Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Solid Lipid Nanoparticles (SLNs): Advancements in Modification Strategies Toward Drug Delivery Vehicle

Author(s): Galal Mohsen Hussein Al-Sayadi, Abhishek Verma, Yash Choudhary, Pallavi Sandal, Preeti Patel, Dilpreet Singh, Ghanshyam Das Gupta and Balak Das Kurmi*

Volume 11, Issue 2, 2023

Published on: 19 December, 2022

Page: [138 - 154] Pages: 17

DOI: 10.2174/2211738511666221026163303

Price: $65

Abstract

Solid lipid nanoparticles are at the cornerstone of the swiftly growing area of medical nanotechnology, having several potential functions in drug delivery, research, clinical care, and a variety of other fields. They provide the opportunity of developing novel therapies due to their unique properties, such as small particle size and being prepared from physiological biodegradable lipids. The loading of bioactive molecules into nanocarriers is a novel drug delivery prototype employed for various drug targeting levels. Hence, SLNs hold a great promise for achieving the aim of targeted and controlled drug delivery. For this reason, they have attracted the extensive attention of scientists and researchers. This review is based on recent studies and research, and here we present advantages, disadvantages, and preparation methods, several advanced modifications, targeting strategies, and recent applications of solid lipid nanocarriers in drug delivery systems.

Graphical Abstract

[1]
Solid lipid nanoparticle: A novel approach in drug delivery system. World J Pharm Res 2019; 8(1): 434-57.
[http://dx.doi.org/10.20959/wjpr20191-13858]
[2]
Alavi M, Hamidi M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab Pers Ther 2019; 34(1): 1-8.
[http://dx.doi.org/10.1515/dmpt-2018-0032] [PMID: 30707682]
[3]
Basha SK, Dhandayuthabani R, Muzammil MS, Kumari VS. Solid lipid nanoparticles for oral drug delivery. Mater Today Proc 2019; 36: 313-24.
[http://dx.doi.org/10.1016/j.matpr.2020.04.109]
[4]
Kleinberg M. What is the current and future status of conventional amphotericin B? Int J Antimicrob Agents 2006; 27(1): 12-6.
[http://dx.doi.org/10.1016/j.ijantimicag.2006.03.013]
[5]
Mehnert W, Mäder K. Solid lipid nanoparticles: Production, characterization and applications Drug Deliv Rev 2012; 64: 83-101.
[http://dx.doi.org/10.1016/j.addr.2012.09.021]
[6]
Wissing SA, Müller RH. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity-in vivo study. Eur J Pharm Biopharm 2003; 56(1): 67-72.
[http://dx.doi.org/10.1016/S0939-6411(03)00040-7] [PMID: 12837483]
[7]
Mura P, Maestrelli F, D’Ambrosio M, Luceri C, Cirri M. Evaluation and comparison of solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as vectors to develop hydrochlorothiazide effective and safe pediatric oral liquid formulations. Pharmaceutics 2021; 13(4): 437.
[http://dx.doi.org/10.3390/pharmaceutics13040437] [PMID: 33804945]
[8]
Mu A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery – Drug release and release mechanism. Pharmaceutics 1998; 45: 149-55.
[9]
Dahlman P. High pressure Jet Assistance in steel turning. Doktorsavhandlingar vid Chalmers TekHogsk 2005; 50(2314): 1-63.
[10]
Duan Y, Dhar A, Patel C, et al. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Advances 2020; 10(45): 26777-91.
[http://dx.doi.org/10.1039/D0RA03491F] [PMID: 35515778]
[11]
Jumaa M, Müller BW. Lipid emulsions as a novel system to reduce the hemolytic activity of lytic agents: Mechanism of the protective effect. Eur J Pharm Sci 2000; 9(3): 285-90.
[http://dx.doi.org/10.1016/S0928-0987(99)00071-8] [PMID: 10594386]
[12]
Salunkhe SS, Bhatia NM, Bhatia MS. Implications of formulation design on lipid-based nanostructured carrier system for drug delivery to brain. Drug Deliv 2016; 23(4): 1306-16.
[http://dx.doi.org/10.3109/10717544.2014.943337] [PMID: 25080227]
[13]
Ganesan P, Ramalingam P, Karthivashan G, Ko YT, Choi DK. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int J Nanomedicine 2018; 13: 1569-83.
[http://dx.doi.org/10.2147/IJN.S155593] [PMID: 29588585]
[14]
Saha AK, Zhen MYS, Erogbogbo F, Ramasubramanian AK. Design considerations and assays for hemocompatibility of FDA-approved nanoparticles. Semin Thromb Hemost 2020; 46(5): 637-52.
[http://dx.doi.org/10.1055/s-0039-1688491] [PMID: 31404934]
[15]
Ban C, Myeongsu J, Young HP. Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chem 2020; 302(August): 125328.
[http://dx.doi.org/10.1016/j.foodchem.2019.125328]
[16]
Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 2004; 56(9): 1257-72.
[http://dx.doi.org/10.1016/j.addr.2003.12.002] [PMID: 15109768]
[17]
Mahalingam RV, Lakshmi K, Krishna KP, et al. Intravenous administration of trans-resveratrol-loaded TPGS-coated solid lipid nanoparticles for prolonged systemic circulation, passive brain targeting and improved in vitro cytotoxicity against C6 glioma cell lines. RSC Advances 2016; 6: 50336-48.
[http://dx.doi.org/10.1039/C6RA10777J]
[18]
Yadav A, Sunkaria A, Singhal N, Sandhir R. Resveratrol loaded solid lipid nanoparticles attenuate mitochondrial oxidative stress in vascular dementia by activating Nrf2/HO1 pathway. Neurochem Int 2017; 112: 239-54.
[http://dx.doi.org/10.1016/j.neuint.2017.08.001] [PMID: 28782592]
[19]
Neves AR, Lúcio M, Martins S, Luís J, Lima C. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int J Nanomedicine 2013; •••: 177-87.
[20]
Bayón-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel) 2019; 9(3): 474.
[http://dx.doi.org/10.3390/nano9030474] [PMID: 30909401]
[21]
Karamchedu S, Tunki L, Kulhari H, Pooja D. Morin hydrate loaded solid lipid nanoparticles: Characterization, stability, anticancer activity, and bioavailability. Chem Phys Lipids 2020; 233(August): 104988.
[http://dx.doi.org/10.1016/j.chemphyslip.2020.104988] [PMID: 33035545]
[22]
Salah E, Abouelfetouh MM, Pan Y, Chen D, Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf B Biointerfaces 2020; 196(August): 111305.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111305] [PMID: 32795844]
[23]
Veni DK, Gupta NV. Development and evaluation of eudragit coated environmental sensitive solid lipid nanoparticles using central composite design module for enhancement of oral bioavailability of linagliptin. Int J Polym Mater 2020; 69(7): 407-18.
[http://dx.doi.org/10.1080/00914037.2019.1570513]
[24]
Rahat I, Rizwanullah M, Gilani SJ, et al. Thymoquinone loaded chitosan - Solid lipid nanoparticles: Formulation optimization to oral bioavailability study. J Drug Deliv Sci Technol 2021; 64(March): 102565.
[http://dx.doi.org/10.1016/j.jddst.2021.102565]
[25]
Grillone A, Riva ER, Mondini A, et al. Active targeting of sorafenib: Preparation, characterization, and in vitro testing of drug-loaded magnetic solid lipid nanoparticles. Adv Healthc Mater 2015; 4(11): 1681-90.
[http://dx.doi.org/10.1002/adhm.201500235] [PMID: 26039933]
[26]
Ahmadifard Z, Ahmeda A, Rasekhian M, Moradi S, Arkan E. Chitosan-coated magnetic solid lipid nanoparticles for controlled release of letrozole. J Drug Deliv Sci Technol 2020; 57(January): 101621.
[http://dx.doi.org/10.1016/j.jddst.2020.101621]
[27]
Ebrahimi HA, Javadzadeh Y, Hamidi M, Jalali MB. Repaglinide-loaded solid lipid nanoparticles: Effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. Daru 2015; 23(1): 46.
[http://dx.doi.org/10.1186/s40199-015-0128-3] [PMID: 26392174]
[28]
Rawat MK, Jain A, Mishra A, Muthu MS, Singh S. Effect of lipid matrix on repaglinide-loaded solid lipid nanoparticles for oral delivery. Ther Deliv 2010; 1(1): 63-73.
[http://dx.doi.org/10.4155/tde.10.7] [PMID: 22816120]
[29]
Pandey SS, Patel MA, Desai DT, et al. Bioavailability enhancement of repaglinide from transdermally applied nanostructured lipid carrier gel: Optimization, in vitro and in vivo studies. J Drug Deliv Sci Technol 2020; 57(March): 101731.
[http://dx.doi.org/10.1016/j.jddst.2020.101731]
[30]
Vigani B, Valentino C, Sandri G, et al. A composite nanosystem as a potential tool for the local treatment of glioblastoma: Chitosan-coated solid lipid nanoparticles embedded in electrospun nanofibers. Polymers 2021; 13(9): 1371.
[http://dx.doi.org/10.3390/polym13091371] [PMID: 33922214]
[31]
Topal GR, Mészáros M, Porkoláb G, et al. ApoE-targeting increases the transfer of solid lipid nanoparticles with donepezil cargo across a culture model of the blood–brain barrier. Pharmaceutics 2020; 13(1): 38.
[http://dx.doi.org/10.3390/pharmaceutics13010038] [PMID: 33383743]
[32]
Patil K, Bagade S, Bonde S, Sharma S, Saraogi G. Recent therapeutic approaches for the management of tuberculosis: Challenges and opportunities. Biomed Pharmacother 2018; 99(January): 735-45.
[http://dx.doi.org/10.1016/j.biopha.2018.01.115] [PMID: 29710471]
[33]
Musielak E, Feliczak-Guzik A, Nowak I. Optimization of the conditions of solid lipid nanoparticles (SLN) synthesis. Molecules 2022; 27(7): 2202.
[http://dx.doi.org/10.3390/molecules27072202] [PMID: 35408600]
[34]
Tiwari R, Pathak K. Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: Comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int J Pharm 2011; 415(1-2): 232-43.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.044] [PMID: 21640809]
[35]
Rizvi SZH, Shah FA, Khan N, et al. Simvastatin-loaded solid lipid nanoparticles for enhanced anti-hyperlipidemic activity in hyperlipidemia animal model. Int J Pharm 2019; 560: 136-43.
[http://dx.doi.org/10.1016/j.ijpharm.2019.02.002] [PMID: 30753932]
[36]
Yassemi A, Kashanian S, Zhaleh H. Folic acid receptor-targeted solid lipid nanoparticles to enhance cytotoxicity of letrozole through induction of caspase-3 dependent-apoptosis for breast cancer treatment. Pharm Dev Technol 2020; 25(4): 397-407.
[http://dx.doi.org/10.1080/10837450.2019.1703739] [PMID: 31893979]
[37]
Nasirizadeh S, Malaekeh-Nikouei B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J Drug Deliv Sci Technol 2020; 55: 101458.
[http://dx.doi.org/10.1016/j.jddst.2019.101458]
[38]
Scioli Montoto S, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front Mol Biosci 2020; 7(October): 587997.
[http://dx.doi.org/10.3389/fmolb.2020.587997] [PMID: 33195435]
[39]
de Oliveira IF, Barbosa EJ, Peters MCC, et al. Cutting-edge advances in therapy for the posterior segment of the eye: Solid lipid nanoparticles and nanostructured lipid carriers. Int J Pharm 2020; 589(August): 119831.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119831] [PMID: 32877729]
[40]
Kumar R, Singh A, Sharma K, Dhasmana D, Garg N, Siril PF. Preparation, characterization and in vitro cytotoxicity of fenofibrate and nabumetone loaded solid lipid nanoparticles. Mater Sci Eng C 2020; 106: 110184.
[http://dx.doi.org/10.1016/j.msec.2019.110184] [PMID: 31753394]
[41]
Souto EB, Müller RH. Lipid nanoparticles: Effect on bioavailability and pharmacokinetic changes. Handb Exp Pharmacol 2010; 197(197): 115-41.
[http://dx.doi.org/10.1007/978-3-642-00477-3_4] [PMID: 20217528]
[42]
Abo-zalam HB, El-Denshary ES, Abdelsalam RM, Khalil IA, Khattab MM, Hamzawy MA. Therapeutic advancement of simvastatin-loaded solid lipid nanoparticles (SV-SLNs) in treatment of hyperlipidemia and attenuating hepatotoxicity, myopathy and apoptosis: Comprehensive study. Biomed Pharmacother 2021; 139(February): 111494.
[http://dx.doi.org/10.1016/j.biopha.2021.111494] [PMID: 34243595]
[43]
Huang S, He J, Cao L, Lin H, Zhang W, Zhong Q. Improved physicochemical properties of curcumin-loaded solid lipid nanoparticles stabilized by sodium caseinate-lactose maillard conjugate. J Agric Food Chem 2020; 68(26): 7072-81.
[http://dx.doi.org/10.1021/acs.jafc.0c01171] [PMID: 32511914]
[44]
Rajpoot K, Jain SK. Oral delivery of ph-responsive alginate microbeads incorporating folic acid-grafted solid lipid nanoparticles exhibits enhanced targeting effect against colorectal cancer: A dual-targeted approach. Int J Biol Macromol 2020; 151: 830-44.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.132] [PMID: 32061847]
[45]
Culturato M, Allan R, Garcia-Fossa F, et al. The in vivo toxicological profile of cationic solid lipid nanoparticles. Drug Deliv Transl Res 2020; 10(1): 34-42.
[46]
Patil J, Rajput R, Nemade R, Naik J. Preparation and characterization of artemether loaded solid lipid nanoparticles: A 3 2 factorial design approach. Mater Technol 2020; 35(11-12): 719-26.
[http://dx.doi.org/10.1080/10667857.2018.1475142]
[47]
Youngren SR, Tekade RK, Gustilo B, Hoffmann PR, Chougule MB. STAT6 siRNA matrix-loaded gelatin nanocarriers: Formulation, characterization, and ex vivo proof of concept using adenocarcinoma cells. Biomed Res Int 2013; 2013
[48]
Andega S, Kanikkannan N, Singh M. Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin. J Control Release 2001; 77(1-2): 17-25.
[49]
Lippacher A, Müller RH, Mäder K. Investigation on the viscoelastic properties of lipid based colloidal drug carriers. Int J Pharm 2000; 196(2): 227-30.
[50]
Alsaad AAA, Hussien AA, Gareeb MM. Solid lipid nanoparticles (SLN) as a novel drug delivery system: A theoretical review. Syst Rev Pharm 2020; 11(5): 259-73.
[http://dx.doi.org/10.31838/srp.2020.5.39]
[51]
Centre N, Electrochemistry T. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. Mater Sci Eng C Mater Biol Appl 2016; 68: 982-94.
[http://dx.doi.org/10.1016/j.msec.2016.05.119]
[52]
Gao S, McClements DJ. Formation and stability of solid lipid nanoparticles fabricated using phase inversion temperature method. Colloids Surf A Physicochem Eng Asp 2016; 499: 79-87.
[http://dx.doi.org/10.1016/j.colsurfa.2016.03.065]
[53]
Pereira I. Zielińska A, Ferreira NR, Silva AM, Souto EB. Optimization of linalool-loaded solid lipid nanoparticles using experimental factorial design and long-term stability studies with a new centrifugal sedimentation method. Int J Pharm 2018; 549(1-2): 261-70.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.068] [PMID: 30075252]
[54]
Shirodkar RK, Kumar L, Mutalik S, Lewis S. Solid lipid nanoparticles and nanostructured lipid carriers: Emerging lipid based drug delivery systems. Pharm Chem J 2019; 53(5): 440-53.
[http://dx.doi.org/10.1007/s11094-019-02017-9]
[55]
Elbahwy IA, Ibrahim HM, Ismael HR, Kasem AA. Enhancing bioavailability and controlling the release of glibenclamide from optimized solid lipid nanoparticles. J Drug Deliv Sci Technol 2017; 38: 78-89.
[http://dx.doi.org/10.1016/j.jddst.2017.02.001]
[56]
Malik P, Shankar R, Malik V, Sharma N, Mukherjee TK. Green chemistry based benign routes for nanoparticle synthesis nanoparticles: A glance. J Nanopart Res 2014; 2014: 1-14. [Available from:] https://downloads.hindawi.com/archive/2014/302429.pdf
[57]
Taylor P. Towards green membranes: Preparation of cellulose acetate ultrafiltration membranes using methyl lactate as a biosolvent. Int J Sustain Eng 2015; •••: 37-41.
[http://dx.doi.org/10.1080/19397038.2010.497230]
[58]
Duong VA, Nguyen TTL, Maeng HJ. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method. Molecules 2020; 25(20): 4781.
[http://dx.doi.org/10.3390/molecules25204781] [PMID: 33081021]
[59]
Mishra V, Bansal K, Verma A, et al. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics 2018; 10(4): 191.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[60]
Ganesan P, Narayanasamy D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain Chem Pharm 2017; 6(May): 37-56.
[http://dx.doi.org/10.1016/j.scp.2017.07.002]
[61]
Westesen K, Michel HJ, Heike B. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int J Pharm 1996; 129(1-2): 159-73.
[62]
Jaiswal P, Gidwani B, Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells Nanomed Biotechnol 2014; (january): 1-14.
[http://dx.doi.org/10.3109/21691401.2014.909822]
[63]
Shah R, Eldridge D, Palombo ER, Harding I. Production Techniques. In: Lipid Nanoparticles: Production, Characterization and Stability. Ed.: Springer Cham 2015; Vol. 1: pp. 1-97.
[64]
Izquierdo P, Esquena J, Tadros TF, et al. Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir 2002; 18(1): 26-30.
[http://dx.doi.org/10.1021/la010808c]
[65]
Iqbal MA, Md S, Sahni JK, Baboota S, Dang S, and Ali J. Nanostructured lipid carriers system: recent advances in drug delivery. J Drug Target 2012; 20: 813-30.
[http://dx.doi.org/10.3109/1061186X.2012.716845]
[66]
Battaglia L, Gallarate M, Cavalli R, Trotta M. Solid lipid nanoparticles produced through a coacervation method. J Microencapsul 2010; 27(May): 78-85.
[http://dx.doi.org/10.3109/02652040903031279]
[67]
Chattopadhyay P, Shekunov BY, Yim D, Cipolla D, Boyd B, Farr S. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv Drug Deliv Rev 2007; 59: 444-53.
[http://dx.doi.org/10.1016/j.addr.2007.04.010]
[68]
Pedersen N, Hansen S, Heydenreich AV, Kristensen HG, Poulsen HS. Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands. Eur J Pharm Biopharm 2006; 62: 155-62.
[http://dx.doi.org/10.1016/j.ejpb.2005.09.003]
[69]
Battaglia L, Trotta M, Gallarate M, Carlotti ME, Zara GP, Bargoni A. Solid lipid nanoparticles formed by solvent-in-water emulsion – diffusion technique: Development and influence on insulin stability. J Microencapsul 2007; 24(7): 660-72.
[http://dx.doi.org/10.1080/02652040701532981]
[70]
Schubert MA, Mu CC. Solvent injection as a new approach for manufacturing lipid nanoparticles – evaluation of the method and process parameters. Eur J Pharm Biopharm 2003; 55: 125-35.
[http://dx.doi.org/10.1016/S0939-6411(02)00130-3]
[71]
Chattopadhyay P, Huff R, Shekunov BY. Drug encapsulation using supercritical fluid extraction of emulsions. J Pharm Sci 2006; 95(3): 667-79.
[http://dx.doi.org/10.1002/jps.20555]
[72]
Mahardika M, Abral H, Kasim A, Arief S, Asrofi M. Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers (Basel) 2018; 6(2): 28.
[http://dx.doi.org/10.3390/fib6020028]
[73]
Ricaurte L, Perea-Flores MJ, Martinez A, Quintanilla-Carvajal MX. Production of high-oleic palm oil nanoemulsions by high-shear homogenization (microfluidization). Innov Food Sci Emerg Technol 2016; 35(April): 75-85.
[http://dx.doi.org/10.1016/j.ifset.2016.04.004]
[74]
Janiszewska E. Jedlińska A, Witrowa-Rajchert D. Effect of homogenization parameters on selected physical properties of lemon aroma powder. Food Bioprod Process 2015; 94: 405-13.
[http://dx.doi.org/10.1016/j.fbp.2014.05.006]
[75]
Tang Z, Senkov ON, Parish CM, et al. Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization. Mater Sci Eng A 2015; 647: 229-40.
[http://dx.doi.org/10.1016/j.msea.2015.08.078]
[76]
Souto EB, Doktorovova S, Zielinska A, Silva AM. Key production parameters for the development of solid lipid nanoparticles by high shear homogenization. Pharm Dev Technol 2019; 24(9): 1181-5.
[http://dx.doi.org/10.1080/10837450.2019.1647235] [PMID: 31354002]
[77]
Ezzati Nazhad Dolatabadi J, Hamishehkar H, Valizadeh H. Development of dry powder inhaler formulation loaded with alendronate solid lipid nanoparticles: Solid-state characterization and aerosol dispersion performance. Drug Dev Ind Pharm 2015; 41(9): 1431-7.
[http://dx.doi.org/10.3109/03639045.2014.956111] [PMID: 25220930]
[78]
Mai H, Nguyen T, Le T, Nguyen D, Bach L. Evaluation of conditions affecting properties of Gac (Momordica cocochinensis Spreng) oil-loaded solid lipid nanoparticles (SLNs) synthesized using high-speed homogenization process. Processes 2019; 7(2): 90.
[http://dx.doi.org/10.3390/pr7020090]
[79]
Daneshmand S, Golmohammadzadeh S, Jaafari MR, et al. Encapsulation challenges, the substantial issue in solid lipid nanoparticles characterization. J Cell Biochem 2018; 119(6): 4251-64.
[http://dx.doi.org/10.1002/jcb.26617] [PMID: 29243841]
[80]
Pooja D, Tunki L, Kulhari H, Reddy BB, Sistla R. Optimization of solid lipid nanoparticles prepared by a single emulsification-solvent evaporation method. Data Brief 2016; 6: 15-9.
[http://dx.doi.org/10.1016/j.dib.2015.11.038] [PMID: 26759823]
[81]
Ezzati Nazhad Dolatabadi J, Valizadeh H, Hamishehkar H. Solid lipid nanoparticles as efficient drug and gene delivery systems: Recent breakthroughs. Adv Pharm Bull 2015; 5(2): 151-9.
[http://dx.doi.org/10.15171/apb.2015.022] [PMID: 26236652]
[82]
Becker Peres L, Becker Peres L, de Araújo PHH, Sayer C. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloids Surf B Biointerfaces 2016; 140: 317-23.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.033] [PMID: 26764112]
[83]
Ramalingam P, Ko YT. Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf B Biointerfaces 2016; 139: 52-61.
[http://dx.doi.org/10.1016/j.colsurfb.2015.11.050] [PMID: 26700233]
[84]
Rosière R, Van Woensel M, Gelbcke M, et al. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol Pharm 2018; 15(3): 899-910.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00846] [PMID: 29341619]
[85]
Jnaidi R, Almeida AJ, Gonçalves LM. Solid lipid nanoparticles and nanostructured lipid carriers as smart drug delivery systems in the treatment of glioblastoma multiforme. Pharmaceutics 2020; 12(9): 860.
[http://dx.doi.org/10.3390/pharmaceutics12090860] [PMID: 32927610]
[86]
Pardeshi CV, Rajput PV, Belgamwar VS, Tekade AR, Surana SJ. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: Application of factorial design approach. Drug Deliv 2013; 20(1): 47-56.
[http://dx.doi.org/10.3109/10717544.2012.752421] [PMID: 23311653]
[87]
Shi LL, Xie H, Lu J, et al. Positively charged surface-modified solid lipid nanoparticles promote the intestinal transport of docetaxel through multifunctional mechanisms in rats. Mol Pharm 2016; 13(8): 2667-76.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00226] [PMID: 27379550]
[88]
Perteghella S, et al. Anti-angiogenic activity of uncoated- and n,ocarboxymethyl- chitosan surface modified-Gelucire® 50/13 based solid lipid nanoparticles for oral delivery of curcumin Drug Deliv Sci Technol 2020; 56: 101494.
[http://dx.doi.org/10.1016/j.jddst.2019.101494]
[89]
Mody VV, Cox A, Shah S. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci 2014; 4: 385-92.
[http://dx.doi.org/10.1007/s13204-013-0216-y]
[90]
Zhao S, Zhang Y, Han Y, Wang J, Yang J. Preparation and characterization of cisplatin magnetic solid lipid nanoparticles (MSLNs): Effects of loading procedures of Fe3O4 nanoparticles. Pharm Res 2015; 32(2): 482-91.
[http://dx.doi.org/10.1007/s11095-014-1476-2] [PMID: 25171973]
[91]
Ansari M, Bigham A, Hassanzadeh-Tabrizi SA, Abbastabar Ahangar H. Synthesis and characterization of Cu0.3Zn0.5Mg0.2Fe2O4 nanoparticles as a magnetic drug delivery system. J Magn Magn Mater 2017; •••: 439.
[92]
Oliveira RR, Carrião MS, Pacheco MT, et al. Triggered release of paclitaxel from magnetic solid lipid nanoparticles by magnetic hyperthermia. Mater Sci Eng C 2018; 92: 547-53.
[http://dx.doi.org/10.1016/j.msec.2018.07.011] [PMID: 30184781]
[93]
Abidi H, Mehrorang G, Abdollah R. Magnetic solid lipid nanoparticles co-loaded with albendazole as an anti-parasitic drug: Sonochemical preparation, characterization, and in vitro drug release. J Mol Liq 2018; 268: 11-8.
[http://dx.doi.org/10.1016/j.molliq.2018.06.116]
[94]
Grillone A, Matteo B, Stefania M. Nutlin-loaded magnetic solid lipid nanoparticles for targeted glioblastoma treatment. Nanomedicine 2018; 14(6)
[95]
Wu X, Chen H, Wu C, et al. Inhibition of intrinsic coagulation improves safety and tumor-targeted drug delivery of cationic solid lipid nanoparticles. Biomaterials 2018; 156: 77-87.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.040] [PMID: 29190500]
[96]
Doktorovova S, Shegokar R, Rakovsky E, et al. Cationic solid lipid nanoparticles (cSLN): Structure, stability and DNA binding capacity correlation studies. Int J Pharm 2011; 420(2): 341-9.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.042] [PMID: 21907778]
[97]
Kuo YC, Rajesh R. Nerve growth factor-loaded heparinized cationic solid lipid nanoparticles for regulating membrane charge of induced pluripotent stem cells during differentiation 2017; 77: 680-89.
[http://dx.doi.org/10.1016/j.msec.2017.03.303]
[98]
Silva AM, Martins-Gomes C, Fangueiro JF, Andreani T, Souto EB. Comparison of antiproliferative effect of epigallocatechin gallate when loaded into cationic solid lipid nanoparticles against different cell lines. Pharm Dev Technol 2019; 24(10): 1243-9.
[http://dx.doi.org/10.1080/10837450.2019.1658774] [PMID: 31437118]
[99]
Li S, Yang Y, Lin X, et al. Biocompatible cationic solid lipid nanoparticles as adjuvants effectively improve humoral and T cell immune response of foot and mouth disease vaccines. Vaccine 2020; 38(11): 2478-86.
[http://dx.doi.org/10.1016/j.vaccine.2020.02.004] [PMID: 32057580]
[100]
Liu J, Huang Y, Kumar A, et al. pH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 2014; 32(4): 693-710.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.009] [PMID: 24309541]
[101]
Yang XZ, Du XJ, Liu Y, et al. Rational design of polyion complex nanoparticles to overcome cisplatin resistance in cancer therapy. Adv Mater 2014; 26(6): 931-6.
[http://dx.doi.org/10.1002/adma.201303360] [PMID: 24338636]
[102]
Chuang CH, Wu PC, Tsai TH, et al. Development of pH-sensitive cationic PEGylated solid lipid nanoparticles for selective cancer-targeted therapy. J Biomed Nanotechnol 2017; 13(2): 192-203.
[http://dx.doi.org/10.1166/jbn.2017.2338] [PMID: 29377649]
[103]
Zheng G, Zheng M, Yang B, Fu H, Li Y. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomed Pharmacother 2019; 116(440): 109006.
[http://dx.doi.org/10.1016/j.biopha.2019.109006] [PMID: 31152925]
[104]
Ma C, Wu M, Ye W, et al. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: Macrophage-targeting and pH-sensitive properties. Drug Deliv Transl Res 2021; 11(3): 1218-35.
[http://dx.doi.org/10.1007/s13346-020-00849-7] [PMID: 32946043]
[105]
da Rocha MCO, da Silva PB, Radicchi MA, et al. Docetaxel-loaded solid lipid nanoparticles prevent tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells. J Nanobiotechnology 2020; 18(1): 43.
[http://dx.doi.org/10.1186/s12951-020-00604-7] [PMID: 32164731]
[106]
Sabir F, Katona G, Ismail R, Sipos B, Ambrus R, Csóka I. Development and characterization of N-propyl gallate encapsulated solid lipid nanoparticles-loaded hydrogel for intranasal delivery. Pharmaceuticals (Basel) 2021; 14(7): 696.
[http://dx.doi.org/10.3390/ph14070696] [PMID: 34358121]
[107]
Brannigan RP, Khutoryanskiy VV. Progress and current trends in the synthesis of novel polymers with enhanced mucoadhesive properties. Macromol Biosci 2019; 19(10): 1900194.
[http://dx.doi.org/10.1002/mabi.201900194] [PMID: 31361091]
[108]
Casettari L, Illum L. Chitosan in nasal delivery systems for therapeutic drugs. J Control Release 2014; 190: 189-200.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.003] [PMID: 24818769]
[109]
Trotta V, Pavan B, Ferraro L, et al. Brain targeting of resveratrol by nasal administration of chitosan-coated lipid microparticles. Eur J Pharm Biopharm 2018; 127: 250-9.
[http://dx.doi.org/10.1016/j.ejpb.2018.02.010] [PMID: 29486302]
[110]
Tsai ML, Bai SW, Chen RH. Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan - sodium tripolyphosphate nanoparticle. Carbohydr Polym 2008; 71: 448-57.
[http://dx.doi.org/10.1016/j.carbpol.2007.06.015]
[111]
Caramella C, Ferrari F, Bonferoni MC, Rossi S, Sandri G. Chitosan and its derivatives as drug penetration enhancers. J Drug Deliv Sci Technol 2010; 20(1): 5-13.
[http://dx.doi.org/10.1016/S1773-2247(10)50001-7]
[112]
Zambito Y, Di Colo G. Chitosan and its derivatives as intraocular penetration enhancers. J Drug Deliv Sci Technol 2010; 20(1): 45-52.
[http://dx.doi.org/10.1016/S1773-2247(10)50005-4]
[113]
Sandri G, Motta S, Bonferoni MC, et al. Chitosan-coupled solid lipid nanoparticles: Tuning nanostructure and mucoadhesion. Eur J Pharm Biopharm 2017; 110: 13-8.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.010] [PMID: 27989765]
[114]
Youssef N, Kassem AA, Farid RM, Ismail FA, El-Massik MAE, and Boraie NA. A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting: Preparation, characterization and in vivo evaluation. Int J Pharm 2018; 548: 609-24.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.014]
[115]
Vieira ACC, Chaves LL, Pinheiro S, et al. Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. Int J Pharm 2018; 536(1): 478-85.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.071] [PMID: 29203137]
[116]
Piazzini V, Cinci L, Luceri C, Bilia AR, Bergonzi MC. Solid lipid nanoparticles and chitosan-coated solid lipid nanoparticles as promising tool for silybin delivery: Formulation, characterization. Curr Drug Deliv 2019; 142-52.
[http://dx.doi.org/10.2174/1567201815666181008153602]
[117]
Saini S, Sharma T, Jain A, Kaur H, Katare OP, Singh B. Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer’s disease: A preclinical evidence. Colloids Surf B Biointerfaces 2021; 205(May): 111838.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111838] [PMID: 34022704]
[118]
Rudhrabatla VSAP, Sudhakar B, Reddy KVNS. In vitro and in vivo assessment of designed melphalan loaded stealth solid lipid nanoparticles for parenteral delivery. Bionanoscience 2020; 10(1): 168-90.
[http://dx.doi.org/10.1007/s12668-019-00680-6]
[119]
Santonocito D, Raciti G, Campisi A, et al. Astaxanthin-loaded stealth lipid nanoparticles (AST-SSLN) as potential carriers for the treatment of alzheimer’s disease: Formulation development and optimization. Nanomaterials 2021; 11(2): 391.
[http://dx.doi.org/10.3390/nano11020391] [PMID: 33546352]
[120]
Kumar H, Navya D, Shivendu PN, Nandita R, Eric D. Nanoscience in Medicine. 2020; 40: p. (4)494.
[121]
Anthony DP, Hegde M, Shetty SS, Rafic T, Mutalik S, Rao BSS. Targeting receptor-ligand chemistry for drug delivery across blood-brain barrier in brain diseases. Life Sci 2021; 274: 119326.
[http://dx.doi.org/10.1016/j.lfs.2021.119326] [PMID: 33711385]
[122]
Mohammed AS, Mansoor C, Zeeshan QM, Alan PM. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx 2005; 2(4): 554-71.
[123]
Song H, Wei M, Zhang N, et al. Enhanced permeability of blood–brain barrier and targeting function of brain via borneol-modified chemically solid lipid nanoparticle. Int J Nanomedicine 2018; 13: 1869-79.
[http://dx.doi.org/10.2147/IJN.S161237] [PMID: 29636606]
[124]
Moghimi SM, Porter CJH, Muir IS, Illum L, Davis SS. Non-phagocytic uptake of intravenously injected microspheres in rat spleen: Influence of particle size and hydrophilic coating. Biochem Biophys Res Commun 1991; 177(2): 861-6.
[http://dx.doi.org/10.1016/0006-291X(91)91869-E] [PMID: 2049107]
[125]
Alajami HN, Fouad EA, Ashour AE, Kumar A, Yassin AEB. Celecoxib-loaded solid lipid nanoparticles for colon delivery: Formulation optimization and in vitro assessment of anti-cancer activity. Pharmaceutics 2022; 14(1): 131.
[http://dx.doi.org/10.3390/pharmaceutics14010131] [PMID: 35057027]
[126]
Li H, Qu X, Qian W, Song Y, Wang C, Liu W. Andrographolide-loaded solid lipid nanoparticles enhance anti-cancer activity against head and neck cancer and precancerous cells. Oral Dis 2022; 28(1): 142-9.
[http://dx.doi.org/10.1111/odi.13751] [PMID: 33295090]
[127]
Shin MD, Shukla S, Chung YH, et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotechnol 2020; 15(8): 646-55.
[http://dx.doi.org/10.1038/s41565-020-0737-y] [PMID: 32669664]
[128]
McKay PF, Hu K, Blakney AK, et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nat Commun 2020; 11(1): 3523.
[http://dx.doi.org/10.1038/s41467-020-17409-9] [PMID: 32647131]
[129]
Thanh T, Estelle JAS, Jung SL. Lipid-based nanoparticles in the clinic and clinical trials: From cancer nanomedicine to COVID-19 vaccines. Vaccines (Basel) 2021; •••: 1-29.
[130]
Shamsi J, Rainò G, Kovalenko MV, Stranks SD. To nano or not to nano for bright halide perovskite emitters. Nat Nanotechnol 2021; 16(11): 1164-8.
[http://dx.doi.org/10.1038/s41565-021-01005-z] [PMID: 34759354]
[131]
Chung YH, Beiss V, Fiering SN, Steinmetz NF. COVID-19 vaccine frontrunners and their nanotechnology design. ACS Nano 2020; 14(10): 12522-37.
[http://dx.doi.org/10.1021/acsnano.0c07197] [PMID: 33034449]
[132]
Jose J, Netto G. Role of solid lipid nanoparticles as photoprotective agents in cosmetics. J Cosmet Dermatol 2019; 18(1): 315-21.
[http://dx.doi.org/10.1111/jocd.12504] [PMID: 29441672]
[133]
Netto MPharm G, Jose J. Development, characterization, and evaluation of sunscreen cream containing solid lipid nanoparticles of silymarin. J Cosmet Dermatol 2018; 17(6): 1073-83.
[http://dx.doi.org/10.1111/jocd.12470] [PMID: 29226503]
[134]
Freag MS, Elnaggar YSR, Abdelmonsif DA, Abdallah OY. Stealth, biocompatible monoolein-based lyotropic liquid crystalline nanoparticles for enhanced aloe-emodin delivery to breast cancer cells: In vitro and in vivo studies. Int J Nanomedicine 2016; 11: 4799-818.
[http://dx.doi.org/10.2147/IJN.S111736] [PMID: 27703348]
[135]
Esposito E, Drechsler M, Mariani P, et al. Lipid nanoparticles for administration of poorly water soluble neuroactive drugs. Biomed Microdevices 2017; 19(3): 44.
[http://dx.doi.org/10.1007/s10544-017-0188-x] [PMID: 28526975]
[136]
Loureiro J, Andrade S, Duarte A, et al. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules 2017; 22(2): 277.
[http://dx.doi.org/10.3390/molecules22020277] [PMID: 28208831]
[137]
Vakilinezhad MA, Amini A, Akbari Javar H, Baha’addini Beigi Zarandi BF, Montaseri H, Dinarvand R. Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in alzheimer’s disease animal model by reducing tau hyperphosphorylation. Daru 2018; 26(2): 165-77.
[http://dx.doi.org/10.1007/s40199-018-0221-5] [PMID: 30386982]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy