Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

A Sensitive Liquid Chromatography-Mass Spectrometry Method for Determination of 14-Deoxy-12(R)-Sulfo Andrographolide Concentration in Rat Plasma and its Application to a Pharmacokinetic Study

Author(s): Ruopeng Yang, Wanyu Hu, Cong Xie, Dafu Tang, Xiaojie Zhao, Bingxuan Fu, Jianming Wu*, Ling Ye* and Rongxin Liao*

Volume 23, Issue 11, 2022

Published on: 08 November, 2022

Page: [905 - 911] Pages: 7

DOI: 10.2174/1386207326666221020110217

Price: $65

Abstract

Background: Andrographolide is a promising natural substance with numerous pharmacotherapy uses. 14-deoxy-12(R)-sulfo andrographolide (SAP) is the main metabolite of andrographolide in the intestine.

Objective: To investigate the pharmacokinetic properties of SAP, a precise and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the determination of SAP concentration in rat plasma was developed and validated in this study.

Methods: Chromatographic separation was achieved on an Acpuity UPLC BEH C18 column with gradient elution that consisted of methanol and water at a flow rate of 0.3 mL/min. MS/MS detection was carried out by the multiple reaction monitoring (MRM) mode with negative electrospray ionization (ESI-) source, with the transitions of m/z 413.2→m/z 287.2 for SAP and m/z 269→m/z 133 for genistein [which was used as an internal standard (IS)].

Results: The calibration curve of SAP was linear over the concentration range of 5-120 ng/mL. The selectivity, precision, accuracy, extraction recovery, matrix effect, and stability of the method were within acceptable ranges. This SAP quantification method was then successfully applied to a pharmacokinetic study of SAP. The area under the curve (AUC) of SAP in rats treated with SAP at 60 mg/kg by intravenous administration was 7498.53 ± 2405.02 mg/L·min. The AUC of SAP in rats treated with SAP at 60 mg/kg by oral administration was 97.74 ± 39.56 mg/L·min. Thus, the absolute oral bioavailability of SAP was determined to be 1.40%.

Graphical Abstract

[1]
Ren, X.; Xu, W.; Sun, J.; Dong, B.; Awala, H.; Wang, L. Current trends on repurposing and pharmacological enhancement of andro-grapholide. Curr. Med. Chem., 2021, 28(12), 2346-2368.
[http://dx.doi.org/10.2174/0929867327666200810135604] [PMID: 32778020]
[2]
Zhang, H.; Li, S.; Si, Y.; Xu, H. Andrographolide and its derivatives: Current achievements and future perspectives. Eur. J. Med. Chem., 2021, 224, 113710.
[http://dx.doi.org/10.1016/j.ejmech.2021.113710] [PMID: 34315039]
[3]
Dai, Y.; Chen, S. R.; Chai, L.; Zhao, J.; Wang, Y.; Wang, Y. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit. Rev. Food Sci. Nutr., 2019, 59(sup1), S17-S29.
[http://dx.doi.org/10.1080/10408398.2018.1501657]
[4]
Ye, L.; Wang, T.; Tang, L.; Liu, W.; Yang, Z.; Zhou, J.; Zheng, Z.; Cai, Z.; Hu, M.; Liu, Z. Poor oral bioavailability of a promising anticancer agent andrographolide is due to extensive metabolism and efflux by P‐glycoprotein. J. Pharm. Sci., 2011, 100(11), 5007-5017.
[http://dx.doi.org/10.1002/jps.22693] [PMID: 21721007]
[5]
Zhao, H.Y.; Hu, H.; Wang, Y.T. Comparative metabolism and stability of andrographolide in liver microsomes from humans, dogs and rats using ultra-performance liquid chromatography coupled with triple-quadrupole and Fourier transform ion cyclotron resonance mass spec-trometry. Rapid Commun. Mass Spectrom., 2013, 27(12), 1385-1392.
[http://dx.doi.org/10.1002/rcm.6585] [PMID: 23681817]
[6]
Cui, L.; Qiu, F.; Yao, X. Isolation and identification of seven glucuronide conjugates of andrographolide in human urine. Drug Metab. Dispos., 2005, 33(4), 555-562.
[http://dx.doi.org/10.1124/dmd.104.001958] [PMID: 15644451]
[7]
Tian, X.; Liang, S.; Wang, C.; Wu, B.; Ge, G.; Deng, S.; Liu, K.; Yang, L.; Ma, X. Regioselective glucuronidation of andrographolide and its major derivatives: Metabolite identification, isozyme contribution, and species differences. AAPS J., 2015, 17(1), 156-166.
[http://dx.doi.org/10.1208/s12248-014-9658-8] [PMID: 25204783]
[8]
He, X.; Li, J.; Gao, H.; Qiu, F.; Cui, X.; Yao, X. Six new andrographolide metabolites in rats. Chem. Pharm. Bull. (Tokyo), 2003, 51(5), 586-589.
[http://dx.doi.org/10.1248/cpb.51.586] [PMID: 12736461]
[9]
Cui, L.; Chan, W.; Qiu, F.; Cai, Z.; Yao, X. Identification of four urea adducts of andrographolide in humans. Drug Metab. Lett., 2008, 2(4), 261-268.
[http://dx.doi.org/10.2174/187231208786734148] [PMID: 19356103]
[10]
Qiu, F.; Cui, L.; Chen, L.; Sun, J.; Yao, X. Two novel creatinine adducts of andrographolide in human urine. Xenobiotica, 2012, 42(9), 911-916.
[http://dx.doi.org/10.3109/00498254.2012.680619] [PMID: 22568631]
[11]
He, X.; Li, J.; Gao, H.; Qiu, F.; Hu, K.; Cui, X.; Yao, X. Identification of a rare sulfonic acid metabolite of andrographolide in rats. Drug Metab. Dispos., 2003, 31(8), 983-985.
[http://dx.doi.org/10.1124/dmd.31.8.983] [PMID: 12867485]
[12]
Pandey, G.; Rao, C.H. Andrographolide: Its pharmacology, natural bioavailability and current approaches to increase its content in androgra-phispaniculata. Int. J. Complement. Altern. Med., 2018, 11(4), 355-360.
[http://dx.doi.org/10.15406/ijcam.2018.11.00425]
[13]
Loureiro Damasceno, J.P.; Silva da Rosa, H.; Silva de Araújo, L.; Jacometti Cardoso Furtado, N.A. Andrographis paniculata formulations: Impact on diterpene lactone oral bioavailability. Eur. J. Drug Metab. Pharmacokinet., 2022, 47(1), 19-30.
[http://dx.doi.org/10.1007/s13318-021-00736-7] [PMID: 34816382]
[14]
Yang, T.; Sheng, H.H.; Feng, N.P.; Wei, H.; Wang, Z.T.; Wang, C.H. Preparation of andrographolide-loaded solid lipid nanoparticles and their in vitro and in vivo evaluations: Characteristics, release, absorption, transports, pharmacokinetics, and antihyperlipidemic activity. J. Pharm. Sci., 2013, 102(12), 4414-4425.
[http://dx.doi.org/10.1002/jps.23758] [PMID: 24166599]
[15]
Liu, Y.H.; Zhang, Z.B.; Zheng, Y.F.; Chen, H.M.; Yu, X.T.; Chen, X.Y.; Zhang, X.; Xie, J.H.; Su, Z.Q.; Feng, X.X.; Zeng, H.F.; Su, Z.R. Gas-troprotective effect of andrographolide sodium bisulfite against indomethacin-induced gastric ulceration in rats. Int. Immunopharmacol., 2015, 26(2), 384-391.
[http://dx.doi.org/10.1016/j.intimp.2015.04.025] [PMID: 25916678]
[16]
Wen, L.; Xia, N.; Chen, X.; Li, Y.; Hong, Y.; Liu, Y.; Wang, Z.; Liu, Y. Activity of antibacterial, antiviral, anti-inflammatory in compounds andrographolide salt. Eur. J. Pharmacol., 2014, 740, 421-427.
[http://dx.doi.org/10.1016/j.ejphar.2014.06.053] [PMID: 24998876]
[17]
Zhang, S.Q.; Fan, Y.M. Determination of andrograpolide sodium bisulphite in Beagle dog plasma by LC–MS/MS and its application to phar-macokinetics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 907, 173-177.
[http://dx.doi.org/10.1016/j.jchromb.2012.09.013] [PMID: 23010480]
[18]
Zhang, S.Q.; Chen, X.H.; Yu, M.; Sun, X.; Li, Z.G. Quantification of andrographolide sodium bisulphite in urine after intravenous injection to rats by LC–MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 880(1), 163-167.
[http://dx.doi.org/10.1016/j.jchromb.2011.11.006] [PMID: 22130502]
[19]
Yue, C.; Lin, H.; Yang, P. Method for synthesizing andrographolide sodium bisulfite. China Patent CN101362740, 2009.
[20]
Horton, L.R. Food and drug administration. BMJ, 2007, 334(7584), 55-56.
[http://dx.doi.org/10.1136/bmj.39049.545880.BE] [PMID: 17218671]
[21]
Jacobs, D.M. European Medicines Agency (EMA). Regulation, 2013. Available from: https://www.ema.europa.eu/en/news/ema-publishes-2013-annual-report
[22]
Williams, J.S.; Donahue, S.H.; Gao, H.; Brummel, C.L. Universal LC–MS method for minimized carryover in a discovery bioanalytical set-ting. Bioanalysis, 2012, 4(9), 1025-1037.
[http://dx.doi.org/10.4155/bio.12.76] [PMID: 22612684]
[23]
Hu, Y.; Chen, M.; Wang, Z.; Lan, Y.; Tang, L.; Liu, M.; Zhao, J.; Hu, M.; Zhang, L.; Ye, L. Development of a validated UPLC-MS/MS meth-od for determination of humantenmine in rat plasma and its application in pharmacokinetics and bioavailability studies. Biomed. Chromatogr., 2017, 31(12), e4017.
[http://dx.doi.org/10.1002/bmc.4017] [PMID: 28557019]
[24]
Rafferty, J.L.; Siepmann, J.I.; Schure, M.R. Mobile phase effects in reversed-phase liquid chromatography: A comparison of acetoni-trile/water and methanol/water solvents as studied by molecular simulation. J. Chromatogr. A, 2011, 1218(16), 2203-2213.
[http://dx.doi.org/10.1016/j.chroma.2011.02.012] [PMID: 21388628]
[25]
Reddy, S.; Rao, R.; Divi, K.; Chandiran, I.S.; Jayaveera, K.N.; Naidu, Y.K.; Reddy, M.P. Development and validation of high-throughput liquid chromatographytandem mass spectrometric method for simultaneous quantification of Clopidogrel and its metabolite in human plas-ma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(3-4), 502-508.
[http://dx.doi.org/10.1016/j.jchromb.2009.12.026] [PMID: 20060791]
[26]
Patil, R.; Jain, V. Andrographolide: A review of analytical methods. J. Chromatogr. Sci., 2021, 59(2), 191-203.
[http://dx.doi.org/10.1093/chromsci/bmaa091] [PMID: 33221827]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy