Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Synthesis and Preliminary Evaluations of [18F]fluorinated Pyridine-2- carboxamide Derivatives for Targeting PD-L1 in Cancer

Author(s): Philipp Maier, Gabriele Riehl, Ina Israel and Samuel Samnick*

Volume 23, Issue 5, 2023

Published on: 14 November, 2022

Page: [412 - 424] Pages: 13

DOI: 10.2174/1568009623666221021121014

Price: $65

Abstract

Background: Treatment with immune checkpoint inhibitors has improved both progressionfree survival and overall survival in a subset of patients with tumors. However, the selection of patients who benefit from immune checkpoint inhibitor treatment remains challenging. Positron Emission Tomography (PET) is a non-invasive molecular imaging tool that offers a promising alternative to the current IHC for detecting the PD-L1 expression in malignant cells in vivo, enabling patient selection and predicting the response to individual patient immunotherapy treatment.

Objectives: Herein, we report the development of novel [18F]labeled pyridine-2-carboxamide derivatives [18F]2 and [18F]3 as small-molecule probes for imaging immune checkpoint (PD-1/PD-L1) in cancer using PET.

Methods and Results: [18F]2 and [18F]3 were prepared by a one-step radiofluorination in 44 ± 5% and 30 ± 4% radiochemical yield and > 98% radiochemical purity for a potential clinical translation. The total synthesis time, including HPLC purification, was less than 45 min. [18F]2 and [18F]3 showed excellent stability in injection solution and a significant accumulation and retention in PD-1/PD-L1 expressing MDA-MB-231 breast cancer and in HeLa cervix carcinoma cells (2- 5 cpm/1000 cells). In addition, autoradiographic analysis and inhibition experiments on tumor slices confirm the potential of both compounds as specific imaging probes for the PD-1/PD-L1 axis in tumors.

Conclusion: The in vitro evaluation in PD-L1 expressing cells together with results from autoradiographic analysis in PD-L1 positive tumor sections, suggest that [18F]2 and [18F]3 could be potential imaging probes for assessing PD-L1 expression in tumors and warrant further biological evaluations in vivo.

« Previous
Graphical Abstract

[1]
Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov., 2018, 8(9), 1069-1086.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0367] [PMID: 30115704]
[2]
Philips, G.K.; Atkins, M. Therapeutic uses of anti-PD-1 and anti-PD-L1 antibodies. Int. Immunol., 2015, 27(1), 39-46.
[http://dx.doi.org/10.1093/intimm/dxu095] [PMID: 25323844]
[3]
Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol., 2008, 26(1), 677-704.
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331] [PMID: 18173375]
[4]
Iwai, Y.; Ishida, M.; Tanaka, Y.; Okazaki, T.; Honjo, T.; Minato, N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. USA, 2002, 99(19), 12293-12297.
[http://dx.doi.org/10.1073/pnas.192461099] [PMID: 12218188]
[5]
Borghaei, H.; Paz, A.L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; Barlesi, F.; Kohlhäufl, M.; Arrieta, O.; Burgio, M.A.; Fayette, J.; Lena, H.; Poddubskaya, E.; Gerber, D.E.; Gettinger, S.N.; Rudin, C.M.; Rizvi, N.; Crinò, L.; Blumenschein, G.R., Jr; Antonia, S.J.; Dorange, C.; Harbison, C.T.; Graf, F.F.; Brahmer, J.R. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N. Engl. J. Med., 2015, 373(17), 1627-1639.
[http://dx.doi.org/10.1056/NEJMoa1507643] [PMID: 26412456]
[6]
Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez, G.J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; Majem, M.; Fidler, M.J.; De Castro, G., Jr; Garrido, M.; Lubiniecki, G.M.; Shentu, Y. Im, E.; Dolled, F.M.; Garon, E.B. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet, 2016, 387(10027), 1540-1550.
[http://dx.doi.org/10.1016/S0140-6736(15)01281-7] [PMID: 26712084]
[7]
Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; Von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; Cortinovis, D.L.; Leach, J.; Polikoff, J.; Barrios, C.; Kabbinavar, F.; Frontera, O.A.; De Marinis, F.; Turna, H.; Lee, J.S.; Ballinger, M.; Kowanetz, M.; He, P.; Chen, D.S.; Sandler, A.; Gandara, D.R. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet, 2017, 389(10066), 255-265.
[http://dx.doi.org/10.1016/S0140-6736(16)32517-X] [PMID: 27979383]
[8]
Nishino, M.; Ramaiya, N.H.; Hatabu, H.; Hodi, F.S. Monitoring immune-checkpoint blockade: Response evaluation and biomarker development. Nat. Rev. Clin. Oncol., 2017, 14(11), 655-668.
[http://dx.doi.org/10.1038/nrclinonc.2017.88] [PMID: 28653677]
[9]
Huck, B.R.; Kötzner, L.; Urbahns, K. Small molecules drive big improvements in immuno-oncology therapies. Angew. Chem. Int. Ed., 2018, 57(16), 4412-4428.
[http://dx.doi.org/10.1002/anie.201707816] [PMID: 28971564]
[10]
Zander, H.; Müller, E.S.; Zwiewka, M.; Groß, S.; Van Zandbergen, G.; Engelbergs, J. Checkpoint inhibitors in tumor therapy. Bundesgesundheitsblatt, 2020, 63(11), 1322-1330.
[http://dx.doi.org/10.1007/s00103-020-03221-9] [PMID: 33001218]
[11]
Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex, C.Y.; Kuntzer, T.; Michielin, O.; Peters, S.; Coukos, G.; Spertini, F.; Thompson, J.A.; Obeid, M. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat. Rev. Clin. Oncol., 2019, 16(9), 563-580.
[http://dx.doi.org/10.1038/s41571-019-0218-0] [PMID: 31092901]
[12]
Tartari, F.; Santoni, M.; Burattini, L.; Mazzanti, P.; Onofri, A.; Berardi, R. Economic sustainability of anti-PD-1 agents nivolumab and pembrolizumab in cancer patients: Recent insights and future challenges. Cancer Treat. Rev., 2016, 48, 20-24.
[http://dx.doi.org/10.1016/j.ctrv.2016.06.002] [PMID: 27310708]
[13]
Van De Donk, P.P.; De Ruijter, K.L.; De Hooge, L.M.N.; Brouwers, A.H.; Van Der Wekken, A.J.; Oosting, S.F.; Fehrmann, R.S.N.; De Groot, D.J.A.; De Vries, E.G.E. Molecular imaging biomarkers for immune checkpoint inhibitor therapy. Theranostics, 2020, 10(4), 1708-1718.
[http://dx.doi.org/10.7150/thno.38339] [PMID: 32042331]
[14]
Daud, A.I.; Wolchok, J.D.; Robert, C.; Hwu, W.J.; Weber, J.S.; Ribas, A.; Hodi, F.S.; Joshua, A.M.; Kefford, R.; Hersey, P.; Joseph, R.; Gangadhar, T.C.; Dronca, R.; Patnaik, A.; Zarour, H.; Roach, C.; Toland, G.; Lunceford, J.K.; Li, X.N.; Emancipator, K.; Dolled, F.M.; Kang, S.P.; Ebbinghaus, S.; Hamid, O. Programmed death-ligand 1 expression and response to the anti–programmed death 1 antibody pembrolizumab in melanoma. J. Clin. Oncol., 2016, 34(34), 4102-4109.
[http://dx.doi.org/10.1200/JCO.2016.67.2477] [PMID: 27863197]
[15]
Fruhwirth, G.O.; Kneilling, M.; De Vries, I.J.M.; Weigelin, B.; Srinivas, M.; Aarntzen, E.H.J.G. The potential of in vivo imaging for optimization of molecular and cellular anti-cancer immunotherapies. Mol. Imaging Biol., 2018, 20(5), 696-704.
[http://dx.doi.org/10.1007/s11307-018-1254-3] [PMID: 30030697]
[16]
Lammertsma, A.A. Forward to the past: The case for quantitative PET imaging. J. Nucl. Med., 2017, 58(7), 1019-1024.
[http://dx.doi.org/10.2967/jnumed.116.188029] [PMID: 28522743]
[17]
Wong, A.N.M.; McArthur, G.A.; Hofman, M.S.; Hicks, R.J. The advantages and challenges of using FDG PET/CT for response assessment in melanoma in the era of targeted agents and immunotherapy. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(S1), 67-77.
[http://dx.doi.org/10.1007/s00259-017-3691-7] [PMID: 28389693]
[18]
Dercle, L.; Seban, R.D.; Lazarovici, J.; Schwartz, L.H.; Houot, R.; Ammari, S.; Danu, A.; Edeline, V.; Marabelle, A.; Ribrag, V.; Michot, J.M. 18 F-FDG PET and CT scans detect new imaging patterns of response and progression in patients with hodgkin lymphoma treated by anti–programmed death 1 immune checkpoint inhibitor. J. Nucl. Med., 2018, 59(1), 15-24.
[http://dx.doi.org/10.2967/jnumed.117.193011] [PMID: 28596157]
[19]
Bensch, F.; Van Der Veen, E.L.; De Hooge, L.M.N.; Jorritsma, S.A.; Boellaard, R.; Kok, I.C.; Oosting, S.F.; Schröder, C.P.; Hiltermann, T.J.N.; Van Der Wekken, A.J.; Groen, H.J.M.; Kwee, T.C.; Elias, S.G.; Gietema, J.A.; Bohorquez, S.S.; De Crespigny, A.; Williams, S.P.; Mancao, C.; Brouwers, A.H.; Fine, B.M.; De Vries, E.G.E. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat. Med., 2018, 24(12), 1852-1858.
[http://dx.doi.org/10.1038/s41591-018-0255-8] [PMID: 30478423]
[20]
Niemeijer, A.N.; Leung, D.; Huisman, M.C.; Bahce, I.; Hoekstra, O.S.; Van Dongen, G.A.M.S.; Boellaard, R.; Du, S.; Hayes, W.; Smith, R.; Windhorst, A.D.; Hendrikse, N.H.; Poot, A.; Vugts, D.J.; Thunnissen, E.; Morin, P.; Lipovsek, D.; Donnelly, D.J.; Bonacorsi, S.J.; Velasquez, L.M.; De Gruijl, T.D.; Smit, E.F.; De Langen, A.J. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat. Commun., 2018, 9(1), 4664.
[http://dx.doi.org/10.1038/s41467-018-07131-y] [PMID: 30405135]
[21]
Chatterjee, S.; Lesniak, W.G.; Miller, M.S.; Lisok, A.; Sikorska, E.; Wharram, B.; Kumar, D.; Gabrielson, M.; Pomper, M.G.; Gabelli, S.B.; Nimmagadda, S. Rapid PD-L1 detection in tumors with PET using a highly specific peptide. Biochem. Biophys. Res. Commun., 2017, 483(1), 258-263.
[http://dx.doi.org/10.1016/j.bbrc.2016.12.156] [PMID: 28025143]
[22]
Lesniak, W.G.; Mease, R.C.; Chatterjee, S.; Kumar, D.; Lisok, A.; Wharram, B.; Kalagadda, V.R.; Emens, L.A.; Pomper, M.G.; Nimmagadda, S. Development of [ 18 F]FPy-WL12 as a PD-L1 Specific PET Imaging Peptide. Mol. Imaging, 2019, 18, 1536012119852189.
[http://dx.doi.org/10.1177/1536012119852189] [PMID: 31187691]
[23]
Guzik, K.; Tomala, M.; Muszak, D.; Konieczny, M.; Hec, A. Błaszkiewicz, U.; Pustuła, M.; Butera, R.; Dömling, A.; Holak, T.A. Development of the inhibitors that target the PD-1/PD-L1 interaction—A Brief look at progress on small molecules, peptides and macrocycles. Molecules, 2019, 24(11), 2071.
[http://dx.doi.org/10.3390/molecules24112071] [PMID: 31151293]
[24]
Wu, L.; Yu, Z.; Zhang, F.; Yao, W. N-phenyl-pyridine-2- carboxamide derivatives and their use as PD-1-PD-L1 proteinprotein interaction modulators. W.O. Patent 2017106634A1, 2017.
[25]
Miao, Y.; Lv, G.; Chen, Y.; Qiu, L.; Xie, M.; Lin, J. One-step radiosynthesis and initial evaluation of a small molecule PET tracer for PD-L1 imaging. Bioorg. Med. Chem. Lett., 2020, 30(24), 127572.
[http://dx.doi.org/10.1016/j.bmcl.2020.127572] [PMID: 32979488]
[26]
Israel, I.; Elflein, K.; Schirbel, A.; Chen, K.; Samnick, S. A comparison of the monomeric [68Ga]NODAGA-NGR and dimeric [68Ga]NOTA-(NGR)2 as aminopeptidase N ligand for positron emission tomography imaging in tumor-bearing mice. Eur. J. Pharm. Sci., 2021, 166, 105964.
[http://dx.doi.org/10.1016/j.ejps.2021.105964] [PMID: 34375678]
[27]
Wang, T.; Cai, S.; Cheng, Y.; Zhang, W.; Wang, M.; Sun, H.; Guo, B.; Li, Z.; Xiao, Y.; Jiang, S. Discovery of small-molecule inhibitors of the PD-1/PD-L1 axis that promote PD-L1 internalization and degradation. J. Med. Chem., 2022, 65(5), 3879-3893.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01682] [PMID: 35188766]
[28]
Meanwell, N.A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem., 2018, 61(14), 5822-5880.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01788] [PMID: 29400967]
[29]
Kabalka, G.W.; Varma, M.; Varma, R.S.; Srivastava, P.C.; Knapp, F.F., Jr The tosylation of alcohols. J. Org. Chem., 1986, 51(12), 2386-2388.
[http://dx.doi.org/10.1021/jo00362a044]
[30]
Pretze, M.; Wuest, F.; Peppel, T.; Köckerling, M.; Mamat, C. The traceless Staudinger ligation with fluorine-18: A novel and versatile labeling technique for the synthesis of PET-radiotracers. Tetrahedron Lett., 2010, 51(49), 6410-6414.
[http://dx.doi.org/10.1016/j.tetlet.2010.09.134]
[31]
Kim, D.W.; Ahn, D.S.; Oh, Y.H.; Lee, S.; Kil, H.S.; Oh, S.J.; Lee, S.J.; Kim, J.S.; Ryu, J.S.; Moon, D.H.; Chi, D.Y. A new class of SN2 reactions catalyzed by protic solvents: Facile fluorination for isotopic labeling of diagnostic molecules. J. Am. Chem. Soc., 2006, 128(50), 16394-16397.
[http://dx.doi.org/10.1021/ja0646895] [PMID: 17165796]
[32]
Kim, D.W.; Jeong, H-J.; Lim, S.T.; Sohn, M.H.; Katzenellenbogen, J.A.; Chi, D.Y. Facile nucleophilic fluorination reactions using tert-alcohols as a reaction medium: Significantly enhanced reactivity of alkali metal fluorides and improved selectivity. J. Org. Chem., 2008, 73(3), 957-962.
[http://dx.doi.org/10.1021/jo7021229] [PMID: 18166063]
[33]
Zak, K.M.; Grudnik, P.; Guzik, K.; Zieba, B.J.; Musielak, B.; Dömling, A.; Dubin, G.; Holak, T.A. Structural basis for small molecule targeting of the Programmed Death Ligand 1 (PD-L1). Oncotarget, 2016, 7(21), 30323-30335.
[http://dx.doi.org/10.18632/oncotarget.8730] [PMID: 27083005]
[34]
Zheng, Y.; Fang, Y.C.; Li, J.P.D. L1 expression levels on tumor cells affect their immunosuppressive activity. Oncol. Lett., 2019, 18(5), 5399-5407.
[http://dx.doi.org/10.3892/ol.2019.10903] [PMID: 31612048]
[35]
Heskamp, S.; Hobo, W.; Molkenboer, K.J.D.M.; Olive, D.; Oyen, W.J.G.; Dolstra, H.; Boerman, O.C. Noninvasive imaging of tumor PD-L1 expression using radiolabeled anti–PD-L1 antibodies. Cancer Res., 2015, 75(14), 2928-2936.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3477] [PMID: 25977331]
[36]
Grenga, I.; Donahue, R.N.; Lepone, L.; Bame, J.; Schlom, J.; Farsaci, B. PD-L1 and MHC-I expression in 19 human tumor cell lines and modulation by interferon-gamma treatment. J. Immunother. Cancer, 2014, 2(S3)(Suppl. 3), P102.
[http://dx.doi.org/10.1186/2051-1426-2-S3-P102]
[37]
Fankhauser, C.D.; Schüffler, P.J.; Gillessen, S.; Omlin, A.; Rupp, N.J.; Rueschoff, J.H.; Hermanns, T.; Poyet, C.; Sulser, T.; Moch, H.; Wild, P.J. Comprehensive immunohistochemical analysis of PD-L1 shows scarce expression in castration-resistant prostate cancer. Oncotarget, 2018, 9(12), 10284-10293.
[http://dx.doi.org/10.18632/oncotarget.22888] [PMID: 29535806]
[38]
Lee, J.H.; Lee, D.Y.; Lee, H.J. Im, E.; Sim, D.Y.; Park, J.E.; Park, W.Y.; Shim, B.S.; Kim, S.H. Inhibition of STAT3/PD-L1 and activation of miR193a-5p are critically involved in apoptotic effect of compound K in prostate cancer cells. Cells, 2021, 10(8), 2151.
[http://dx.doi.org/10.3390/cells10082151] [PMID: 34440920]
[39]
Liu, Z.; Wang, H.; Hu, C.; Wu, C.; Wang, J.; Hu, F.; Fu, Y.; Wen, J.; Zhang, W. Targeting autophagy enhances atezolizumab-induced mitochondria-related apoptosis in osteosarcoma. Cell Death Dis., 2021, 12(2), 164.
[http://dx.doi.org/10.1038/s41419-021-03449-6] [PMID: 33558476]
[40]
Li, M.; Zhao, R.; Chen, J.; Tian, W.; Xia, C.; Liu, X.; Li, Y.; Li, S.; Sun, H.; Shen, T.; Ren, W.; Sun, L. Next generation of anti-PD-L1 atezolizumab with enhanced anti-tumor efficacy in vivo. Sci. Rep., 2021, 11(1), 5774.
[http://dx.doi.org/10.1038/s41598-021-85329-9] [PMID: 33707569]
[41]
Ashizawa, T.; Iizuka, A.; Tanaka, E.; Kondou, R.; Miyata, H.; Maeda, C.; Sugino, T.; Yamaguchi, K.; Ando, T.; Ishikawa, Y.; Ito, M.; Akiyama, Y. Antitumor activity of the PD-1/PD-L1 binding inhibitor BMS-202 in the humanized MHC-double knockout NOG mouse. Biomed. Res., 2019, 40(6), 243-250.
[http://dx.doi.org/10.2220/biomedres.40.243] [PMID: 31839668]
[42]
Tönnesmann, R.; Meyer, P.; Eder, M.; Baranski, A.C. [177Lu]Lu-PSMA-617 salivary gland uptake characterized by quantitative in vitro autoradiography. Pharmaceuticals, 2019, 12(1), 18.
[http://dx.doi.org/10.3390/ph12010018] [PMID: 30678341]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy