54-9.
[http://dx.doi.org/10.2174/1573411011666150709162320]
[25]
Cho IH, Choi KJ, Choi J, Lee K, Ly SY. Trace assay of insulin in a pharmacy drug with a paste electrode. Amino Acids 2022.
[http://dx.doi.org/10.1007/s00726-022-03172-2] [PMID: 35701570]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy