Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Long Non-coding RNA LINC00473 Promotes Breast Cancer Progression via miR-424-5p/CCNE1 Pathway

Author(s): Chao Zhang* and Ting Yang

Volume 30, Issue 1, 2023

Published on: 08 December, 2022

Page: [72 - 84] Pages: 13

DOI: 10.2174/0929866530666221026164454

Price: $65

Abstract

Background: There has been a large increase in the incidence of breast cancer (BC) among women. LINC00473 is a cancer-related lncRNA, participating in the progression of many cancers, but its role in the progression of BC awaits more elaboration.

Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was used to quantify LINC00473, miR-424-5p, and cyclin E1 (CCNE1) mRNA expression levels in BC tissues and cells. Cell counting kit-8 (CCK-8) assay was employed to detect the cell viability; the cell migration and invasion abilities were evaluated by the Transwell assay. Western blot and immunohistochemistry (IHC) were adopted to study CCNE1 protein expression; dual-luciferase reporter assay was performed to clarify the targeting relationships among LINC00473, miR-424-5p, and CCNE1.

Results: LINC00473 expression was elevated in BC tissues and cell lines, which was associated with lymph node metastasis and higher clinical stage of the patients with BC. LINC00473 proved to be a molecular sponge for miR-424-5p; LINC00473 knockdown impeded the growth, migration, invasion, and epithelial-mesenchymal transition of BC cells, while these effects were abolished by miR-424-5p inhibitors; miR-424-5p targeted CCNE1 to restrain its expression. LINC00473 positively regulated CCNE1 expression, and CCNE1 restoration counteracted the effects induced by LINC00473 knockdown in BC cells.

Conclusion: LINC00473 facilitates the progression of BC through miR-424-5p/CCNE1 axis.

Graphical Abstract

[1]
Fahad, U.M. Breast cancer: Current perspectives on the disease status. Adv. Exp. Med. Biol., 2019, 1152, 51-64.
[http://dx.doi.org/10.1007/978-3-030-20301-6_4] [PMID: 31456179]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Mampre, D.; Mehkri, Y.; Rajkumar, S.; Sriram, S.; Hernandez, J.; Lucke, W.B.; Chandra, V. Treatment of breast cancer brain metastases: radiotherapy and emerging preclinical approaches. Diagn. Ther., 2022, 1(1), 23-36.
[http://dx.doi.org/10.55976/dt.1202216523-36] [PMID: 35782783]
[4]
Wu, S.; Zhu, W.; Thompson, P.; Hannun, Y.A. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat. Commun., 2018, 9(1), 3490.
[http://dx.doi.org/10.1038/s41467-018-05467-z] [PMID: 30154431]
[5]
Sarid, R.; Gao, S.J. Viruses and human cancer: From detection to causality. Cancer Lett., 2011, 305(2), 218-227.
[http://dx.doi.org/10.1016/j.canlet.2010.09.011] [PMID: 20971551]
[6]
Khan, S.; Zaidi, S.; Alouffi, A.S.; Hassan, I.; Imran, A.; Khan, R.A. Computational proteome-wide study for the prediction of Escherichia coli protein targeting in host cell organelles and their implication in development of colon cancer. ACS Omega, 2020, 5(13), 7254-7261.
[http://dx.doi.org/10.1021/acsomega.9b04042] [PMID: 32280866]
[7]
Khan, S.; Imran, A.; Malik, A.; Chaudhary, A.A.; Rub, A.; Jan, A.T.; Syed, J.B.; Rolfo, C. Bacterial imbalance and gut pathologies: Association and contribution of E. coli in inflammatory bowel disease. Crit. Rev. Clin. Lab. Sci., 2019, 56(1), 53112008.
[http://dx.doi.org/10.1080/10408363.2018.1517144] [PMID: 30373492]
[8]
Khan, S.; Zakariah, M.; Rolfo, C.; Robrecht, L.; Palaniappan, S. Prediction of Mycoplasma hominis proteins targeting in mitochondria and cytoplasm of host cells and their implication in prostate cancer etiology. Oncotarget, 2017, 8(19), 30830-30843.
[http://dx.doi.org/10.18632/oncotarget.8306] [PMID: 27027344]
[9]
Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136(4), 629-641.
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[10]
Bhan, A.; Soleimani, M.; Mandal, S.S. Long noncoding RNA and cancer: A new paradigm. Cancer Res., 2017, 77(15), 3965-3981.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2634] [PMID: 28701486]
[11]
Guan, Y.X.; Zhang, M.; Chen, X.Z.; Zhang, Q.; Liu, S.Z.; Zhang, Y.L. Lnc RNA SNHG20 participated in proliferation, invasion, and migration of breast cancer cells via miR‐495. J. Cell. Biochem., 2018, 119(10), 7971-7981.
[http://dx.doi.org/10.1002/jcb.26588] [PMID: 29236315]
[12]
Zhang, Y.; Li, Z.; Chen, M.; Chen, H.; Zhong, Q.; Liang, L.; Li, B. lncRNA TCL6 correlates with immune cell infiltration and indicates worse survival in breast cancer. Breast Cancer, 2020, 27(4), 573-585.
[http://dx.doi.org/10.1007/s12282-020-01048-5] [PMID: 31960363]
[13]
Bai, J.; Zhao, W.Y.; Li, W.J.; Ying, Z.W.; Jiang, D.Q. Long noncoding RNA LINC00473 indicates a poor prognosis of breast cancer and accelerates tumor carcinogenesis by competing endogenous sponging miR-497. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(8), 3410-3420.
[PMID: 31081095]
[14]
Wang, L.; Zhang, X.; Sheng, L.; Qiu, C.; Luo, R. LINC00473 promotes the taxol resistance via miR-15a in colorectal cancer. Biosci. Rep., 2018, 38(5), BSR20180790.
[http://dx.doi.org/10.1042/BSR20180790] [PMID: 30126852]
[15]
Zhao, C.C.; Jiao, Y.; Zhang, Y.Y.; Ning, J.; Zhang, Y.R.; Xu, J.; Wei, W.; Kang, S.G. Lnc SMAD5-AS1 as ceRNA inhibit proliferation of diffuse large B cell lymphoma via Wnt/β-catenin pathway by sponging miR-135b-5p to elevate expression of APC. Cell Death Dis., 2019, 10(4), 252.
[http://dx.doi.org/10.1038/s41419-019-1479-3] [PMID: 30874550]
[16]
Wang, L.; Zhang, J. Long intergenic ncRNA 00473 improves the invasion of trophoblastic cells via miR-16-5p. Pregnancy Hypertens., 2021, 23, 174-184.
[http://dx.doi.org/10.1016/j.preghy.2020.12.003] [PMID: 33422740]
[17]
Li, S.; Lv, C.; Li, J.; Xie, T.; Liu, X.; Zheng, Z.; Qin, Z.; Hui, X.; Yu, Y. LncRNA LINC00473 promoted colorectal cancer cell proliferation and invasion by targeting miR-195 expression. Am. J. Transl. Res., 2021, 13(6), 6066-6075.
[PMID: 34306345]
[18]
Qin, P.; Li, Y.; Liu, J.; Wang, N. Knockdown of LINC00473 promotes radiosensitivity of non-small cell lung cancer cells via sponging miR-513a-3p. Free Radic. Res., 2020, 54(10), 756-764.
[http://dx.doi.org/10.1080/10715762.2020.1841900] [PMID: 33103510]
[19]
Fan, G.; Liu, J.; Zhang, Y.; Guan, X. LINC00473 exacerbates osteoarthritis development by promoting chondrocyte apoptosis and proinflammatory cytokine production through the miR-424-5p/LY6E axis. Exp. Ther. Med., 2021, 22(5), 1247.
[http://dx.doi.org/10.3892/etm.2021.10682] [PMID: 34539843]
[20]
Liu, C.; Li, H.; Zhang, Y.; Ding, H. Long intergenic noncoding RNA 00473 promoting migration and invasion of trophoblastic cell line HTR ‐8/SVNEO via regulating MIR ‐424‐5p‐mediated wnt3a/β‐catenin signaling pathway. J. Obstet. Gynaecol. Res., 2021, 47(9), 3034-3046.
[http://dx.doi.org/10.1111/jog.14870] [PMID: 34109708]
[21]
Li, Y.; Liu, J.; Hu, W.; Zhang, Y.; Sang, J.; Li, H.; Ma, T.; Bo, Y.; Bai, T.; Guo, H.; Lu, Y.; Xue, X.; Niu, M.; Ge, S.; Wen, S.; Wang, B.; Gao, W.; Wu, Y. miR-424-5p promotes proliferation, migration and invasion of laryngeal squamous cell carcinoma. OncoTargets Ther., 2019, 12, 10441-10453.
[http://dx.doi.org/10.2147/OTT.S224325] [PMID: 31819525]
[22]
Wang, J.; Wang, S.; Zhou, J.; Qian, Q. miR-424-5p regulates cell proliferation, migration and invasion by targeting doublecortin-like kinase 1 in basal-like breast cancer. Biomed. Pharmacother., 2018, 102, 147-152.
[http://dx.doi.org/10.1016/j.biopha.2018.03.018] [PMID: 29550638]
[23]
Etemadmoghadam, D.; Au, Y.G.; Wall, M.; Mitchell, C.; Kansara, M.; Loehrer, E.; Batzios, C.; George, J.; Ftouni, S.; Weir, B.A.; Carter, S.; Gresshoff, I.; Mileshkin, L.; Rischin, D.; Hahn, W.C.; Waring, P.M.; Getz, G.; Cullinane, C.; Campbell, L.J.; Bowtell, D.D. Resistance to CDK2 inhibitors is associated with selection of polyploid cells in CCNE1-amplified ovarian cancer. Clin. Cancer Res., 2013, 19(21), 5960-5971.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1337] [PMID: 24004674]
[24]
Dapas, B.; Farra, R.; Grassi, M.; Giansante, C.; Fiotti, N.; Uxa, L.; Rainaldi, G.; Mercatanti, A.; Colombatti, A.; Spessotto, P.; Lacovich, V.; Guarnieri, G.; Grassi, G. Role of E2F1-cyclin E1-cyclin E2 circuit in human coronary smooth muscle cell proliferation and therapeutic potential of its downregulation by siRNAs. Mol. Med., 2009, 15(9-10), 297-306.
[http://dx.doi.org/10.2119/molmed.2009.00030] [PMID: 19603101]
[25]
Akli, S.; Keyomarsi, K. Cyclin E and its low molecular weight forms in human cancer and as targets for cancer therapy. Cancer Biol. Ther., 2003, 2(Suppl. 1), 37-46.
[http://dx.doi.org/10.4161/cbt.201] [PMID: 14508079]
[26]
Zhao, Z.M.; Yost, S.E.; Hutchinson, K.E.; Li, S.M.; Yuan, Y.C.; Noorbakhsh, J.; Liu, Z.; Warden, C.; Johnson, R.M.; Wu, X.; Chuang, J.H.; Yuan, Y. CCNE1 amplification is associated with poor prognosis in patients with triple negative breast cancer. BMC Cancer, 2019, 19(1), 96.
[http://dx.doi.org/10.1186/s12885-019-5290-4] [PMID: 30665374]
[27]
Song, B.N.; Kim, S.K.; Chu, I.S. Bioinformatic identification of prognostic signature defined by copy number alteration and expression of CCNE1 in non-muscle invasive bladder cancer. Exp. Mol. Med., 2017, 49(1), e282.
[http://dx.doi.org/10.1038/emm.2016.120] [PMID: 28082741]
[28]
Li, W.; Zhang, G.; Wang, H.L.; Wang, L. Analysis of expression of cyclin E, p27kip1 and Ki67 protein in colorectal cancer tissues and its value for diagnosis, treatment and prognosis of disease. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(23), 4874-4879.
[PMID: 27981549]
[29]
Lei, K.F.; Liu, B.Y.; Jin, X.L.; Guo, Y.; Ye, M.; Zhu, Z.G. Prognostic value of nuclear maspin expression for adjuvant 5-fluorouracil-based chemotherapy in advanced gastric cancer. Exp. Ther. Med., 2012, 3(6), 993-998.
[http://dx.doi.org/10.3892/etm.2012.532] [PMID: 22970005]
[30]
Jiang, B.; Wu, D.; Huang, L.; Fang, H. miR-424-5p inhibited malignant behavior of colorectal cancer cells by targeting CCNE1. In: Panminerva Med.;; Hangzhou: China, 2019.
[http://dx.doi.org/10.23736/S0031-0808.19.03708-X] [PMID: 31355613]
[31]
Schmitz, S.U.; Grote, P.; Herrmann, B.G. Mechanisms of long noncoding RNA function in development and disease. Cell. Mol. Life Sci., 2016, 73(13), 2491-2509.
[http://dx.doi.org/10.1007/s00018-016-2174-5] [PMID: 27007508]
[32]
Li, Z.; Qian, J.; Li, J.; Zhu, C. Knockdown of lncRNA HOTAIR downregulates the drug resistance of breast cancer cells to doxorubicin via the PI3K/AKT/mTOR signaling pathway. Exp. Ther. Med., 2019, 18(1), 435-442.
[http://dx.doi.org/10.3892/etm.2019.7629] [PMID: 31281438]
[33]
He, Z. LINC00473/miR-497-5p regulates esophageal squamous cell carcinoma progression through targeting PRKAA1. Cancer Biother. Radiopharm., 2019, 34(10), 650-659.
[http://dx.doi.org/10.1089/cbr.2019.2875] [PMID: 31584290]
[34]
Chen, H.; Yang, F.; Li, X.; Gong, Z.J.; Wang, L.W. Long noncoding RNA LNC473 inhibits the ubiquitination of survivin via association with USP9X and enhances cell proliferation and invasion in hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun., 2018, 499(3), 702-710.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.215] [PMID: 29605299]
[35]
Shi, X.; Wang, X. LINC00473 mediates cyclin D1 expression through a balance between activation and repression signals in breast cancer cells. FEBS Lett., 2019, 593(7), 751-759.
[http://dx.doi.org/10.1002/1873-3468.13353] [PMID: 30848493]
[36]
Wang, H.; Tan, Z.; Hu, H.; Liu, H.; Wu, T.; Zheng, C.; Wang, X.; Luo, Z.; Wang, J.; Liu, S.; Lu, Z.; Tu, J. microRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1. BMC Cancer, 2019, 19(1), 738.
[http://dx.doi.org/10.1186/s12885-019-5951-3] [PMID: 31351450]
[37]
Huang, Z.M.; Ge, H.F.; Yang, C.C.; Cai, Y.; Chen, Z.; Tian, W.Z.; Tao, J.L. MicroRNA‐26a‐5p inhibits breast cancer cell growth by suppressing RNF6 expression. Kaohsiung J. Med. Sci., 2019, 35(8), kjm2.12085.
[http://dx.doi.org/10.1002/kjm2.12085] [PMID: 31063232]
[38]
Lu, G.; Li, Y.; Ma, Y.; Lu, J.; Chen, Y.; Jiang, Q.; Qin, Q.; Zhao, L.; Huang, Q.; Luo, Z.; Huang, S.; Wei, Z. Long noncoding RNA LINC00511 contributes to breast cancer tumourigenesis and stemness by inducing the miR-185-3p/E2F1/Nanog axis. J. Exp. Clin. Cancer Res., 2018, 37(1), 289.
[http://dx.doi.org/10.1186/s13046-018-0945-6] [PMID: 30482236]
[39]
Noske, A.; Henricksen, L.A.; LaFleur, B.; Zimmermann, A.K.; Tubbs, A.; Singh, S.; Storz, M.; Fink, D.; Moch, H. Characterization of the 19q12 amplification including CCNE1 and URI in different epithelial ovarian cancer subtypes. Exp. Mol. Pathol., 2015, 98(1), 47-54.
[http://dx.doi.org/10.1016/j.yexmp.2014.12.004] [PMID: 25527175]
[40]
Kuhn, E.; Bahadirli, T.A.; Shih, I.M. Frequent CCNE1 amplification in endometrial intraepithelial carcinoma and uterine serous carcinoma. Mod. Pathol., 2014, 27(7), 1014-1019.
[http://dx.doi.org/10.1038/modpathol.2013.209] [PMID: 24309323]
[41]
Kim, B.; Shin, H.C.; Heo, Y.J.; Ha, S.Y.; Jang, K.T.; Kim, S.T.; Kang, W.K.; Lee, J.; Kim, K.M. CCNE1 amplification is associated with liver metastasis in gastric carcinoma. Pathol. Res. Pract., 2019, 215(8), 152434.
[http://dx.doi.org/10.1016/j.prp.2019.152434] [PMID: 31178228]
[42]
Gorski, J.W.; Ueland, F.R.; Kolesar, J.M. CCNE1 amplification as a predictive biomarker of chemotherapy resistance in epithelial ovarian cancer. Diagnostics, 2020, 10(5), 279.
[http://dx.doi.org/10.3390/diagnostics10050279] [PMID: 32380689]
[43]
Yuan, Q.; Zheng, L.; Liao, Y.; Wu, G. Overexpression of CCNE1 confers a poorer prognosis in triple-negative breast cancer identified by bioinformatic analysis. World J. Surg. Oncol., 2021, 19(1), 86.
[http://dx.doi.org/10.1186/s12957-021-02200-x] [PMID: 33757543]
[44]
Luo, Q.; Wei, C.; Li, X.; Li, J.; Chen, L.; Huang, Y.; Song, H.; Li, D.; Fang, L. MicroRNA-195-5p is a potential diagnostic and therapeutic target for breast cancer. Oncol. Rep., 2014, 31(3), 1096-1102.
[http://dx.doi.org/10.3892/or.2014.2971] [PMID: 24402230]
[45]
Luo, Q.; Li, X.; Li, J.; Kong, X.; Zhang, J.; Chen, L.; Huang, Y.; Fang, L. MiR-15a is underexpressed and inhibits the cell cycle by targeting CCNE1 in breast cancer. Int. J. Oncol., 2013, 43(4), 1212-1218.
[http://dx.doi.org/10.3892/ijo.2013.2034] [PMID: 23900351]
[46]
Guo, X.; Connick, M.; Vanderhoof, J.; Ishak, M.A.; Hartley, R. MicroRNA-16 modulates HuR regulation of cyclin E1 in breast cancer cells. Int. J. Mol. Sci., 2015, 16(12), 7112-7132.
[http://dx.doi.org/10.3390/ijms16047112] [PMID: 25830480]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy