Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

A Comprehensive Review on Nanomedicine: Promising Approach for Treatment of Brain Tumor through Intranasal Administration

Author(s): Shiv Bahadur* and Anubhav Prakash

Volume 24, Issue 1, 2023

Published on: 03 November, 2022

Page: [71 - 88] Pages: 18

DOI: 10.2174/1389450124666221019141044

Price: $65

Abstract

Brain tumors have become one of the deadliest cancers; however, their treatment is still limited by conventional approaches. Brain tumors, among other CNS diseases, are the most lethal form of cancer due to ineffective diagnosis and profiling. The major limiting factor in treating brain tumors is the blood-brain barrier (BBB), and the required therapeutic concentration is not achieved. Hence, most drugs are prescribed at higher doses, which have several unwanted side effects. Nanotechnology has emerged as an interesting and promising new approach for treating neurological disorders, including brain tumors, with the potential to overcome concerns related to traditional therapeutic approaches. Moreover, biomimetic nanomaterials have been introduced to successfully cross the blood-brain barrier and be consumed by deep skin cancer for imaging brain tumors using multimodal functional nanostructures for more specific and reliable medical assessment. These nanomedicines can address several challenges by enhancing the bioavailability of therapeutics through controlled pharmacokinetics and pharmacodynamics. Further nasal drug delivery has been considered as an alternative approach for the brain's targeting for the treatment of several CNS diseases. A drug can be directly delivered to the brain by bypassing the BBB through intranasal administration. This review discusses intranasal nanomedicine-based therapies for brain tumor targeting, which can be explored from different perspectives.

« Previous
Graphical Abstract

[1]
Bruinsmann FA, Richter VG, de Cristo SAA, et al. Nasal drug delivery of anticancer drugs for the treatment of glioblastoma: Preclinical and clinical trials. Molecules 2019; 24(23): 4312.
[http://dx.doi.org/10.3390/molecules24234312] [PMID: 31779126]
[2]
Zhang X, Wu J, Lin D. Construction of intelligent nano-drug delivery system for targeting extranodal nasal natural killer/thymus dependent lymphocyte. J Biomed Nanotechnol 2021; 17(3): 487-500.
[http://dx.doi.org/10.1166/jbn.2021.3048] [PMID: 33875083]
[3]
Tagde P, Najda A, Nagpal K, et al. Nanomedicine-based delivery strategies for breast cancer treatment and management. Int J Mol Sci 2022; 23(5): 2856.
[http://dx.doi.org/10.3390/ijms23052856] [PMID: 35269998]
[4]
Sabir F, Ismail R, Csoka I. Nose-to-brain delivery of antiglioblastoma drugs embedded into lipid nanocarrier systems: Status quo and outlook. Drug Discov Today 2020; 25(1): 185-94.
[http://dx.doi.org/10.1016/j.drudis.2019.10.005] [PMID: 31629966]
[5]
Alshweiat A, Ambrus R, Csóka II. Intranasal nanoparticulate systems as alternative route of drug delivery. Curr Med Chem 2019; 26(35): 6459-92.
[http://dx.doi.org/10.2174/0929867326666190827151741] [PMID: 31453778]
[6]
Upadhaya PG, Pulakkat S, Patravale VB. Nose-to-brain delivery: Exploring newer domains for glioblastoma multiforme management. Drug Deliv Transl Res 2020; 10(4): 1044-56.
[http://dx.doi.org/10.1007/s13346-020-00747-y] [PMID: 32221847]
[7]
Selvaraj K, Gowthamarajan K, Karri VVSR. Nose to brain transport pathways an overview: Potential of nanostructured lipid carriers in nose to brain targeting. Artif Cells Nanomed Biotechnol 2018; 46(8): 2088-95.
[PMID: 29282995]
[8]
Karim R, Palazzo C, Evrard B, Piel G. Nanocarriers for the treatment of glioblastoma multiforme: Current state-of-the-art. J Control Release 2016; 227: 23-37.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.026] [PMID: 26892752]
[9]
Kumar A, Pandey AN, Jain SK. Nasal-nanotechnology: Revolution for efficient therapeutics delivery. Drug Deliv 2016; 23(3): 671-83.
[http://dx.doi.org/10.3109/10717544.2014.920431] [PMID: 24901207]
[10]
Khan AR, Liu M, Khan MW, Zhai G. Progress in brain targeting drug delivery system by nasal route. J Control Release 2017; 268: 364-89.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.001] [PMID: 28887135]
[11]
Marianecci C, Rinaldi F, Hanieh PN, Di Marzio L, Paolino D, Carafa M. Drug delivery in overcoming the blood-brain barrier: Role of nasal mucosal grafting. Drug Des Devel Ther 2017; 11: 325-35.
[http://dx.doi.org/10.2147/DDDT.S100075] [PMID: 28184152]
[12]
Miyake MM, Bleier BS. The blood-brain barrier and nasal drug delivery to the central nervous system. Am J Rhinol Allergy 2015; 29(2): 124-7.
[http://dx.doi.org/10.2500/ajra.2015.29.4149] [PMID: 25785753]
[13]
Qian S, Wang Q, Zuo Z. Improved brain uptake of peptide-based CNS drugs via alternative routes of administrations of its nanocarrier delivery systems: A promising strategy for CNS targeting delivery of peptides. Expert Opin Drug Metab Toxicol 2014; 10(11): 1491-508.
[http://dx.doi.org/10.1517/17425255.2014.956080] [PMID: 25196358]
[14]
Kashyap K, Shukla R. Drug delivery and targeting to the brain through nasal route: Mechanisms, applications and challenges. Curr Drug Deliv 2019; 16(10): 887-901.
[http://dx.doi.org/10.2174/1567201816666191029122740] [PMID: 31660815]
[15]
Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull 2018; 143: 155-70.
[http://dx.doi.org/10.1016/j.brainresbull.2018.10.009] [PMID: 30449731]
[16]
Veening JG, Olivier B. Intranasal administration of oxytocin: Behavioral and clinical effects, a review. Neurosci Biobehav Rev 2013; 37(8): 1445-65.
[http://dx.doi.org/10.1016/j.neubiorev.2013.04.012] [PMID: 23648680]
[17]
Mignani S, Shi X, Karpus A, Majoral JP. Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: An opportunity to develop new CNS drugs. Eur J Med Chem 2021; 209112905.
[http://dx.doi.org/10.1016/j.ejmech.2020.112905] [PMID: 33069435]
[18]
Bayanati M, Khosroshahi AG, Alvandi M, Mahboobian MMJ. Fabrication of a thermosensitive in situ gel nanoemulsion for nose to brain delivery of temozolomide. JoN 2021; 2021
[http://dx.doi.org/10.1155/2021/1546798]
[19]
Youssef G, Wen PY, Reports N. Medical and neurological management of brain tumor complications. Curr Neurol Neurosci Rep 2021; 21(10): 53.
[http://dx.doi.org/10.1007/s11910-021-01142-x] [PMID: 34545509]
[20]
Md S, Mustafa G, Baboota S, Ali J. Nanoneurotherapeutics approach intended for direct nose to brain delivery. Drug Dev Ind Pharm 2015; 41(12): 1922-34.
[http://dx.doi.org/10.3109/03639045.2015.1052081] [PMID: 26057769]
[21]
Schiff D, Alyahya MJCN, Reports N. Neurological and medical complications in brain tumor patients. JCN Reports N 2020; 20(8): 1-7.
[http://dx.doi.org/10.1007/s11910-020-01054-2]
[22]
Herholz K, Langen KJ, Schiepers C, Mountz JM. Brain tumors. Semin Nucl Med 2012; 42(6): 356-70.
[http://dx.doi.org/10.1053/j.semnuclmed.2012.06.001] [PMID: 23026359]
[23]
Mohile NA. Medical complications of brain tumors. Continuum 2017; 23(6): 1635-52.
[http://dx.doi.org/10.1212/CON.0000000000000540] [PMID: 29200115]
[24]
Hadidchi S, Surento W, Lerner A, et al. Headache and brain tumor. Neuroimaging Clin N Am 2019; 29(2): 291-300.
[http://dx.doi.org/10.1016/j.nic.2019.01.008] [PMID: 30926118]
[25]
Purdy RA, Kirby S. Headaches and brain tumors. Neurol Clin 2004; 22(1): 39-53.
[http://dx.doi.org/10.1016/S0733-8619(03)00099-9] [PMID: 15062527]
[26]
Allhenn D, Shetab BMA, Lamprecht A. Drug delivery strategies for the treatment of malignant gliomas. Int J Pharm 2012; 436(1-2): 299-310.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.025] [PMID: 22721856]
[27]
Lara-Velazquez M, Al-Kharboosh R, Jeanneret S, et al. Advances in brain tumor surgery for glioblastoma in adults. Brain Sci 2017; 7(12): 166.
[http://dx.doi.org/10.3390/brainsci7120166] [PMID: 29261148]
[28]
Iturrioz-Rodríguez N, Bertorelli R, Ciofani G. Lipid‐based nanocarriers for the treatment of glioblastoma. Adv NanoBiomed Res 2021; 1(2): 2000054.
[http://dx.doi.org/10.1002/anbr.202000054] [PMID: 33623931]
[29]
Türker S, Onur E, Ózer Y. Nasal route and drug delivery systems. Pharm World Sci 2004; 26(3): 137-42.
[http://dx.doi.org/10.1023/B:PHAR.0000026823.82950.ff] [PMID: 15230360]
[30]
Kanazawa T, Taki H, Okada H. Nose-to-brain drug delivery system with ligand/cell-penetrating peptide-modified polymeric nano-micelles for intracerebral gliomas. Eur J Pharm Biopharm 2020; 152: 85-94.
[http://dx.doi.org/10.1016/j.ejpb.2020.05.001] [PMID: 32387702]
[31]
Bahadur S, Pathak K. Physicochemical and physiological considerations for efficient nose-to-brain targeting. Expert Opin Drug Deliv 2012; 9(1): 19-31.
[http://dx.doi.org/10.1517/17425247.2012.636801] [PMID: 22171740]
[32]
Liu Z, Ji X, He D, Zhang R, Liu Q, Xin T. Nanoscale drug delivery systems in glioblastoma. Nanoscale Res Lett 2022; 17(1): 27.
[http://dx.doi.org/10.1186/s11671-022-03668-6] [PMID: 35171358]
[33]
Li J, Zhao J, Tan T, et al. Nanoparticle drug delivery system for glioma and its efficacy improvement strategies: A comprehensive review. Int J Nanomedicine 2020; 15: 2563-82.
[http://dx.doi.org/10.2147/IJN.S243223] [PMID: 32368041]
[34]
Bahadur S, Pardhi DM, Rautio J, Rosenholm JM, Pathak K. Pathak. Intranasal nanoemulsions for direct nose-to-brain delivery of actives for CNS disorders. Pharmaceutics 2020; 12(12): 1230.
[http://dx.doi.org/10.3390/pharmaceutics12121230] [PMID: 33352959]
[35]
Chatterjee B, Gorain B, Mohananaidu K, Sengupta P, Mandal UK, Choudhury H. Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. Int J Pharm 2019; 565: 258-68.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.032] [PMID: 31095983]
[36]
Laffleur F, Bauer B. Progress in nasal drug delivery systems. Int J Pharm 2021; 607120994.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120994] [PMID: 34390810]
[37]
Savale SM. Nose to brain: A versatile mode of drug delivery system. As J. Biomater Res 2017; 3: 16-38.
[38]
Tan MSA, Parekh HS, Pandey P, Siskind DJ, Falconer JR. Nose-to-brain delivery of antipsychotics using nanotechnology: A review. Expert Opin Drug Deliv 2020; 17(6): 839-53.
[http://dx.doi.org/10.1080/17425247.2020.1762563] [PMID: 32343186]
[39]
Andrzejewska A, Dabrowska S, Lukomska B, Janowski M. Janowski. Mesenchymal stem cells for neurological disorders. Adv Sci 2021; 8(7): 2002944.
[http://dx.doi.org/10.1002/advs.202002944] [PMID: 33854883]
[40]
Wang Z, Xiong G, Tsang WC, Schätzlein AG, Uchegbu IF. Nose-to-Brain Delivery. J Pharmacol Exp Ther 2019; 370(3): 593-601.
[http://dx.doi.org/10.1124/jpet.119.258152] [PMID: 31126978]
[41]
Ahmad J, Rizwanullah M, Amin S, Warsi MH, Ahmad MZ, Barkat MA. Barkat. Nanostructured Lipid Carriers (NLCs): Nose-to-brain delivery and theranostic application. Curr Drug Metab 2020; 21(14): 1136-43.
[http://dx.doi.org/10.2174/1389200221666200719003304] [PMID: 32682366]
[42]
Froelich A, Osmałek T, Jadach B, Puri V, Michniak-Kohn B, Michniak-Kohn . Microemulsion-based media in nose-to-brain drug delivery. Pharmaceutics 2021; 13(2): 201.
[http://dx.doi.org/10.3390/pharmaceutics13020201] [PMID: 33540856]
[43]
Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci 2018; 195: 44-52.
[http://dx.doi.org/10.1016/j.lfs.2017.12.025] [PMID: 29277310]
[44]
Zhang C, Pan Y, Cai R, et al. Salvianolic acid A increases the accumulation of doxorubicin in brain tumors through caveolae endocytosis. Neuropharmacology 2020; 167: 107980.
[http://dx.doi.org/10.1016/j.neuropharm.2020.107980] [PMID: 32014448]
[45]
Long Y, Yang Q, Xiang Y, et al. Nose to brain drug delivery - A promising strategy for active components from herbal medicine for treating cerebral ischemia reperfusion. Pharmacol Res 2020; 159104795.
[http://dx.doi.org/10.1016/j.phrs.2020.104795] [PMID: 32278035]
[46]
Martins PP, Smyth HDC, Cui Z. Strategies to facilitate or block nose-to-brain drug delivery. Int J Pharm 2019; 570118635.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118635] [PMID: 31445062]
[47]
Shringarpure M, Gharat S, Momin M, Omri A. Management of epileptic disorders using nanotechnology-based strategies for nose-to-brain drug delivery. Expert Opin Drug Deliv 2021; 18(2): 169-85.
[http://dx.doi.org/10.1080/17425247.2021.1823965] [PMID: 32921169]
[48]
Vyas T, Shahiwala A, Marathe S, Misra A. Intranasal drug delivery for brain targeting. Curr Drug Deliv 2005; 2(2): 165-75.
[http://dx.doi.org/10.2174/1567201053586047] [PMID: 16305417]
[49]
Nguyen TT, Nguyen TTD, Tran NMA, Van Vo G. Van Vo. Lipid-based nanocarriers via nose-to-brain pathway for central nervous system disorders. Neurochem Res 2022; 47(3): 552-73.
[http://dx.doi.org/10.1007/s11064-021-03488-7] [PMID: 34800247]
[50]
Crowe TP, Hsu WH. Evaluation of recent intranasal drug delivery systems to the central nervous system. Pharmaceutics 2022; 14(3): 629.
[http://dx.doi.org/10.3390/pharmaceutics14030629] [PMID: 35336004]
[51]
Kumar H, Mishra G, Sharma AK, Gothwal A, Kesharwani P, Gupta U. Intranasal drug delivery: A non-invasive approach for the better delivery of neurotherapeutics. Pharm Nanotechnol 2017; 5(3): 203-14.
[PMID: 28521670]
[52]
Khafagy ES, Morishita M, Onuki Y, Takayama K. Current challenges in non-invasive insulin delivery systems: A comparative review. Adv Drug Deliv Rev 2007; 59(15): 1521-46.
[http://dx.doi.org/10.1016/j.addr.2007.08.019] [PMID: 17881081]
[53]
Vllasaliu D. Non-invasive drug delivery systems. Pharmaceutics 2021; 13(5): 611.
[http://dx.doi.org/10.3390/pharmaceutics13050611] [PMID: 33922587]
[54]
Ahmad A, Mubarak NM, Naseem K, et al. Recent advancement and development of chitin and chitosan-based nanocomposite for drug delivery: Critical approach to clinical research. Arab J Chem 2020; 13(12): 8935-64.
[http://dx.doi.org/10.1016/j.arabjc.2020.10.019]
[55]
Yang JP, Liu HJ, Cheng SM, et al. Direct transport of VEGF from the nasal cavity to brain. Neurosci Lett 2009; 449(2): 108-11.
[http://dx.doi.org/10.1016/j.neulet.2008.10.090] [PMID: 18996442]
[56]
Misra A, Jogani V, Jinturkar K, Vyas T. Recent patents review on intranasal administration for CNS drug delivery. Recent Pat Drug Deliv Formul 2008; 2(1): 25-40.
[http://dx.doi.org/10.2174/187221108783331429] [PMID: 19075895]
[57]
Kikuta S, Kuboki A, Yamasoba T. Protective effect of insulin in mouse nasal mucus against olfactory epithelium injury. Front Neural Circuits 2021; 15803769.
[http://dx.doi.org/10.3389/fncir.2021.803769] [PMID: 35002636]
[58]
Wu H, Hu K, Jiang X. From nose to brain: Understanding transport capacity and transport rate of drugs. Expert Opin Drug Deliv 2008; 5(10): 1159-68.
[http://dx.doi.org/10.1517/17425247.5.10.1159] [PMID: 18817519]
[59]
Costa CP, Moreira JN, Sousa Lobo JM, Silva AC. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies. Acta Pharm Sin B 2021; 11(4): 925-40.
[http://dx.doi.org/10.1016/j.apsb.2021.02.012] [PMID: 33996407]
[60]
Chu L, Wang A, Ni L, et al. Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting. Drug Deliv 2018; 25(1): 1634-41.
[http://dx.doi.org/10.1080/10717544.2018.1494226] [PMID: 30176744]
[61]
Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B 2016; 6(4): 268-86.
[http://dx.doi.org/10.1016/j.apsb.2016.05.013] [PMID: 27471668]
[62]
Zhang Y, Sun C, Zhang Q, Deng Y, Hu X, Chen P. Intranasal delivery of Paclitaxel encapsulated nanoparticles for brain injury due to glioblastoma. J Appl Biomater Funct Mater 2020; 18.
[http://dx.doi.org/10.1177/2280800020977170] [PMID: 33307944]
[63]
Colombo M, Figueiró F, de Fraga Dias A, Teixeira HF, Battastini AMO, Koester LS. Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro. Int J Pharm 2018; 543(1-2): 214-23.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.055] [PMID: 29605695]
[64]
Sousa F, Dhaliwal HK, Gattacceca F, Sarmento B, Amiji MM. Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles. J Control Release 2019; 309: 37-47.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.033] [PMID: 31344424]
[65]
Qu Y, Li A, Ma L, et al. Nose-to-brain delivery of disulfiram nanoemulsion in situ gel formulation for glioblastoma targeting therapy. Int J Pharm 2021; 597120250.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120250] [PMID: 33486040]
[66]
Taki H, Kanazawa T, Akiyama F, Takashima Y, Okada H. Intranasal delivery of camptothecin-loaded tat-modified nanomicells for treatment of intracranial brain tumors. Pharmaceuticals 2012; 5(10): 1092-102.
[http://dx.doi.org/10.3390/ph5101092] [PMID: 24281259]
[67]
Timbie KF, Afzal U, Date A, et al. MR image-guided delivery of cisplatin-loaded brain-penetrating nanoparticles to invasive glioma with focused ultrasound. J Control Release 2017; 263: 120-31.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.017] [PMID: 28288892]
[68]
Sekerdag E, Lüle S, Bozdağ PS, et al. A potential non-invasive glioblastoma treatment: Nose-to-brain delivery of farnesylthiosalicylic acid incorporated hybrid nanoparticles. J Control Release 2017; 261: 187-98.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.032] [PMID: 28684169]
[69]
Yemisci M, Bozdag S, Çetin M, et al. Treatment of malignant gliomas with mitoxantrone-loaded poly (lactide-co-glycolide) microspheres. Neurosurgery 2006; 59(6): 1296-303.
[http://dx.doi.org/10.1227/01.NEU.0000245607.99946.8F] [PMID: 17277693]
[70]
Sakane T, Yamashita S, Yata N, Sezaki HJ. Transnasal delivery of 5-fluorouracil to the brain in the rat 1999; 7(3): 233-40.
[71]
Gadhave D, Gorain B, Tagalpallewar A, Kokare C. Intranasal teriflunomide microemulsion: An improved chemotherapeutic approach in glioblastoma. J Drug Deliv Sci Technol 2019; 51: 276-89.
[http://dx.doi.org/10.1016/j.jddst.2019.02.013]
[72]
de Oliveira JER, Nascimento TL, Salomão MA, da Silva ACG, Valadares MC, Lima EM. Increased nose-to-brain delivery of melatonin mediated by polycaprolactone nanoparticles for the treatment of glioblastoma. Pharm Res 2019; 36(9): 131.
[http://dx.doi.org/10.1007/s11095-019-2662-z] [PMID: 31263962]
[73]
Jain DS, Bajaj AN, Athawale RB, et al. Thermosensitive PLA based nanodispersion for targeting brain tumor via intranasal route. Mater Sci Eng C 2016; 63: 411-21.
[http://dx.doi.org/10.1016/j.msec.2016.03.015] [PMID: 27040235]
[74]
Alex AT, Joseph A, Shavi G, Rao JV, Udupa N. Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery. Drug Deliv 2016; 23(7): 2144-53.
[http://dx.doi.org/10.3109/10717544.2014.948643] [PMID: 25544603]
[75]
Kumar N, Das G, Arora D. DoE directed optimization, development and characterization of resveratrol loaded nlc system for the nose to brain delivery in the management of glioblastoma multiforme 2021. Available from: https://www.researchsquare.com/article/rs-572155/v1
[http://dx.doi.org/10.21203/rs.3.rs-572155/v1]
[76]
Mena-Hernández J, Jung-Cook H, Llaguno-Munive M, et al. Preparation and evaluation of mebendazole microemulsion for intranasal delivery: An alternative approach for glioblastoma treatment. AAPS Pharm Sci Tech 2020; 21(7): 264.
[http://dx.doi.org/10.1208/s12249-020-01805-x] [PMID: 32980937]
[77]
Sayyed ME, El-Motaleb MA, Ibrahim IT, Rashed HM, El-Nabarawi MA, Ahmed MA. Preparation, characterization, and in vivo biodistribution study of intranasal 131I-clonazepam-loaded phospholipid magnesome as a promising brain delivery system. Eur J Pharm Sci 2022; 169: 106089.
[http://dx.doi.org/10.1016/j.ejps.2021.106089] [PMID: 34863872]
[78]
Khan K, Aqil M, Imam SS, et al. Ursolic acid loaded intra nasal nano lipid vesicles for brain tumour: Formulation, optimization, in-vivo brain/plasma distribution study and histopathological assessment. Biomed Pharmacother 2018; 106: 1578-85.
[http://dx.doi.org/10.1016/j.biopha.2018.07.127] [PMID: 30119233]
[79]
Bernardi A, Braganhol E, Jäger E, et al. Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Lett 2009; 281(1): 53-63.
[http://dx.doi.org/10.1016/j.canlet.2009.02.018] [PMID: 19286307]
[80]
da Silveira EF, Chassot JM, Teixeira FC, et al. Ketoprofen-loaded polymeric nanocapsules selectively inhibit cancer cell growth in vitro and in preclinical model of glioblastoma multiforme. Invest New Drugs 2013; 31(6): 1424-35.
[http://dx.doi.org/10.1007/s10637-013-0016-y] [PMID: 24072435]
[81]
da Silveira EF, Ferreira LM, Gehrcke M, et al. 2-(2-Methoxy-phenyl)-3-((Piperidin-1-yl)ethyl)thiazolidin-4-one-loaded polymeric nanocapsules: In vitro antiglioma activity and in vivoM toxicity evaluation. Cell Mol Neurobiol 2019; 39(6): 783-97.
[http://dx.doi.org/10.1007/s10571-019-00678-4] [PMID: 31115733]
[82]
Fraga Dias A, Dallemole DR, Bruinsmann FA, et al. Development of bozepinib-loaded nanocapsules for nose-to-brain delivery: Preclinical evaluation in glioblastoma. Nanomedicine 2021; 16(23): 2095-115.
[http://dx.doi.org/10.2217/nnm-2021-0164] [PMID: 34523353]
[83]
Sagar Kishor S. Formulation and evaluation of quercetin nanoemulsions for treatment of brain tumor via intranasal pathway. Pharmaceuticals 2017; 3(6): 28-32.
[84]
Yi S, Yang F, Jie C, Zhang G. A novel strategy to the formulation of carmustine and bioactive nanoparticles co-loaded PLGA biocomposite spheres for targeting drug delivery to glioma treatment and nursing care. Artif Cells Nanomed Biotechnol 2019; 47(1): 3438-47.
[http://dx.doi.org/10.1080/21691401.2019.1652628] [PMID: 31411066]
[85]
Steffens L, Morás AM, Arantes PR, et al. Electrospun PVA-Dacarbazine nanofibers as a novel nano brain-implant for treatment of glioblastoma: In silico and in vitro characterization. Eur J Pharm Sci 2020; 143105183.
[http://dx.doi.org/10.1016/j.ejps.2019.105183] [PMID: 31846696]
[86]
Rehman S, Nabi B, Zafar A, Baboota S, Ali J. Intranasal delivery of mucoadhesive nanocarriers: A viable option for Parkinson’s disease treatment? Expert Opin Drug Deliv 2019; 16(12): 1355-66.
[http://dx.doi.org/10.1080/17425247.2019.1684895] [PMID: 31663382]
[87]
Wei T, Fan W. Lau Joseph, Deng Liming, Shen Zheyu, Chen Xiaoyuan. Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev 2019.
[http://dx.doi.org/10.1039/C8CS00805A]
[88]
Patel AA, Patel RJ, Patel SR. Nanomedicine for intranasal delivery to improve brain uptake. Curr Drug Deliv 2018; 15(4): 461-9.
[http://dx.doi.org/10.2174/1567201814666171013150534] [PMID: 29034836]
[89]
Bonaccorso A, Cimino C, Manno DE, et al. Essential Oil-Loaded NLC for potential intranasal administration. Pharmaceutics 2021; 13(8): 1166.
[http://dx.doi.org/10.3390/pharmaceutics13081166] [PMID: 34452126]
[90]
Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015; 5(2): 123-7.
[http://dx.doi.org/10.1007/s13205-014-0214-0] [PMID: 28324579]
[91]
Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 2009; 379(1): 146-57.
[http://dx.doi.org/10.1016/j.ijpharm.2009.06.019] [PMID: 19555750]
[92]
Xiao Y, Cheng L, Xie H, et al. Vinorelbine cationic liposomes modified with wheat germ agglutinin for inhibiting tumor metastasis in treatment of brain glioma. Artif Cells Nanomed Biotechnol 2018; 46(S3): S524-37.
[http://dx.doi.org/10.1080/21691401.2018.1501377] [PMID: 30299160]
[93]
Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: An excellent platform for brain targeting. Expert Opin Drug Deliv 2013; 10(7): 957-72.
[http://dx.doi.org/10.1517/17425247.2013.790887] [PMID: 23586809]
[94]
Dhanikula RS, Argaw A, Bouchard JF, Hildgen P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: Enhanced efficacy and intratumoral transport capability. Mol Pharm 2008; 5(1): 105-16.
[http://dx.doi.org/10.1021/mp700086j] [PMID: 18171013]
[95]
Rasouli R, Zaaeri F, Rajabi AB, Darbandi-Azar A, Faridi-Majidi R, Ardestani MS. 99mTc-anionic linear globular dendrimer-G2-phenylalanine conjugate: Novel brain tumor SPECT imaging. Biointerface Res Appl Chem 2021; 11(4): 11244-55.
[96]
Lombardo R, Musumeci T, Carbone C, Pignatello R. Nanotechnologies for intranasal drug delivery: An update of literature. Pharm Dev Technol 2021; 26(8): 824-45.
[http://dx.doi.org/10.1080/10837450.2021.1950186] [PMID: 34218736]
[97]
Zhang M, Asghar S, Tian C, et al. Lactoferrin/phenylboronic acid-functionalized hyaluronic acid nanogels loading doxorubicin hydrochloride for targeting glioma. Carbohydr Polym 2021; 253117194.
[http://dx.doi.org/10.1016/j.carbpol.2020.117194] [PMID: 33278970]
[98]
Ahlawat J, Guillama Barroso G, Masoudi Asil S, et al. Nanocarriers as potential drug delivery candidates for overcoming the blood-brain barrier: Challenges and possibilities. ACS Omega 2020; 5(22): 12583-95.
[http://dx.doi.org/10.1021/acsomega.0c01592] [PMID: 32548442]
[99]
Cimino C, Maurel OM, Musumeci T, et al. Essential oils: Pharmaceutical applications and encapsulation strategies into lipid-based delivery systems. Pharmaceutics 2021; 13(3): 327.
[http://dx.doi.org/10.3390/pharmaceutics13030327] [PMID: 33802570]
[100]
Kim D, Kim YH, Kwon S. Enhanced nasal drug delivery efficiency by increasing mechanical loading using hypergravity. Sci Rep 2018; 8(1): 168.
[http://dx.doi.org/10.1038/s41598-017-18561-x] [PMID: 29317727]
[101]
Niu J, Wang A, Ke Z, Zheng Z. Glucose transporter and folic acid receptor-mediated Pluronic P105 polymeric micelles loaded with doxorubicin for brain tumor treating. J Drug Target 2014; 22(8): 712-23.
[http://dx.doi.org/10.3109/1061186X.2014.913052] [PMID: 24806516]
[102]
Fan Y, Chen M, Zhang J, Maincent P, Xia X, Wu W. Updated progress of nanocarrier-based intranasal drug delivery systems for treatment of brain diseases. Crit Rev Ther Drug Carrier Syst 2018; 35(5): 433-67.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2018024697] [PMID: 30317945]
[103]
Alexander A, Agrawal M, Uddin A, et al. Recent expansions of novel strategies towards the drug targeting into the brain. Int J Nanomedicine 2019; 14: 5895-909.
[http://dx.doi.org/10.2147/IJN.S210876] [PMID: 31440051]
[104]
Lundy DJ, Nguyễn H, Hsieh PCH. Emerging nano-carrier strategies for brain tumor drug delivery and considerations for clinical translation. Pharmaceutics 2021; 13(8): 1193.
[http://dx.doi.org/10.3390/pharmaceutics13081193] [PMID: 34452156]
[105]
Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol 2010; 56(1): 3-17.
[http://dx.doi.org/10.1211/0022357022539] [PMID: 14979996]
[106]
Keller LA, Merkel O, Popp A. Intranasal drug delivery: Opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res 2022; 12(4): 735-57.
[http://dx.doi.org/10.1007/s13346-020-00891-5] [PMID: 33491126]
[107]
Ansari MA, Chung IM, Rajakumar G, et al. Current nanoparticle approaches in nose to brain drug delivery and anticancer therapy - a review. Curr Pharm Des 2020; 26(11): 1128-37.
[http://dx.doi.org/10.2174/1381612826666200116153912] [PMID: 31951165]
[108]
Mishra R, Kumar N, Mishra I, Sachan N. A review on anticancer activities of thiophene and its analogs. Mini Rev Med Chem 2020; 20(19): 1944-65.
[http://dx.doi.org/10.2174/1389557520666200715104555] [PMID: 32669077]
[109]
Harwansh RK, Deshmukh R, Rahman MA. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J Drug Deliv Sci Technol 2019; 51: 224-33.
[http://dx.doi.org/10.1016/j.jddst.2019.03.006]
[110]
Chaturvedi S, Garg A, Verma A. Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. J Drug Deliv Sci Technol 2020; 59(101899): 101899.
[http://dx.doi.org/10.1016/j.jddst.2020.101899]
[111]
Moradi F, Dashti N. Targeting neuroinflammation by intranasal delivery of nanoparticles in neurological diseases: A comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2022; 395(2): 133-48.
[http://dx.doi.org/10.1007/s00210-021-02196-x] [PMID: 34982185]
[112]
Garg A, Chaturvedi S. A comprehensive review on chrysin: Emphasis on molecular targets, pharmacological actions and bio-pharmaceutical aspects. Curr Drug Targets 2022; 23(4): 420-36.
[http://dx.doi.org/10.2174/1389450122666210824141044] [PMID: 34431464]
[113]
Islam SU, Shehzad A, Ahmed MB, Lee YS. Intranasal delivery of nanoformulations: A potential way of treatment for neurological disorders. Molecules 2020; 25(8): 1929.
[http://dx.doi.org/10.3390/molecules25081929] [PMID: 32326318]
[114]
Fortuna A, Alves G, Serralheiro A, Sousa J, Falcão A. Intranasal delivery of systemic-acting drugs: Small-molecules and biomacromolecules. Eur J Pharm Biopharm 2014; 88(1): 8-27.
[http://dx.doi.org/10.1016/j.ejpb.2014.03.004] [PMID: 24681294]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy