Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Lactoferrin: An Effective Weapon in the Battle Against Bacterial Infections

Author(s): Christian Avalos-Gómez, Gerardo Ramírez-Rico, Lucero Ruiz-Mazón, Nidia León Sicairos, Jesús Serrano-Luna and Mireya de la Garza*

Volume 28, Issue 40, 2022

Published on: 04 November, 2022

Page: [3243 - 3260] Pages: 18

DOI: 10.2174/1381612829666221025153216

Price: $65

Abstract

The emergence of multidrug-resistant bacterial strains with respect to commercially available antimicrobial drugs has marked a watershed in treatment therapies to fight pathogens and has stimulated research on alternative remedies. Proteins of the innate immune system of mammals have been highlighted as potentially yielding possible treatment options for infections. Lactoferrin (Lf) is one of these proteins; interestingly, no resistance to it has been found. Lf is a conserved cationic nonheme glycoprotein that is abundant in milk and is also present in low quantities in mucosal secretions. Moreover, Lf is produced and secreted by the secondary granules of neutrophils at infection sites. Lf is a molecule of approximately 80 kDa that displays multiple functions, such as antimicrobial, anti-viral, anti-inflammatory, and anticancer actions. Lf can synergize with antibiotics, increasing its potency against bacteria. Lactoferricins (Lfcins) are peptides resulting from the N-terminal end of Lf by proteolytic cleavage with pepsin. They exhibit several anti-bacterial effects similar to those of the parental glycoprotein. Synthetic analog peptides exhibiting potent antimicrobial properties have been designed. The aim of this review is to update understanding of the structure and effects of Lf and Lfcins as anti-bacterial compounds, focusing on the mechanisms of action in bacteria and the use of Lf in treatment of infections in patients, including those studies where no significant differences were found. Lf could be an excellent option for prevention and treatment of bacterial diseases, mainly in combined therapies with antibiotics or other antimicrobials.

Next »
[1]
Groves ML. The isolation of a red protein from milk2. J Am Chem Soc 1960; 82(13): 3345-50.
[http://dx.doi.org/10.1021/ja01498a029]
[2]
Montreuil J, Tonnelat J, Mullet S. Preparation and properties of the lactosiderophilin (lactotransferrine) of human milk. Biochim Biophys Acta 1960; 45: 413-21.
[http://dx.doi.org/10.1016/0006-3002(60)91478-5] [PMID: 13772242]
[3]
Mejia EG, Dia VP. The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer Metastasis Rev 2010; 29(3): 511-28.
[http://dx.doi.org/10.1007/s10555-010-9241-4] [PMID: 20714786]
[4]
Actor J, Hwang SA, Kruzel M. Lactoferrin as a natural immune modulator. Curr Pharm Des 2009; 15(17): 1956-73.
[http://dx.doi.org/10.2174/138161209788453202] [PMID: 19519436]
[5]
Tsuda H, Fukamachi K, Xu J, et al. Prevention of carcinogenesis and cancer metastasis by bovine lactoferrin. Proc Jpn Acad, Ser B, Phys Biol Sci 2006; 82(7): 208-15.
[http://dx.doi.org/10.2183/pjab.82.208] [PMID: 25792784]
[6]
Rodrigues L, Teixeira J, Schmitt F, Paulsson M, Månsson HL. Lactoferrin and cancer disease prevention. Crit Rev Food Sci Nutr 2008; 49(3): 203-17.
[http://dx.doi.org/10.1080/10408390701856157] [PMID: 19093266]
[7]
Chen Y, Zheng Z, Zhu X, et al. Lactoferrin promotes early neurodevelopment and cognition in postnatal piglets by upregulating the BDNF signaling pathway and polysialylation. Mol Neurobiol 2015; 52(1): 256-69.
[http://dx.doi.org/10.1007/s12035-014-8856-9] [PMID: 25146846]
[8]
Cornish J. Lactoferrin promotes bone growth. Biometals 2004; 17(3): 331-5.
[http://dx.doi.org/10.1023/B:BIOM.0000027713.18694.91] [PMID: 15222486]
[9]
Lönnerdal B. Nutritional roles of lactoferrin. Curr Opin Clin Nutr Metab Care 2009; 12(3): 293-7.
[http://dx.doi.org/10.1097/MCO.0b013e328328d13e] [PMID: 19318940]
[10]
Ward PP, Paz E, Conneely OM. Multifunctional roles of lactoferrin: A critical overview. Cell Mol Life Sci 2005; 62(22): 2540-8.
[http://dx.doi.org/10.1007/s00018-005-5369-8] [PMID: 16261256]
[11]
Vega-Bautista A, de la Garza M, Carrero JC, Campos-Rodríguez R, Godínez-Victoria M, Drago-Serrano ME. The impact of lactoferrin on the growth of intestinal inhabitant bacteria. Int J Mol Sci 2019; 20(19): 4707.
[http://dx.doi.org/10.3390/ijms20194707] [PMID: 31547574]
[12]
Liao Y, Jiang R, Lönnerdal B. Biochemical and molecular impacts of lactoferrin on small intestinal growth and development during early life. Biochem Cell Biol 2012; 90(3): 476-84.
[http://dx.doi.org/10.1139/o11-075] [PMID: 22332905]
[13]
Inoue M, Yamada J, Kitamura N, Shimazaki KI, Andrén A, Yamashita T. Immunohistochemical localization of lactoferrin in bovine exocrine glands. Tissue Cell 1993; 25(5): 791-7.
[http://dx.doi.org/10.1016/0040-8166(93)90059-T] [PMID: 8296310]
[14]
Weinberg ED. Human lactoferrin: A novel therapeutic with broad spectrum potential. J Pharm Pharmacol 2010; 53(10): 1303-10.
[http://dx.doi.org/10.1211/0022357011777792] [PMID: 11697537]
[15]
Lönnerdal B, Iyer S. Lactoferrin: Molecular structure and biological function. Annu Rev Nutr 1995; 15(1): 93-110.
[http://dx.doi.org/10.1146/annurev.nu.15.070195.000521] [PMID: 8527233]
[16]
Rosa L, Cutone A, Lepanto M, Paesano R, Valenti P. Lactoferrin: A natural glycoprotein involved in iron and inflammatory homeostasis. Int J Mol Sci 2017; 18(9): 1985.
[http://dx.doi.org/10.3390/ijms18091985] [PMID: 28914813]
[17]
Drago-Serrano M, Campos-Rodríguez R, Carrero J, de la Garza M. Lactoferrin: Balancing ups and downs of inflammation due to microbial infections. Int J Mol Sci 2017; 18(3): 501.
[http://dx.doi.org/10.3390/ijms18030501] [PMID: 28257033]
[18]
Rado TA, Bollekens J, St Laurent G, Parker L, Benz EJJ Jr. Lactoferrin biosynthesis during granulocytopoiesis. Blood 1984; 64(5): 1103-9.
[http://dx.doi.org/10.1182/blood.V64.5.1103.1103] [PMID: 6593100]
[19]
van Snick JL, Masson PL, Heremans JF. The involvement of lactoferrin in the hyposideremia of acute inflammation. J Exp Med 1974; 140(4): 1068-84.
[http://dx.doi.org/10.1084/jem.140.4.1068] [PMID: 4214890]
[20]
Bennett RM, Kokocinski T. Lactoferrin content of peripheral blood cells. Br J Haematol 1978; 39(4): 509-21.
[http://dx.doi.org/10.1111/j.1365-2141.1978.tb03620.x] [PMID: 359033]
[21]
Baker E, Baker H. A structural framework for understanding the multifunctional character of lactoferrin. Biochimie 2009; 91(1): 3-10.
[http://dx.doi.org/10.1016/j.biochi.2008.05.006] [PMID: 18541155]
[22]
Vorland LH. Lactoferrin: A multifunctional glycoprotein. Acta Pathol Microbiol Scand Suppl 1999; 107(7-12): 971-81.
[http://dx.doi.org/10.1111/j.1699-0463.1999.tb01499.x] [PMID: 10598868]
[23]
Suzuki YA, Lopez V, Lönnerdal B. Mammalian lactoferrin receptors: Structure and function. Cell Mol Life Sci 2005; 62(22): 2560-75.
[http://dx.doi.org/10.1007/s00018-005-5371-1] [PMID: 16261254]
[24]
Lambert LA. Molecular evolution of the transferrin family and associated receptors. Biochim Biophys Acta, Gen Subj 2012; 1820(3): 244-55.
[http://dx.doi.org/10.1016/j.bbagen.2011.06.002] [PMID: 21693173]
[25]
Cheng JB, Wang JQ, Bu DP, et al. Factors affecting the lactoferrin concentration in bovine milk. J Dairy Sci 2008; 91(3): 970-6.
[http://dx.doi.org/10.3168/jds.2007-0689] [PMID: 18292252]
[26]
Tsuji S, Hirata Y, Mukai F, Ohtagaki S. Comparison of lactoferrin content in colostrum between different cattle breeds. J Dairy Sci 1990; 73(1): 125-8.
[http://dx.doi.org/10.3168/jds.S0022-0302(90)78654-7] [PMID: 2107229]
[27]
Levay PF, Vilijoen M. Lactoferrin: A general review - PubMed. Hematologica 1995; 80: 2552-67.
[28]
Hao L, Shan Q, Wei J, Ma F, Sun P. Lactoferrin: Major physiological functions and applications. Curr Protein Pept Sci 2018; 20(2): 139-44.
[http://dx.doi.org/10.2174/1389203719666180514150921] [PMID: 29756573]
[29]
Bruni N, Capucchio M, Biasibetti E, et al. Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules 2016; 21(6): 752.
[http://dx.doi.org/10.3390/molecules21060752] [PMID: 27294909]
[30]
Wang B, Timilsena YP, Blanch E, Adhikari B. Lactoferrin: Structure, function, denaturation and digestion. Crit Rev Food Sci Nutr 2019; 59(4): 580-96.
[http://dx.doi.org/10.1080/10408398.2017.1381583] [PMID: 28933602]
[31]
Del Olmo A, Calzada J, Nuñez M. Effect of lactoferrin and its derivatives against gram-positive bacteria in vitro and, combined with high pressure, in chicken breast fillets. Meat Sci 2012; 90(1): 71-6.
[http://dx.doi.org/10.1016/j.meatsci.2011.06.003] [PMID: 21703778]
[32]
Soyer F, Keman D, Eroğlu E, Türe H. Synergistic antimicrobial effects of activated lactoferrin and rosemary extract in vitro and potential application in meat storage. J Food Sci Technol 2020; 57(12): 4395-403.
[http://dx.doi.org/10.1007/s13197-020-04476-5] [PMID: 33087953]
[33]
Kim SJ, Yu DY, Pak KW, Jeong S, Kim SW, Lee KK. Structure of the human lactoferrin gene and its chromosomal localization. Mol Cells 1998; 8(6): 663-8.
[PMID: 9895117]
[34]
Moguilevsky N, Retegui LA, Masson PL. Comparison of human lactoferrins from milk and neutrophilic leucocytes. Relative molecular mass, isoelectric point, iron-binding properties and uptake by the liver. Biochem J 1985; 229(2): 353-9.
[http://dx.doi.org/10.1042/bj2290353] [PMID: 4038272]
[35]
Steijns JM, van Hooijdonk ACM. Occurrence, structure, biochemical properties and technological characteristics of lactoferrin. Br J Nutr 2000; 84(S1) (Suppl. 1): 11-7.
[http://dx.doi.org/10.1017/S0007114500002191] [PMID: 11242441]
[36]
Metz-Boutigue MH, Jollès J, Mazurier J, et al. Human lactotransferrin: Amino acid sequence and structural comparisons with other transferrins. Eur J Biochem 1984; 145(3): 659-76.
[http://dx.doi.org/10.1111/j.1432-1033.1984.tb08607.x] [PMID: 6510420]
[37]
Anderson BF, Baker HM, Dodson EJ, et al. Structure of human lactoferrin at 3.2-A resolution. Proc Natl Acad Sci 1987; 84(7): 1769-73.
[http://dx.doi.org/10.1073/pnas.84.7.1769] [PMID: 3470756]
[38]
Baker HM, Baker EN. Lactoferrin and Iron: Structural and dynamic aspects of binding and release. Biometals 2004; 17(3): 209-16.
[http://dx.doi.org/10.1023/B:BIOM.0000027694.40260.70] [PMID: 15222467]
[39]
Masson PL, Heremans JF. Metal-combining properties of human lactoferrin (red milk protein). 1. The involvement of bicarbonate in the reaction. Eur J Biochem 1968; 6(4): 579-84.
[http://dx.doi.org/10.1111/j.1432-1033.1968.tb00484.x] [PMID: 5701973]
[40]
Testa U. Proteins of iron metabolism. Boca Raton: CRC Press 2002.
[http://dx.doi.org/10.1201/b14262]
[41]
Zou S, Magura CE, Hurley WL. Heparin-binding properties of lactoferrin and lysozyme. Comp Biochem Physiol B 1992; 103(4): 889-95.
[http://dx.doi.org/10.1016/0305-0491(92)90210-I] [PMID: 1478067]
[42]
Tanaka T, Nakatani S, Xuan X, Kumura H, Igarashi I, Shimazaki K. Antiviral activity of lactoferrin against canine herpesvirus. Antiviral Res 2003; 60(3): 193-9.
[http://dx.doi.org/10.1016/S0166-3542(03)00157-8] [PMID: 14638395]
[43]
Makino Y, Nishimura S. High-performance liquid chromatographic separation of human apolactoferrin and monoferric and diferric lactoferrins. J Chromatogr, Biomed Appl 1992; 579(2): 346-9.
[http://dx.doi.org/10.1016/0378-4347(92)80402-C] [PMID: 1429983]
[44]
Jenssen H, Hancock R. Antimicrobial properties of lactoferrin. Biochimie 2009; 91(1): 19-29.
[http://dx.doi.org/10.1016/j.biochi.2008.05.015] [PMID: 18573312]
[45]
Mirza S, Benjamin WH Jr, Coan PA, et al. The effects of differences in pspA alleles and capsular types on the resistance of Streptococcus pneumoniae to killing by apolactoferrin. Microb Pathog 2016; 99: 209-19.
[http://dx.doi.org/10.1016/j.micpath.2016.08.029] [PMID: 27569531]
[46]
Arnold RR, Russell JE, Champion WJ, Brewer M, Gauthier JJ. Bactericidal activity of human lactoferrin: Differentiation from the stasis of iron deprivation. Infect Immun 1982; 35(3): 792-9.
[http://dx.doi.org/10.1128/iai.35.3.792-799.1982] [PMID: 6802759]
[47]
Schryvers AB, Bonnah R, Yu R, Wong H, Retzer M. Bacterial lactoferrin receptors. Adv Exp Med Biol 1998; 443: 123-33.
[http://dx.doi.org/10.1007/978-1-4757-9068-9_15] [PMID: 9781351]
[48]
Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N -terminal region of bovine lactoferrin. J Appl Bacteriol 1992; 73(6): 472-9.
[http://dx.doi.org/10.1111/j.1365-2672.1992.tb05007.x] [PMID: 1490908]
[49]
Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tomita M. Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta Protein Struct Mol Enzymol 1992; 1121(1-2): 130-6.
[http://dx.doi.org/10.1016/0167-4838(92)90346-F] [PMID: 1599934]
[50]
Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K. Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 1991; 74(12): 4137-42.
[http://dx.doi.org/10.3168/jds.S0022-0302(91)78608-6] [PMID: 1787185]
[51]
Hoek KS, Milne JM, Grieve PA, Dionysius DA, Smith R. Antibacterial activity in bovine lactoferrin-derived peptides. Antimicrob Agents Chemother 1997; 41(1): 54-9.
[http://dx.doi.org/10.1128/AAC.41.1.54] [PMID: 8980754]
[52]
Hwang PM, Zhou N, Shan X, Arrowsmith CH, Vogel HJ. Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry 1998; 37(12): 4288-98.
[http://dx.doi.org/10.1021/bi972323m] [PMID: 9521752]
[53]
Stallmann HP, Faber C, Bronckers ALJJ, et al. Histatin and lactoferrin derived peptides: Antimicrobial properties and effects on mammalian cells. Peptides 2005; 26(12): 2355-9.
[http://dx.doi.org/10.1016/j.peptides.2005.05.014] [PMID: 15979203]
[54]
Lizzi A, Carnicelli V, Clarkson M, Di Giulio A, Oratore A. Lactoferrin derived peptides: Mechanisms of action and their perspectives as antimicrobial and antitumoral agents. Mini Rev Med Chem 2009; 9(6): 687-95.
[http://dx.doi.org/10.2174/138955709788452757] [PMID: 19519494]
[55]
Japelj B, Pristovšek P, Majerle A, Jerala R. Structural origin of endotoxin neutralization and antimicrobial activity of a lactoferrin-based peptide. J Biol Chem 2005; 280(17): 16955-61.
[http://dx.doi.org/10.1074/jbc.M500266200] [PMID: 15687491]
[56]
Dijkshoorn L, Brouwer CPJM, Bogaards SJP, Nemec A, van den Broek PJ, Nibbering PH. The synthetic N-terminal peptide of human lactoferrin, hLF(1-11), is highly effective against experimental infection caused by multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2004; 48(12): 4919-21.
[http://dx.doi.org/10.1128/AAC.48.12.4919-4921.2004] [PMID: 15561882]
[57]
Diarra MS, Lacasse P, Deschênes E, Grondin G, Paradis-Bleau C, Petitclerc D. Ultrastructural and cytochemical study of cell wall modification by lactoferrin, lactoferricin and penicillin G against Staphylococcus aureus. J Electron Microsc 2003; 52(2): 207-15.
[http://dx.doi.org/10.1093/jmicro/52.2.207] [PMID: 12868591]
[58]
Kuwata H, Yip TT, Tomita M, Hutchens TW. Direct evidence of the generation in human stomach of an antimicrobial peptide domain (lactoferricin) from ingested lactoferrin. Biochim Biophys Acta Protein Struct Mol Enzymol 1998; 1429(1): 129-41.
[http://dx.doi.org/10.1016/S0167-4838(98)00224-6] [PMID: 9920391]
[59]
Troost FJ, Steijns J, Saris WHM, Brummer RJM. Gastric digestion of bovine lactoferrin in vivo in adults. J Nutr 2001; 131(8): 2101-4.
[http://dx.doi.org/10.1093/jn/131.8.2101] [PMID: 11481401]
[60]
van der Kraan MIA, Groenink J, Nazmi K, Veerman ECI, Bolscher JGM, Nieuw Amerongen AV. Lactoferrampin: A novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Peptides 2004; 25(2): 177-83.
[http://dx.doi.org/10.1016/j.peptides.2003.12.006] [PMID: 15062998]
[61]
van der Kraan MIA, van Marle J, Nazmi K, et al. Ultrastructural effects of antimicrobial peptides from bovine lactoferrin on the membranes of Candida albicans and Escherichia coli. Peptides 2005; 26(9): 1537-42.
[http://dx.doi.org/10.1016/j.peptides.2005.02.011] [PMID: 16112390]
[62]
van der Kraan MIA, Nazmi K, Teeken A, et al. Lactoferrampin, an antimicrobial peptide of bovine lactoferrin, exerts its candidacidal activity by a cluster of positively charged residues at the C-terminus in combination with a helix-facilitating N-terminal part. Biol Chem 2005; 386(2): 137-42.
[http://dx.doi.org/10.1515/BC.2005.017] [PMID: 15843157]
[63]
Bolscher JGM, van der Kraan MIA, Nazmi K, et al. A one-enzyme strategy to release an antimicrobial peptide from the LFampin-domain of bovine lactoferrin. Peptides 2006; 27(1): 1-9.
[http://dx.doi.org/10.1016/j.peptides.2005.06.012] [PMID: 16087276]
[64]
Bolscher J, Adão R, Nazmi K, et al. Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides. Biochimie 2009; 91(1): 123-32.
[http://dx.doi.org/10.1016/j.biochi.2008.05.019] [PMID: 18573310]
[65]
Ligtenberg AJM, Bikker FJ, Bolscher JGM. LFchimera: A synthetic mimic of the two antimicrobial domains of bovine lactoferrin. Biochem Cell Biol 2021; 99(1): 128-37.
[http://dx.doi.org/10.1139/bcb-2020-0285] [PMID: 33560169]
[66]
Xu G, Xiong W, Hu Q, et al. Lactoferrin-derived peptides and Lactoferricin chimera inhibit virulence factor production and biofilm formation in Pseudomonas aeruginosa. J Appl Microbiol 2010; 109(4): 1311-8.
[http://dx.doi.org/10.1111/j.1365-2672.2010.04751.x] [PMID: 20477900]
[67]
Bullen JJ, Rogers HJ, Leigh L. Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. BMJ 1972; 1(5792): 69-75.
[http://dx.doi.org/10.1136/bmj.1.5792.69] [PMID: 4550126]
[68]
Farnaud S, Evans RW. Lactoferrin-a multifunctional protein with antimicrobial properties. Mol Immunol 2003; 40(7): 395-405.
[http://dx.doi.org/10.1016/S0161-5890(03)00152-4] [PMID: 14568385]
[69]
Masson PL, Heremans JF, Prignot JJ, Wauters G. Immunohistochemical localization and bacteriostatic properties of an iron-binding protein from bronchial mucus. Thorax 1966; 21(6): 538-44.
[http://dx.doi.org/10.1136/thx.21.6.538] [PMID: 5339630]
[70]
Matsuo Y, Kido Y, Yamaoka Y. Helicobacter pylori outer membrane protein-related pathogenesis. Toxins 2017; 9(3): 101.
[http://dx.doi.org/10.3390/toxins9030101] [PMID: 28287480]
[71]
Horne JE, Brockwell DJ, Radford SE. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem 2020; 295(30): 10340-67.
[http://dx.doi.org/10.1074/jbc.REV120.011473] [PMID: 32499369]
[72]
Drago-Serrano ME, de la Garza-Amaya M, Luna JS, Campos-Rodríguez R. Lactoferrin-lipopolysaccharide (LPS) binding as key to antibacterial and antiendotoxic effects. Int Immunopharmacol 2012; 12(1): 1-9.
[http://dx.doi.org/10.1016/j.intimp.2011.11.002] [PMID: 22101278]
[73]
Naidu SS, Svensson U, Kishore AR, Naidu AS. Relationship between antibacterial activity and porin binding of lactoferrin in Escherichia coli and Salmonella typhimurium. Antimicrob Agents Chemother 1993; 37(2): 240-5.
[http://dx.doi.org/10.1128/AAC.37.2.240] [PMID: 8383941]
[74]
Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2010; 2(5): a000414.
[http://dx.doi.org/10.1101/cshperspect.a000414] [PMID: 20452953]
[75]
Avalos-Gómez C, Reyes-López M, Ramírez-Rico G, et al. Effect of apo-lactoferrin on leukotoxin and outer membrane vesicles of Mannheimia haemolytica A2. Vet Res 2020; 51(1): 36.
[http://dx.doi.org/10.1186/s13567-020-00759-z] [PMID: 32138772]
[76]
Luna-Castro S, Aguilar-Romero F, Samaniego-Barrón L, Godínez-Vargas D, de la Garza M. Effect of bovine apo-lactoferrin on the growth and virulence of Actinobacillus pleuropneumoniae. Biometals 2014; 27(5): 891-903.
[http://dx.doi.org/10.1007/s10534-014-9752-5] [PMID: 24878848]
[77]
Plaut AG, Qiu J, St. Geme JW. Human lactoferrin proteolytic activity: analysis of the cleaved region in the IgA protease of Haemophilus influenzae. Vaccine 2000; 19 (Suppl 1).
[http://dx.doi.org/10.1016/S0264-410X(00)00296-6]
[78]
Qiu J, Hendrixson DR, Baker EN, Murphy TF, Geme JWS III, Plaut AG. Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae. Proc Natl Acad Sci 1998; 95(21): 12641-6.
[http://dx.doi.org/10.1073/pnas.95.21.12641] [PMID: 9770539]
[79]
Nisa I, Qasim M, Yasin N, Ullah R, Ali A. Shigella flexneri: An emerging pathogen. Folia Microbiol 2020; 65(2): 275-91.
[http://dx.doi.org/10.1007/s12223-020-00773-w] [PMID: 32026288]
[80]
Gomez HF, Ochoa TJ, Carlin LG, Cleary TG. Human lactoferrin impairs virulence of Shigella flexneri. J Infect Dis 2003; 187(1): 87-95.
[http://dx.doi.org/10.1086/345875] [PMID: 12508150]
[81]
Ochoa TJ, Noguera-Obenza M, Ebel F, Guzman CA, Gomez HF, Cleary TG. Lactoferrin impairs type III secretory system function in enteropathogenic Escherichia coli. Infect Immun 2003; 71(9): 5149-55.
[http://dx.doi.org/10.1128/IAI.71.9.5149-5155.2003] [PMID: 12933858]
[82]
Vorland LH, Ulvatne H, Rekdal O, Svendsen JS. Initial binding sites of antimicrobial peptides in Staphylococcus aureus and Escherichia coli. Scand J Infect Dis 1999; 31(5): 467-73.
[http://dx.doi.org/10.1080/00365549950163987] [PMID: 10576125]
[83]
León-Sicairos N, Angulo-Zamudio UA, Vidal JE, et al. Bactericidal effect of bovine lactoferrin and synthetic peptide lactoferrin chimera in Streptococcus pneumoniae and the decrease in luxS gene expression by lactoferrin. Biometals 2014; 27(5): 969-80.
[http://dx.doi.org/10.1007/s10534-014-9775-y] [PMID: 25053107]
[84]
Cakebread JA, Humphrey R, Hodgkinson AJ. Immunoglobulin A in bovine Milk: A potential functional food? J Agric Food Chem 2015; 63(33): 7311-6.
[http://dx.doi.org/10.1021/acs.jafc.5b01836] [PMID: 26165692]
[85]
Stephens S, Dolby JM, Montreuil J, Spik G. Differences in inhibition of the growth of commensal and enteropathogenic strains of Escherichia coli by lactotransferrin and secretory immunoglobulin A isolated from human milk. Immunology 1980; 41(3): 597-603.
[PMID: 7007213]
[86]
Spik G, Cheron A, Montreuil J, Dolby JM. Bacteriostasis of a milk-sensitive strain of Escherichia coli by immunoglobulins and iron-binding proteins in association. Immunology 1978; 35(4): 663-71.
[PMID: 361548]
[87]
Rainard P. Bacteriostasis of Escherichia coli by bovine lactoferrin, transferrin and immunoglobulins (IgG1, IgG2, IgM) acting alone or in combination. Vet Microbiol 1986; 11(1-2): 103-15.
[http://dx.doi.org/10.1016/0378-1135(86)90011-8] [PMID: 3518222]
[88]
Stryer L. Mechanisms of enzyme action. (Biochemistry. 3rd ed..). New York: Macmillian Publishee 1988; pp. 201-11.
[89]
Leitch EC, Willcox MDP. Elucidation of the antistaphylococcal action of lactoferrin and lysozyme. J Med Microbiol 1999; 48(9): 867-71.
[http://dx.doi.org/10.1099/00222615-48-9-867] [PMID: 10482299]
[90]
Ellison RT III. The effects of lactoferrin on gram-negative bacteria. Adv Exp Med Biol 1994; 357: 71-90.
[http://dx.doi.org/10.1007/978-1-4615-2548-6_8] [PMID: 7762448]
[91]
André GO, Politano WR, Mirza S, et al. Combined effects of lactoferrin and lysozyme on Streptococcus pneumoniae killing. Microb Pathog 2015; 89: 7-17.
[http://dx.doi.org/10.1016/j.micpath.2015.08.008] [PMID: 26298002]
[92]
Fernandes KE, Weeks K, Carter DA. Lactoferrin is broadly active against yeasts and highly synergistic with amphotericin B. Antimicrob Agents Chemother 2020; 64(5): e02284-19.
[http://dx.doi.org/10.1128/AAC.02284-19] [PMID: 32094132]
[93]
Vaerman JP. Effector mechanisms of IgA. Ann Biol Clin 1984; 42(1): 61-70.
[PMID: 6375472]
[94]
Andersen JH, Jenssen H, Gutteberg TJ. Lactoferrin and lactoferricin inhibit Herpes simplex 1 and 2 infection and exhibit synergy when combined with acyclovir. Antiviral Res 2003; 58(3): 209-15.
[http://dx.doi.org/10.1016/S0166-3542(02)00214-0] [PMID: 12767468]
[95]
León-Sicairos N, López-Soto F, Reyes-López M, Godínez-Vargas D, Ordaz-Pichardo C, de la Garza M. Amoebicidal activity of milk, apo-lactoferrin, sIgA and lysozyme. Clin Med Res 2006; 4(2): 106-13.
[96]
Byrd TF, Horwitz MA. Lactoferrin inhibits or promotes Legionella pneumophila intracellular multiplication in nonactivated and interferon gamma-activated human monocytes depending upon its degree of iron saturation. Iron-lactoferrin and nonphysiologic iron chelates reverse monocyte activation against Legionella pneumophila. J Clin Invest 1991; 88(4): 1103-12.
[http://dx.doi.org/10.1172/JCI115409] [PMID: 1918366]
[97]
Desbois AP, Coote PJ. Bactericidal synergy of lysostaphin in combination with antimicrobial peptides. Eur J Clin Microbiol Infect Dis 2011; 30(8): 1015-21.
[http://dx.doi.org/10.1007/s10096-011-1188-z] [PMID: 21311938]
[98]
Guitor AK, Wright GD. Antimicrobial resistance and respiratory infections. Chest 2018; 154(5): 1202-12.
[http://dx.doi.org/10.1016/j.chest.2018.06.019] [PMID: 29959904]
[99]
Cappelletty D. Microbiology of bacterial respiratory infections. Pediatr Infect Dis J 1998; 17(8) (Suppl.): S55-61.
[http://dx.doi.org/10.1097/00006454-199808001-00002] [PMID: 9727651]
[100]
Lee HY, Andalibi A, Webster P, et al. Antimicrobial activity of innate immune molecules against Streptococcus pneumoniae, Moraxella catarrhalis and nontypeable Haemophilus influenzae. BMC Infect Dis 2004; 4(1): 12.
[http://dx.doi.org/10.1186/1471-2334-4-12] [PMID: 15125783]
[101]
Redhead K, Hill T, Chart H. Interaction of lactoferrin and transferrins with the outer membrane of Bordetella pertussis. J Gen Microbiol 1987; 133(4): 891-8.
[PMID: 2888836]
[102]
Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, et al. Lactoferrin and its derived peptides: An alternative for combating virulence mechanisms developed by pathogens. Molecules 2020; 25(24): 5763.
[http://dx.doi.org/10.3390/molecules25245763] [PMID: 33302377]
[103]
Angulo-Zamudio UA, Vidal JE, Nazmi K, et al. Lactoferrin disaggregates pneumococcal biofilms and inhibits acquisition of resistance through its DNase activity. Front Microbiol 2019; 10: 2386.
[http://dx.doi.org/10.3389/fmicb.2019.02386] [PMID: 31681240]
[104]
Sheffield CL, Crippen TL, Poole TL, Beier RC. Destruction of single-species biofilms of Escherichia coli or Klebsiella pneumoniae subsp. pneumoniae by dextranase, lactoferrin, and lysozyme. Int Microbiol 2012; 15(4): 185-9.
[PMID: 23844477]
[105]
Lu J, Francis JD, Guevara MA, et al. Antibacterial and anti‐biofilm activity of the human breast milk glycoprotein lactoferrin against group B Streptococcus. ChemBioChem 2021; 22(12): 2124-33.
[http://dx.doi.org/10.1002/cbic.202100016] [PMID: 33755306]
[106]
Avery TM, Boone RL, Lu J, et al. Analysis of antimicrobial and antibiofilm activity of human milk lactoferrin compared to bovine lactoferrin against multidrug resistant and susceptible Acinetobacter baumannii Clinical Isolates. ACS Infect Dis 2021; 7(8): 2116-26.
[http://dx.doi.org/10.1021/acsinfecdis.1c00087] [PMID: 34105954]
[107]
Klimova B, Kuca K, Novotny M, Maresova P. Cystic fibrosis revisited – A review study. Med Chem 2017; 13(2): 102-9.
[http://dx.doi.org/10.2174/1573406412666160608113235] [PMID: 27292156]
[108]
Tunney MM, Payne JE, McGrath SJ, et al. Activity of hypothiocyanite and lactoferrin (ALX-009) against respiratory cystic fibrosis pathogens in sputum. J Antimicrob Chemother 2018; 73(12): 3391-7.
[http://dx.doi.org/10.1093/jac/dky357] [PMID: 30219825]
[109]
Cutone A, Lepanto MS, Rosa L, et al. Aerosolized bovine lactoferrin counteracts infection, inflammation and iron dysbalance in A cystic fibrosis mouse model of Pseudomonas aeruginosa chronic lung infection. Int J Mol Sci 2019; 20(9): 2128.
[http://dx.doi.org/10.3390/ijms20092128] [PMID: 31052156]
[110]
Berlutti F, Superti F, Nicoletti M, et al. Bovine lactoferrin inhibits the efficiency of invasion of respiratory A549 cells of different iron-regulated morphological forms of Pseudomonas aeruginosa and Burkholderia cenocepacia. Int J Immunopathol Pharmacol 2008; 21(1): 51-9.
[http://dx.doi.org/10.1177/039463200802100107] [PMID: 18336731]
[111]
Welsh K, Hwang S, Boyd S, Kruzel M, Hunter R, Actor J. Influence of oral lactoferrin on Mycobacterium tuberculosis induced immunopathology. Tuberculosis 2011; 91 (Suppl 1).
[112]
Hwang S, Welsh K, Boyd S, Kruzel M, Actor J. Comparing efficacy of BCG/lactoferrin primary vaccination versus booster regimen. Tuberculosis 2011; 91 (Suppl 1).
[113]
Chen K, Chai L, Li H, et al. Effect of bovine lactoferrin from iron-fortified formulas on diarrhea and respiratory tract infections of weaned infants in a randomized controlled trial. Nutrition 2016; 32(2): 222-7.
[http://dx.doi.org/10.1016/j.nut.2015.08.010] [PMID: 26602290]
[114]
Spiegel CA. Vaginitis/vaginosis. Clin Lab Med 1989; 9(3): 525-33.
[http://dx.doi.org/10.1016/S0272-2712(18)30616-4] [PMID: 2676321]
[115]
Brown HL, Fuller DD, Jasper LT, Davis TE, Wright JD. Clinical evaluation of affirm VPIII in the detection and identification of Trichomonas vaginalis, Gardnerella vaginalis, and Candida species in vaginitis/vaginosis. Infect Dis Obstet Gynecol 2004; 12(1): 17-21.
[http://dx.doi.org/10.1080/1064744042000210375] [PMID: 15460191]
[116]
Redelinghuys MJ, Geldenhuys J, Jung H, Kock MM. Bacterial vaginosis: Current diagnostic avenues and future opportunities. Front Cell Infect Microbiol 2020; 10: 354.
[http://dx.doi.org/10.3389/fcimb.2020.00354] [PMID: 32850469]
[117]
Donders GGG, Bellen G, Rezeberga D. Aerobic vaginitis in pregnancy. BJOG 2011; 118(10): 1163-70.
[http://dx.doi.org/10.1111/j.1471-0528.2011.03020.x] [PMID: 21668769]
[118]
Otsuki K, Tokunaka M, Oba T, Nakamura M, Shirato N, Okai T. Administration of oral and vaginal prebiotic lactoferrin for a woman with a refractory vaginitis recurring preterm delivery: Appearance of lactobacillus in vaginal flora followed by term delivery. J Obstet Gynaecol Res 2014; 40(2): 583-5.
[http://dx.doi.org/10.1111/jog.12171] [PMID: 24118573]
[119]
Pino A, Giunta G, Randazzo CL, Caruso S, Caggia C, Cianci A. Bacterial biota of women with bacterial vaginosis treated with lactoferrin: An open prospective randomized trial. Microb Ecol Health Dis 2017; 28(1): 1357417.
[PMID: 28959181]
[120]
Otsuki K, Imai N. Effects of lactoferrin in 6 patients with refractory bacterial vaginosis. Biochem Cell Biol 2017; 95(1): 31-3.
[http://dx.doi.org/10.1139/bcb-2016-0051] [PMID: 28140620]
[121]
Vesce F, Giugliano E, Bignardi S, et al. Vaginal lactoferrin administration before genetic amniocentesis decreases amniotic interleukin-6 levels. Gynecol Obstet Invest 2014; 77(4): 245-9.
[http://dx.doi.org/10.1159/000358877] [PMID: 24642648]
[122]
Maritati M, Comar M, Zanotta N, Seraceni S, Trentini A, Corazza F. Influence of vaginal lactoferrin administration on amniotic fluid cytokines and its role against inflammatory complications of pregnancy. J Inflamm 2017; 14: 1-8.
[123]
De Alberti D, Russo R, Terruzzi F, Nobile V, Ouwehand AC. Lactobacilli vaginal colonisation after oral consumption of Respecta® complex: A randomised controlled pilot study. Arch Gynecol Obstet 2015; 292(4): 861-7.
[http://dx.doi.org/10.1007/s00404-015-3711-4] [PMID: 25855055]
[124]
Brookheart RT, Lewis WG, Peipert JF, Lewis AL, Allsworth JE. Association between obesity and bacterial vaginosis as assessed by Nugent score. Am J Obstet Gynecol 2019; 220(5): 476.e1-476.e11.
[http://dx.doi.org/10.1016/j.ajog.2019.01.229] [PMID: 30707966]
[125]
Russo R, Karadja E, De Seta F. Evidence-based mixture containing Lactobacillus strains and lactoferrin to prevent recurrent bacterial vaginosis: A double blind, placebo controlled, randomised clinical trial. Benef Microbes 2019; 10(1): 19-26.
[http://dx.doi.org/10.3920/BM2018.0075] [PMID: 30525953]
[126]
Russo R, Edu A, De Seta F. Study on the effects of an oral lactobacilli and lactoferrin complex in women with intermediate vaginal microbiota. Arch Gynecol Obstet 2018; 298(1): 139-45.
[http://dx.doi.org/10.1007/s00404-018-4771-z] [PMID: 29637269]
[127]
Witkin SS, Minis E, Athanasiou A, Leizer J, Linhares IM. Chlamydia trachomatis: The Persistent Pathogen. Clin Vaccine Immunol 2017; 24(10): e00203-17.
[http://dx.doi.org/10.1128/CVI.00203-17] [PMID: 28835360]
[128]
Sessa R, Di Pietro M, Filardo S, et al. Effect of bovine lactoferrin on Chlamydia trachomatis infection and inflammation. Biochem Cell Biol 2017; 95(1): 34-40.
[http://dx.doi.org/10.1139/bcb-2016-0049] [PMID: 28094551]
[129]
Angelopoulou A, Field D, Ryan CA, Stanton C, Hill C, Ross RP. The microbiology and treatment of human mastitis. Med Microbiol Immunol 2018; 207(2): 83-94.
[http://dx.doi.org/10.1007/s00430-017-0532-z] [PMID: 29350290]
[130]
Delgado S, Arroyo R, Jiménez E, et al. Staphylococcus epidermidis strains isolated from breast milk of women suffering infectious mastitis: Potential virulence traits and resistance to antibiotics. BMC Microbiol 2009; 9(1): 82.
[http://dx.doi.org/10.1186/1471-2180-9-82] [PMID: 19422689]
[131]
Villavicencio A, Rueda MS, Turin CG, Ochoa TJ. Factors affecting lactoferrin concentration in human milk: How much do we know? Biochem Cell Biol 2017; 95(1): 12-21.
[132]
Samuel TM, De Castro CA, Dubascoux S, Affolter M, Giuffrida F, Billeaud C. Subclinical mastitis in a European multicenter cohort: Prevalence, impact on Human Milk (HM) composition, and association with infant HM intake and growth. Nutr 2019; 12: 105.
[133]
Kai K, Komine K, Komine Y, et al. Lactoferrin stimulates A Staphylococcus aureus killing activity of bovine phagocytes in the mammary gland. Microbiol Immunol 2002; 46(3): 187-94.
[http://dx.doi.org/10.1111/j.1348-0421.2002.tb02685.x] [PMID: 12008928]
[134]
Komine Y, Komine K, Kai K, et al. Effect of combination therapy with lactoferrin and antibiotics against Staphylococcal mastitis on drying cows. J Vet Med Sci 2006; 68(3): 205-11.
[http://dx.doi.org/10.1292/jvms.68.205] [PMID: 16598162]
[135]
Lacasse P, Lauzon K, Diarra MS, Petitclerc D. Utilization of lactoferrin to fight antibiotic-resistant mammary gland pathogens 1,2. J Anim Sci 2008; 86(13): 66-71.
[http://dx.doi.org/10.2527/jas.2007-0216] [PMID: 17565052]
[136]
Petitclerc D, Lauzon K, Cochu A, Ster C, Diarra MS, Lacasse P. Efficacy of a lactoferrin-penicillin combination to treat β-lactam-resistant Staphylococcus aureus mastitis. J Dairy Sci 2007; 90(6): 2778-87.
[http://dx.doi.org/10.3168/jds.2006-598] [PMID: 17517718]
[137]
Bostanci N, Belibasakis GN. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett 2012; 333(1): 1-9.
[http://dx.doi.org/10.1111/j.1574-6968.2012.02579.x] [PMID: 22530835]
[138]
Morita Y, Ishikawa K, Nakano M, et al. Effects of lactoferrin and lactoperoxidase-containing food on the oral hygiene status of older individuals: A randomized, double blinded, placebo-controlled clinical trial. Geriatr Gerontol Int 2017; 17(5): 714-21.
[http://dx.doi.org/10.1111/ggi.12776] [PMID: 27150460]
[139]
Brennan CA, Garrett WS. Fusobacterium nucleatum — symbiont, opportunist and oncobacterium. Nat Rev Microbiol 2019; 17(3): 156-66.
[http://dx.doi.org/10.1038/s41579-018-0129-6] [PMID: 30546113]
[140]
Nakano M, Yoshida A, Wakabayashi H, et al. Effect of tablets containing lactoferrin and lactoperoxidase on gingival health in adults: A randomized, double‐blind, placebo‐controlled clinical trial. J Periodontal Res 2019; 54(6): 702-8.
[http://dx.doi.org/10.1111/jre.12679] [PMID: 31292969]
[141]
Shin K, Yaegaki K, Murata T, et al. Effects of a composition containing lactoferrin and lactoperoxidase on oral malodor and salivary bacteria: A randomized, double-blind, crossover, placebo-controlled clinical trial. Clin Oral Investig 2011; 15(4): 485-93.
[http://dx.doi.org/10.1007/s00784-010-0422-x] [PMID: 20512389]
[142]
Cawley A, Golding S, Goulsbra A, Hoptroff M, Kumaran S, Marriott R. Microbiology insights into boosting salivary defences through the use of enzymes and proteins. J Dent 2019; 80 (Suppl. 1): S19-25.
[http://dx.doi.org/10.1016/j.jdent.2018.10.010] [PMID: 30389429]
[143]
Suerbaum S, Michetti P. Helicobacter pylori Infection. N Engl J Med 2002; 347(15): 1175-86.
[http://dx.doi.org/10.1056/NEJMra020542] [PMID: 12374879]
[144]
Sabbagh P, Javanian M, Koppolu V, Vasigala VKR, Ebrahimpour S. Helicobacter pylori infection in children: An overview of diagnostic methods. Eur J Clin Microbiol Infect Dis 2019; 38: 1035-45.
[145]
Onyekwere CA, Odiagah JN, Igetei R, Emanuel AOD, Ekere F, Smith S. Rabeprazole, clarithromycin, and amoxicillin Helicobacter pylori eradication therapy: Report of an efficacy study. World J Gastroenterol 2014; 20(13): 3615-9.
[http://dx.doi.org/10.3748/wjg.v20.i13.3615] [PMID: 24707145]
[146]
Di Mario F, Aragona G, Dal Bò N, et al. Use of bovine lactoferrin for Helicobacter pylori eradication. Dig Liver Dis 2003; 35(10): 706-10.
[http://dx.doi.org/10.1016/S1590-8658(03)00409-2] [PMID: 14620619]
[147]
Okuda M, Miyashiro E, Nakazawa T, et al. Bovine lactoferrin is effective to suppress Helicobacter pylori colonization in the human stomach: A randomized, double-blind, placebo-controlled study. J Infect Chemother 2005; 11(6): 265-9.
[http://dx.doi.org/10.1007/s10156-005-0407-X] [PMID: 16369731]
[148]
Hablass FH, Lashen SA, Alsayed EA. Efficacy of lactoferrin with standard triple therapy or sequential therapy for Helicobacter pylori eradication: A randomized controlled trial. Turk J Gastroenterol 2021; 32(9): 742-9.
[http://dx.doi.org/10.5152/tjg.2021.20923] [PMID: 34609303]
[149]
Zullo A, De Francesco V, Scaccianoce G, et al. Quadruple therapy with lactoferrin for Helicobacter pylori eradication: A randomised, multicentre study. Dig Liver Dis 2005; 37(7): 496-500.
[http://dx.doi.org/10.1016/j.dld.2005.01.017] [PMID: 15975536]
[150]
Zullo A, De Francesco V, Scaccianoce G, et al. Helicobacter pylori eradication with either quadruple regimen with lactoferrin or levofloxacin-based triple therapy: A multicentre study. Dig Liver Dis 2007; 39(9): 806-10.
[http://dx.doi.org/10.1016/j.dld.2007.05.021] [PMID: 17644057]
[151]
Snyder JD, Merson MH. The magnitude of the global problem of acute diarrhoeal disease: A review of active surveillance data. Bull World Health Organ 1982; 60(4): 605-13.
[PMID: 6982783]
[152]
Ochoa TJ, Chea-Woo E, Baiocchi N, et al. Randomized double-blind controlled trial of bovine lactoferrin for prevention of diarrhea in children. J Pediatr 2013; 162(2): 349-56.
[http://dx.doi.org/10.1016/j.jpeds.2012.07.043] [PMID: 22939927]
[153]
Zavaleta N, Figueroa D, Rivera J, Sánchez J, Alfaro S, Lönnerdal B. Efficacy of rice-based oral rehydration solution containing recombinant human lactoferrin and lysozyme in Peruvian children with acute diarrhea. J Pediatr Gastroenterol Nutr 2007; 44(2): 258-64.
[http://dx.doi.org/10.1097/MPG.0b013e31802c41b7] [PMID: 17255841]
[154]
Bisquera JA, Cooper TR, Berseth CL. Impact of necrotizing enterocolitis on length of stay and hospital charges in very low birth weight infants. Pediatrics 2002; 109(3): 423-8.
[http://dx.doi.org/10.1542/peds.109.3.423] [PMID: 11875136]
[155]
Manzoni P, Meyer M, Stolfi I, et al. Bovine lactoferrin supplementation for prevention of necrotizing enterocolitis in very-low-birth-weight neonates: A randomized clinical trial. Early Hum Dev 2014; 90 (Suppl. 1): S60-5.
[http://dx.doi.org/10.1016/S0378-3782(14)70020-9] [PMID: 24709463]
[156]
Ramasethu J. Prevention and treatment of neonatal nosocomial infections. Matern Health Neonatol Perinatol 2017; 3(1): 5.
[http://dx.doi.org/10.1186/s40748-017-0043-3] [PMID: 28228969]
[157]
Manzoni P, Decembrino L, Stolfi I, et al. Lactoferrin and prevention of late-onset sepsis in the pre-term neonates. Early Hum Dev 2010; 86(1): 59-61.
[http://dx.doi.org/10.1016/j.earlhumdev.2010.01.009] [PMID: 20138718]
[158]
Manzoni P, Rinaldi M, Cattani S, Pugni L. Bovine lactoferrin appears to decrease the incidence of sepsis in very low-birth weight infants. J Pediatr 2009; 156: 856.
[159]
Kaur G, Gathwala G. Efficacy of bovine lactoferrin supplementation in preventing late-onset sepsis in low birth weight neonates: A randomized placebo-Controlled clinical trial. J Trop Pediatr 2015; 61(5): 370-6.
[http://dx.doi.org/10.1093/tropej/fmv044] [PMID: 26224129]
[160]
Ochoa TJ, Zegarra J, Cam L, et al. Randomized controlled trial of lactoferrin for prevention of sepsis in peruvian neonates less than 2500 g. Pediatr Infect Dis J 2015; 34(6): 571-6.
[http://dx.doi.org/10.1097/INF.0000000000000593] [PMID: 25973934]
[161]
Akin IM, Atasay B, Dogu F, et al. Oral lactoferrin to prevent nosocomial sepsis and necrotizing enterocolitis of premature neonates and effect on T-regulatory cells. Am J Perinatol 2014; 31: 1111-20.
[162]
Asztalos EV, Barrington K, Lodha A, Tarnow-Mordi W, Martin A. Lactoferrin infant feeding trial_Canada (LIFT_Canada): Protocol for a randomized trial of adding lactoferrin to feeds of very-low-birth-weight preterm infants. BMC Pediatr 2020; 20(1): 40.
[http://dx.doi.org/10.1186/s12887-020-1938-0] [PMID: 31996186]
[163]
Ochoa TJ, Zegarra J, Bellomo S, Carcamo CP, Cam L, Castañeda A. Randomized controlled trial of bovine lactoferrin for prevention of sepsis and neurodevelopment impairment in infants weighing less than 2000 grams. J Pediatr 2000; 219: 118-25.
[164]
Solomons HD. Talactoferrin. Germs 2012; 2(3): 121.
[http://dx.doi.org/10.11599/germs.2012.1022] [PMID: 24432272]
[165]
Guntupalli K, Dean N, Morris PE, et al. A phase 2 randomized, double-blind, placebo-controlled study of the safety and efficacy of talactoferrin in patients with severe sepsis. Crit Care Med 2013; 41(3): 706-16.
[http://dx.doi.org/10.1097/CCM.0b013e3182741551] [PMID: 23425819]
[166]
Vincent JL, Marshall JC, Dellinger RP, et al. Talactoferrin in severe sepsis. Crit Care Med 2015; 43(9): 1832-8.
[http://dx.doi.org/10.1097/CCM.0000000000001090] [PMID: 26010687]
[167]
Laffan AM, McKenzie R, Forti J, et al. Lactoferrin for the prevention of post-antibiotic diarrhoea. J Health Popul Nutr 2011; 29(6): 547-51.
[PMID: 22283027]
[168]
Chan H, Chan G, Santos J, Dee K, Co JK. A randomized, double-blind, placebo-controlled trial to determine the efficacy and safety of lactoferrin with vitamin E and zinc as an oral therapy for mild to moderate acne vulgaris. Int J Dermatol 2017; 56(6): 686-90.
[http://dx.doi.org/10.1111/ijd.13607] [PMID: 28369875]
[169]
Mueller EA, Trapp S, Frentzel A, Kirch W, Brantl V. Efficacy and tolerability of oral lactoferrin supplementation in mild to moderate acne vulgaris: an exploratory study. Curr Med Res Opin 2011; 27(4): 793-7.
[http://dx.doi.org/10.1185/03007995.2011.557720] [PMID: 21303195]
[170]
Kim J, Ko Y, Park YK, Kim NI, Ha WK, Cho Y. Dietary effect of lactoferrin-enriched fermented milk on skin surface lipid and clinical improvement of acne vulgaris. Nutrition 2010; 26(9): 902-9.
[http://dx.doi.org/10.1016/j.nut.2010.05.011] [PMID: 20692602]
[171]
Classification and diagnosis of diabetes. Diabetes Care 2015; 38 (Suppl. 1): S8-S16.
[http://dx.doi.org/10.2337/dc15-S005] [PMID: 25537714]
[172]
Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018; 138: 271-81.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[173]
Improving diabetes outcomes for all, a hundred years on from the discovery of insulin: Report of the Global Diabetes Summit 2022.https://www.who.int/publications/i/item/9789240038943
[174]
Lascar N, Brown J, Pattison H, Barnett AH, Bailey CJ, Bellary S. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol 2018; 6(1): 69-80.
[http://dx.doi.org/10.1016/S2213-8587(17)30186-9] [PMID: 28847479]
[175]
Drago-Serrano ME, la Garza MD, Campos-Rodríguez R. Lactoferrin as an adjunctive agent in the treatment of bacterial infections associated with diabetic foot ulcers. Glob Perspect Diabet Foot Ulcerations 2011.
[176]
Engelmayer J, Blezinger P, Varadhachary A. Talactoferrin stimulates wound healing with modulation of inflammation. J Surg Res 2008; 149(2): 278-86.
[http://dx.doi.org/10.1016/j.jss.2007.12.754] [PMID: 18619616]
[177]
Lyons TE, Miller MS, Serena T, et al. Talactoferrin alfa, a recombinant human lactoferrin promotes healing of diabetic neuropathic ulcers: A phase 1/2 clinical study. Am J Surg 2007; 193(1): 49-54.
[http://dx.doi.org/10.1016/j.amjsurg.2006.07.010] [PMID: 17188087]
[178]
Ammons MCB, Ward LS, James GA. Anti-biofilm efficacy of a lactoferrin/xylitol wound hydrogel used in combination with silver wound dressings. Int Wound J 2011; 8(3): 268-73.
[http://dx.doi.org/10.1111/j.1742-481X.2011.00781.x] [PMID: 21457463]
[179]
Yamauchi K, Toida T, Nishimura S, et al. 13-Week oral repeated administration toxicity study of bovine lactoferrin in rats. Food Chem Toxicol 2000; 38(6): 503-12.
[http://dx.doi.org/10.1016/S0278-6915(00)00036-3] [PMID: 10828502]
[180]
Saito H, Miyakawa H, Ishibashi N, Tamura Y, Hayasawa H, Shimamura S. Effect of iron free and metal bound forms of] lactoferrin on the growth of bifidobacteria, E. coli and S. aureus. Biosci Nicroflora 1996; 15: 1-7.
[181]
Griffiths EA, Duffy LC, Schanbacher FL, et al. In vitro growth responses of bifidobacteria and enteropathogens to bovine and human lactoferrin. Dig Dis Sci 2003; 48(7): 1324-32.
[http://dx.doi.org/10.1023/A:1024111310345] [PMID: 12870790]
[182]
Chen PW, Jheng TT, Shyu CL, Mao FC. Antimicrobial potential for the combination of bovine lactoferrin or its hydrolysate with lactoferrin-resistant probiotics against foodborne pathogens. J Dairy Sci 2013; 96(3): 1438-46.
[http://dx.doi.org/10.3168/jds.2012-6112] [PMID: 23332852]
[183]
Chen PW, Jheng TT, Shyu CL, Mao FC. Synergistic antibacterial efficacies of the combination of bovine lactoferrin or its hydrolysate with probiotic secretion in curbing the growth of meticillin-resistant Staphylococcus aureus. J Med Microbiol 2013; 62(12): 1845-51.
[http://dx.doi.org/10.1099/jmm.0.052639-0] [PMID: 24072764]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy